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Ke analyze a method for the computation of the total energy of a metal, proposed by Harrison and based
upon the following approximations: (a) the self-consistent potential, (b) a second-order perturbation ex-
pansion, with a pseudopotential derived from the orthogonalized-plane-wave method. It is shown that the
total energy can always be expressed as a sum of terms, each of them being a simple generalization of terms
already known from more elementary calculations. The main effect of orthogonalizing the conduction elec-
trons to the core is in increasing the ionic charge. These results are shown for two forms of the total energy.
The 6rst one is suitable for computations on the reciprocal lattice and contains a self-energy term, an Kwald's
electrostatic term, and a second-order perturbation term; in the second one, a short-range pair interaction be-
tween ions is exhibited, the form of which is explicitly given.

I. INTRODUCTION that with a real potential, a second-order perturbation
expansion leads to an expression of the total energy as
a sum of pair interactions between ions. Such a result
is also true with a pseudopotential, ' and we shall derive
here the explicit form of this pair-interaction function.
We shall prove that in this respect the OPW method is
also a generalization of simpler models and that the
interaction is still a short-range one.

In the erst section of this paper we shall calculate
the one-electron energy with a second-order perturba-
tion expansion. The total energy of the system will be
deduced in the second part, while the pair interaction
function as well as a remark on the self-consistency of
the method will be given in the third part. Though
the calculations of the two first parts could be done
with a large variety of pseudopotentials, we shall use
from the beginning a special one which is nearly the
same as Harrison's' because it seems to be the most
natural way to introduce in the last section the pair-
interaction function.

Let us at last remark that the above-mentioned
results have been obtained with the help of a perturba-
tion expansion, the convergence of which will not be
discussed here.

HE calculation of metallic properties has long
been hindered by the problem of the choice of a

suitable potential for the one-electron Hamiltonian. It
was believed that the effective potential acting on a
conduction electron was small but one could not think
of a potential being at the same time small and realistic.

For simplicity we can start with the quasifree-
electron approximation in which the potential is purely
phenomenological. Its matrix elements are unknown,
so that the formulas obtained cannot be easily com-
pared with experiments.

On the other hand, one can pick a more realistic (but
no longer small) potential. The relationship between
the shape of the potential and the numerical values
obtained is then obscured by the complex numerical
work which has to be performed.

The introduction of the orthogonalized-plane-wave
(OPW) method simp1ified the situation by giving a
theoretical basis to the quasifree-electron scheme. It
also gave a practical means of getting a small potential
out of a realistic (and large) potential.

The two points of view seemed, then, to be reconciled
when in a recent article, Harrison' pointed out that
approximating the non-Hermitian pseudopotential of
the OPW method by a real potential could not be
justified. A second-order perturbation expansion of the
total energy leads in fact to terms which were not
expected from the simplified theory.

We intend to show in the present paper that the
above-mentioned terms can be, in fact, rearranged in
such a way that their physical origin appears more
clearly. The total energy of the electron-plus-ion syste
is then expressed as a sum of three terms, each of the
being a generalization of its quasifree-electron equiv
lent. One is a volume dependent term which is a ki
of self-energy of the individual ions, the second a pure
electrostatic energy term, and the third an interacti
energy expressed as a second-order perturbation te

It is also well known (see, for instance, Refs. 2 and

' W. A. Harrison, Phys. Rev. 129, 2503 (1963).' M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).' M. H. Cohen, J. Phys. Radium 23, 643 (1962).

II. CALCULATION OF THE ONE-ELECTRON
ENERGIES

We shall here calculate the eigenvalues of the one-
electron Hamiltonian with OPW and perturbation
methods.

I.et
(2.1)H=T+V

m
be a Hamiltonian whose eigenfunctions are one-electron
wave functions. T is the kinetic energy operator with
eigenfunctions.

~
k) =e'"' and eigenvalues Zq.

V is a self-consistent Hartree potential; that is to

on say, the real distribution of al 1 the electrons of the
metal has been taken into account in V. This potential

3) is small far from the ions but cannot be thought of as a
perturbation in their immediate vicinity.

The spirit of the OPW method. is to take advantage
of the knowledge of a certain, incomplete, set of eigen-
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functions of Eq. (2.1) (the lc) functions with eigen-
values E,) so as to 6nd more easily the remaining
eigenfunctions

I P~& (with eigenvalues B~).
One can express the orthogonality of I/i, ) to any

I c)
function by writing that it has the form

given by
Wt = Vr+ Vi(1—P) . (2 6)

With Eq. (2.5), the perturbation expansion is readily
performed and one gets

lk )=(1—&)I~ ) (2.2) h=&k+(k
I Wl k)

where E is the projection operator on the
I c) functions:

&=Z. l c)(cl

From Eqs. (2.1) and (2.2), we get

(T+v—Z.(&.—~ ) I )( I) I ~.&—= P'+V+V.) I ~ )= &.
I ~ ) (2.4)

The definition of
I yq) through Eq. (2.2) is not unique

for we can add to y~& any function of the form Q,a, I c)
without changing f~&. We shall use this indeterminacy
to transform Eq. (2.3) into an eigenfunction problem
with a small pseudopotential.

Let us first divide V into two parts in the following
way. Its first part V& will be a sum of nonoverlapping
potentials centered on every nucleus,

Vi ——PRpi(r —R;) .

wi(r —R) is chosen to be zero for
I
r R, I&—ro where ro

is smaller than the inscribed sphere in the atomic cell.
It includes all the important and rapidly varying part
of V in this sphere, that is to say all the part of V which
arises from the ion which stands at the center of the
sphere.

V2 is the remaining part of the potential, which we
shall assume to be small everywhere.

We shall now choose
I p&) such that for any permis-

sible variation of
I pq)

~(~~l Vi+V. I ~~)=0.

One easily gets

Ilail

~~&—= (2'+ (1—&)Vi+ V2) I ~~)= &~ I v ~& (2.5)

Actually the
I c) functions are those of the core elec-

trons localized in the vicinity of every nucleus. If u(r)
has no amplitude near any nucleus, we have I'IN)=0.
Furthermore, any I/i, ) has a small amplitude in the
same region, so that the functions c(r) form a nearly
complete set of functions for functions localized near
any nucleus. In other words, P acts more or less as a
sum of square wells centered on every nucleus with a
depth which is nearly 1 at the center and 0 outside.

Equation (2.5) now defines a pseudopotential IV
= (1—E)Vi+ V2 with the two following properties:

(a) From the above, we see that W is small, for
(1—P) is small where Vi is important and vice versa,
and V2 is always small. We can thus perform a per-
turbation expansion with 8'.

(b) W is not Hermitian. W contains the product of
two Hermitian operators so that its adjoint 5't is

(kl Wl k+q)(k+ql Wl k)
+Zygo (2.7)

(k+ql Wl k)
I v ~&= (1+&~)Ik&+Z~~olk+q&

~k ~k+q

14~)=(1—~)le~& (2g)

Formulas (2.7) and (2.8) are not the usual ones in
two respects:

(a) The numerator of (2.7) is not a squared inodulus.
(b) We want lf~& to be normalized to unity so that

ak will not be zero.
We shall first transform (2.7) by introducing the

potential 8't which has to be a first-order quantity as
well as 5'. Let us note that

(k+ qlwtlk) —(k+qlwlk)=(kyqlLE, vijlk)
=(k+ql P', ((V+ 2)—(2'+ V,))jl k&. (2.9)

As B=T+V and P=g, lc)(cl are commuting opera-
tors, and

I k& and
I k+q) are eigenfunctions of T, Eq.

(2.9) gives

(k+ql wtl k&—(k+ql wl k)
=-(k+ql~lk)(~. -~...)—(k+qlLP, V2gl k). (2.10)

We shall now suppose that V2 is very slowly varying
in the region where P is not zero. If this is the case, V2
can be replaced by a constant in LP, V,$ so that the
last term of (2.10) is zero.

Equation (2.10) enables us to transform (2.7).
Furthermore, it tells us that any matrix element of P
has to be considered as a first-order term as well as
those of 8' or S't'.

With Eqs. (2.7) and (2.10) one gets

I(k+ql Wl k) I'
8 =E +(klwlk)+g, o

~k ~k+q

—E%.0(kl&lk+q&(k+qlWlk) (2»)
A further simplification will appear if one makes use

4 Throughout this article we shall suppose that the system is
enclosed in a box of volume 13 so that the eigenstates are discrete,
and the perturbation expansion can be performed in the usual way.
We shall adopt here the atomic unit system: 4=m =e=1.For the
Fourier transform we shall use the definition

V(g) =Lt/I-'g e+''i'V(r)dr,

so that we have V(q)=(k+q)Vilr).
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of the closure relation

Z Ik+q)(k+ql =1. (2.12)
Ke get

—P,~o(kIPlk+q)(k+qlwlk)=(klPlk)(klwl k)
(k I PL(1 P) Vi+ V2]VI k) (2 18)

because of the relation P'=P, the term P(1—P)Vi
cancels out and we get

Bg=Zg+{1+(kIPI k))(kl Wl k)—(klPV2I k)

I (k+ql Wl k) I'
+gogo (2.14)

III. CALCULATION OF THE TOTAL ENERGY

In this section, we shall express the total energy as
a sum of three terms, each of which has a simple
physical meaning. The first one will depend only on the
number of conduction electrons and ions and not on the
shape of the crystalline lattice; it will contain the energy
of the free electrons plus a self-energy of the ions. The
second one will represent the electrostatic energy of a

Equation (2.14) is not the classical result of the per-
turbation theory because of the —(kl PV2I k) and

(kl PI k)(k I Wl k) terms. This is not important because
we have to keep in mind that it is the total energy of
the system and not Sk which has a physical meaning.
Indeed we shall see in the next section that the presence
of those terms is necessary in order to express the total
energy in a simple manner.

Let us now normalize lf~&. From Eq. (2.8) we get

I4'&= I&)(1+~~—(kIPlk))+Re. olk+q&

(k+ql Wlk)
X —(1+ay)(k+qlPlk), (2.15a)

+k ~k+q

so that we must have ai, ——(klP I k).
As If~I is a first-order wave function and (k P k)

a first-order quantity, we shall neglect a&(k+q P k)
in the right-hand meinber so that

I Pq) reads

I&.)= Ik)+Ra.olk+q)

(k+ql Wl k)
X —(k+ qlPlk& . (2.15b)

~k ~k+q

The origin of the nonzero value of uk is the following.
From Eq. (2.8) and from the definition of P, lg~) has
a very small amplitude near any nucleus. This means
that the effect of orthogonalizing

I Pq) to the core func-
tions leads to a repulsion of a charge ak from the
vicinity of the nuclei.

I pq) has then to be renormalized
so that If'& is a proper wave function. We shall see in
the next section that this repulsion explains also the
existence of the extra terms of (2.14).

metal idealized as a lattice of positive charges ern. -

bedded in a uniform cloud of electrons, the density of
which is such that the total charge will be equal to
zero. The last one will be the difference between the
actual energy and the 6rst two terms and will

appear as a second-order perturbation term in which a
matrix element of the bare potential is multiplied on
one side by a matrix element of the dressed potential.

In order to obtain such a result, we shall explain
first what is the physical origin of the various con-
tributions to the total energy E&,&, and what are the
terms we take into account iii the potential V. Keeping
in mind the structure of the expression we are looking
for, we shall first rearrange the electrostatic terms of
Et,~ in order to eliminate some expressions which could
not be obtained with the desired accuracy. To go one
step further we shall need to explain what part of V
enters into V~ and V2 and how we get the Hartree
potential. The final formulas will then be obtained after
some very simple calculations that we shall briefly
summarize.

A. The Total Energy

The total energy E~,~ of the metal contains the fol-
lowing terms

&i.i=2''tt'+Xi:(ir b~ —— p(r) ~(r)«
2

+- p;.„(r)V;. (r)dr, (3.1)
2

where %t,; is the ion self-energy.

p(r) is the charge density at the point r of the con-
duction electrons and U(r) is the corresponding po-
tential given by

AU(r)+4irp(r) =0.
The minus sign in front of the corresponding term
arises because the conduction electron interaction
energy i2 J'p(r)U(r)dr has been counted twice in the
Hartree procedure.

p;,„(r) is the charge density of the ions, V;,„(r) the
related potential, and iJ'p;,„(r)V;,„(r)dr the ion inter-
action energy. %e must not forget that the ion which

stands at E, does not interact with the potential it
creates itself. To remind us of this fact and of the special

meaning of the related integral, we shall write V;.„for
the potential instead of V;,„.

8~ is the electron energy, given by (2.14). This
energy has been expressed with the help of a potential
V, the nature of which we shall now discuss.

B. Form of V(r)

Let us explain what terms are contained in V(r).
First comes a term I. involving all the non-Coulomb
features of the potential. It can represent, for example,
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The first thing we need to do is make a transforma-
tion of the electrostatic part of (3.1). Let po be the
charge density due to the plane waves +~&I,~~ k), and
Vo, the related potential. From the definition of Vq
and VE we have

U(r) = Vo(r)+ VB(r), V~(r) = Vo(r)+ V~,„(r), (3.4a)

or

V~

(short ronge)

~~c
I

V~

(long rangn)

SETIOO M..g iv

Fxo. 1. Summary of the different ways the potential has been
separated in Secs. II and III as well as the relationship between
the diferent notations.

p(r) =po(r)+p8(r), p~(r) =po(r)+p; (onr) . (3.4b)

By making use of Eqs. (3.4) the last two terms of
(3.1) may be written as

p~(r) Vs(r)dr —— ps(r) Vs(r)dr
2 2

the exchange interaction between the ~c) and the ~f)
electrons. L is a sum of interactions localized around
each ion.

po(r)$Vx(r)+ VB(r)jdr. (3.5)

1.=Pa l(r —R), 3.2
As p has only one Fourier component (for g=0) thepo

three terms of (3.5) are
where 4 is a short-range potential.

Then we have a Coulomb term VE corresponding to
the potential due to the nuclei, the

~
c) electrons and a

sum of plane waves +~&~~~ k). The total charge pz
which generated Vz is then zero. As the

~
c) electrons

are in the vicinity of the nuclei pE is well represented by
point-charges, —Z localized on each crystalline site
imbedded in a uniform charge +Z, where Z is the
valence of the ions.

The rest of U is a Coulomb potential V8, which
ariseses from the difference in charge density between t e

1 desactual electrons and the plane waves. It thus 1nc u es
the effects of (a) the orthogonalization procedure of the
OPW method and (b) the second-order perturbation
method.

V 's thus a Hartree potential. It is, of course, theS1 ~ )

dmos lnvost involved term of this theory, but it has alrea y
d ebeen shown by Harrison' that such a term coul be

calculated without difBculty.
It has to be emphasized that VE and Vq are real

potentials and not operators in contradistinction to L
and I'. Their Fourier transforms

Vs(q) =(k+q~ V~~ k); Vs(q) =(k+q~ Vs~ k) (3.3)

are thus independent of k.

C. Rearrangement of Terms

It is clear that some manipulation will now be neces-
sary in order to obtain the above-mentioned form for
the total energy. Indeed one can notice that the nota-
tion is quite different in Secs. A and 3 above, and still
not the same as in Sec. II. This unhappy feature is due
to the very nature of our problem, and our task is now
to match together different parts of E&,& or V. As this
is not an easy matter, we think it useful to suxnmarize
in Fig. 1 how the different terms which enter V are
grouped in the subsections of Sec. III.

(a) the self-energy of the charge pE,

1
(b) —p, (r) Vs(r)vr

2 = —(L'/2) Z~~s(a) Vs( —a), (3 6)

where ps(q) and Vs(q) are the Fourier transforms of
ps(r) and V8(r), and

(c) — ~ (r)LV (r)+Vs(r)3«
= —Zn&.~(k~ VE+Vsl k) (3.7.)

This term cancels out PI.„&I,~(kt Vs+ Vs~ k) which
comes from the erst-order perturbation term of SI, in
(3.1). As we shall now see, this cancellation greatly
simplifies the calculation of VB.

D. Form of V~, V2, and Vg

%e have now to separate V into V~ and U2. As we
want Vz to include all that part of V which varies
rapidly near the nucleus, V~ contains L plus the poten-
tial VyE created inside the sphere of radius ro by the
part of pE which lies in it. Moreover, ro is chosen in
such a way that this sphere is substantially bigger than
the region of the space where

~
c) is not zero.

U2 is thus formed of UB plus V2E, the remaining
part of VEo From the de6nition of ro it is apparent that
V2E is practically constant in the region where I'
effectively acts as it was supposed in the last section
when asserting that P', V2$=0. We shall now calculate
V8 and prove that the same is true for it.

Let us erst remark that

p, (r) =E.,..(y,*(r)y,(r) —1) (3.g)

does not contain any zero-order terms. (See Eq. 2.15b.)
Ke also point out that ps and V~ are now combined
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in such a way in (3.1) and (3.6) that it is sufhcient to cancel out (3.7) by another part of the total energy at
know them to first order. [This was not the case in the this stage of the calculation. f
primitive form of (3.1) and explains why we needed to Froin Eq. (2.15b) we get now pe(q) up to first order

-(k+ qliVlk
pe(q) =—pa&i,

~k +k+g

) (k —q( W~ k)*—((k+q(P(k)+(k(P [k—q))
~k ~k+q

(3.9)

and with the help of the Poisson equation we obtain

Ve(q) = Q,a&or
-&k+ql (1—P) Vi+

Umbel

k) (k—q) (1—P)Ui+ V,e( k)*—((k+q)P[k)+(k(P(k —q))
+k +k+q +k +~k—q

q
2L' 1

Pk&kJ +
jVk —jVk jVk —jVk

~ (3 10)

For large q the denominator is proportional to q' while

the numerator certainly goes to zero as 1/q' and more

likely as 1/q4. Thus by Fourier transform, for short
distances Ve (r) is a constant, which proves that [P,Ve)
could be neglected in (2.10).

One has still to show that we were consistent when

writing in Sec. II that any matrix element of V2 was

small. From (3.10) it is now apparent that(k+q~ V2~ k)
is small whenever V2z(q) is, and from the definition. of

V2z the latter is true for large q, but when q goes to
zero V2e(q) is proportional to 1/q'. (k+q~ V2~ k) will

nevertheless be small because if we put together the
two V2g terms of V2, a q' factor will appear which

will remove the 1/q' divergency.
We can now obtain the total energy in the proposed

form by splitting (3.1) as follows.

Vi =QR; &(r—R,) .

We thus obtain, for example,

e
—ik(r—Rs)

(3.12)

E. Final Form of the Total Energy

o,. The Structure Independent Terms

We can easily prove that the following terms do not
depend on the relative positions of the ions, but only

on the total volume of the system.

&0=2' 'tt'+Z«~, P'~+&k~L ) k)—&k~ PUi~ k)

+(kiP[k)(ki (1—P)Viik)}. (3.11)

Indeed the
~
c) functions for two different crystalline

sites do not overlap, and V~ is, as L, a sum of nonover-

lapping potentials centered on the same sites.

b. The E/ectrostutic I~steractioe Term

The following terms will now be put together:

1
P.„= pe(r) Ve(—r)dr

2 (3.13)

&&i{(k~ PV2e~k) (k) P[k)( k~V2@[k)}.

Ke prove in Appendix A that

(k~P)k+q)
pi(r) —= —Z,e "'Z«~ L'

may be interpreted as a sum of point charges localized

on the ionic sites R, and that we can write

—Q«g, {(k[PV2e(k)—(k[ P[k)( k(V2e[k)}

pi(r) Vie (r)dr =n pr,, (r) Ue(r) dr, (3.14)

with

~=[(klPlk)l-=Z~&. &klPlk)/Z~&~. &klk) (3»)
The electrostatic term E„can then be written as

L'..=2 (1+2n) pe(r) VE(r)dr

where the surrnnation runs over all the sites R; and all

the ~c) functions centered on this site. Such an ex-

pression clearly depends only on the total volume L'
and certainly not on the relative positions of the ions,
and so will be the case for (3.11).

& IPVilk)—=P c (r—R;)d(r —R,)
L3

elk (r'-Rs)

—', (1+n)' pe (r) Ve (r)dr. (3.16)

c*(r'—R;)v i (r' —R,) d(r' —R~)
Equation (3.16) has a simple physical meaning. From
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(3.15) and (2.15a) u is the mean value ofthetotalcharge
repelled by the ions in the course of orthogonalization
of all the lP), &

functions to the
l c& functions. As far as

electrostatic energy is concerned, we see that this fact
appears in the presence of an additional charge of
opposite sign —O.Z localized on each ion counter-

balanced by the charge uZ uniformly spread on the
whole crystal.

c. The SecorId-Order Pertnrbatiox Term

The terms which have not been taken into account
are now the following:

J3
Z =—Z ps(a)Vs( e)+Q &,(Z~ s

2 +k +k+q

[(kPqlwlk&ls
+(0

I
pI ")(0I vs(» —(kI P vsI ")). (3.17)

With the value of ps(q) (3.9) and Vs(q) (3.10), it is readily found that E~ can also be written

Ey 2 gk(kr Qsg0
(kl v, (1—F)yv, ll+q)&I yql(1 —F)v,yv, +v, lk&

(k l
vl(1 F)+V2E+ vs l k+q&(k+ql (1 F)vl+ V2E

l
k&

(3.18)
jVk jVk+

Formula (3.18) is analogous to the perturbation term
obtained with a small Hermitian potential. We have
indeed the product of two matrix elements, one corre-
sponding to the bare potential, and the second to the
bare adjoint potential plus the screening term (that is
to say, W itself).

It is now apparent that the total energy given by
this second-order perturbation expansion can be re-
garded as a generalization of the ordinary result ob-
tained by using a small potential instead of a pseudo-
potential 8'.

Indeed, the new terms which appear in (3.11), (3.16),
or (3.18) are a consequence either of the repulsion of
the conduction electrons by the core electrons or of the
use of a non-Hermitian potential.

We can thus conclude that in this respect, the OPW
method gives a theoretical basis to the quasifree-
electron model.

IV. GENERAL REMARKS AND CONCLUSION

A. Self-Consistency of the Total
Energy Expression

We used a perturbation expansion of Bk in order to
obtain the total energy of the system. For a given q,
it is clear that Bk diverges when Ek=Ek+q' so it does
not stand to reason that (3.2) is the correct value of
the energy.

One can nevertheless prove' that.
(a) for any given q, the summation on h(hr leads

to a converging expression for the energy (3.18). The
total energy is thus a sum of finite expressions.

(b) (3.2) is the correct value of the energy up to
the second order if (and only if) the Fermi surface is
not deformed by the first-order term of the perturba-
tion expansion.

We have then to show that (k l Wl k) is independent
of the direction of k for

l
k

l
= hr.

Indeed

&klWlk&=&kl Vs+Vslk&+&kl~ Fvtlk& (4.1)

V~ and Vq being Coulomb potentials, the erst term
is k-independent. We shall now replace in P the index c
by the double index (R,,t), where t specifies all the quan-
tum numbers of the related wave function. t(r —R,) has
the form Yt (0, (p)P„1(r—R;).As I and Vi are functions
of (r—R) only, by expanding lk) in spherical Bessel
functions, and summing on the index m, one readily
proves that the last term of (4.1) is a function of lkl
only. We have thus correctly calculated the total energy
up to second-order terms in the last section.

3. Pair Interactions and Range of Forces

It has already been noticed' ' that a second;order
perturbation expansion with a real potential leads for
the total energy to an expression which can be in-
terpreted as a sum of pair interactions. Harrison'
derived the same result for his pseudopotential but
did not write down the explicit form of the interaction
function.

We think it is worthwhile to give this formula here
and to comment on its principal features. We shall first
rewrite in our own notation the pair-interaction func-
tion derived by Harrison from E„,and shall afterwards
add the contribution of Eq to get it in its final form.

a. Form of the E~ Term

I et us first notice that in E„ the term q=0 is ex-
cluded from the summation; for qAO, Vz(q) is just the

A. B1andin and R. Pick, Physique de la Matiere Condensate
(to be published).
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Fourier transform of the potential produced by the ionic that we can write
charge density With the help of this remark and of Z„=+2„0~S(q)~'E(q), Ve(q) =S(q)&s(q), (4 2)
formulas (3.10), (3.12), and (3.17), it is easily shown where

S(q)=Z e "R' (4 3)

(k
~

il —ot —(47rze—'2'/q212)
~
k+ q)&k+ q ~

E—opt —(42rz/q'I-')+2)e(q) je'2') k)
&(q) =2 Z(«kr +c.c., (4.4)

2S(q) =
&(q)

-
&k+ q ~

i'—o—(4 ze' '/q I')
~
k& &k

~
4—o t —(42rze

—* '/q'L')
~

k—q)

~k ~k+q ~~k ~k—q

—Z(L&k+ql t&(t lk&+(k
I
t&«lk —q&, (4 3)

&k+qio[k&=E«k+qlt&&tie([k), &k+qlo'[k&=Z4(k+ql~(it&«lk&,

q2L 2 1 q2I.' k pI.' q
@(q)= —Z«~el +

4 4ZR E,R., E —R,— 4 4 ' 24 )
1—x2

g(x) = 1+ log

(4.6)

(4.7)

(4.8)

E„can thus be expressed as

ei% ~ (Ri—Rg')g(q)

+y, 0+PRi, RjR.'RP'1(Ri Rj) 4 (4.9)

which defines F((r) by its Fourier transform.
Though it shows up a pair interaction, (4.9) is not

in itself so useful a formula as (4.2); one can see that
E(q) diverges as 1/q' when q goes to zero, and decreases
very rapidly for q tending to infinity. As long as sum-
mations are performed on the reciprocal lattice, (4.2)
converges quickly because E(q) is already a small
quantity for the smallest q compatible with S(q)WO.
On the other hand, for large distances &((r) falls off as
1/r so that the summation on the direct lattice cannot
be done without much dif6culty. This is unimportant
in fact because all these difficulties will disappear when
we add the pair interaction terms which come from Eq.

b. The Pair-Interaction FNnction

those of simpler theories. We have to remove all the
divergencies which come from the 1/q' character of the
Coulomb potential when q goes to zero. We already
noticed in Sec. III D that such a removal could be done
on V2. This will also be possible for the pair-interaction
function.

We first separate all the terms which contribute to
(4.4) and (4.10). We then notice that every time there
exists a diverging term, we can group it with one or
two other ones such that the sum is no longer divergent.
After this rearrangement is performed, the total ex-
pression is easily brought into the following form:

840,=g,+g;„,= g,+2' PRi R;,RP(R,—R,), (4.12)

where 80 is a, self-energy of the ions and F(R,—R;) is
given by

V(R,—R,) =P„,e"(R'-R )a(q)

It may seem surprising to devote this whole subsec-
tion to the addition to (4.2), of a term which is readily
seen to be

eiq ~ (R;—Rj) 2b(q)

I

—Z —&'(q)+~ (q)+ -4'(—q) I'-
(4.13)

where

4vrZ

R'(ZR [—2—24 (4)]R"'R' R"
l

(4 10)

&(q) =Z.&~ (2 &k+qlt&&tlk&& (411)

with

II(q)

I&k+ql~ —olk&l'
b(q) =Z(&(Rr

+~k I k+g

(4.14)

In fact this addition is not easy to perform if we wish
to obtain a result that we can easily compare with

&k+qi 8—oi k)
~(q)=Z~&)r „~I k+q

(4.15)
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The following comments may be made on Eq. (4.13):
(1) Three kinds of terms appear in 8(q): (a) the

ionic charge —Z; (b) the "additional charge due to the
orthogonaliza, tion procedure": —E(q); (c) all the non-
Coulomb terms of the potential, which are in A(q)
and b(q).

One easily realizes that the existence of the (c) terms
is not only related to the use of an OPW method but
also to the presence of a non-Coulomb part I. in the
original potential V. Thus, even if we make the very
crude approximation that the Hartree potential is
small enough so that V by itself can be thought of as a
perturbing potential, both terms which appear in (c)
will still be present in 8(q).

(2) 8(q) is continuous for q=0. The term q/0 need
no longer be discarded in the summation (4.13).

(3) The first derivatives of 8(q) are also continuous
for q=0. Then for large distances, P(r) no longer falls
off as 1/r. The asymptotic form of f(r) is now related
to the infinite derivative of H(q) Land presumably of
& (q) and b(q)] for

~ q~ =2k'. If we assume that A (q)
and b(q) are less singular than (or have the same singu-
larity as) H(q), then f(r) will have the asymptotic form
C cos~2krr~/rs, where C is a constant related to the
behavior of 8(q) for

~ q~ ~2kr. This result is a general-
ization of what was obtained with the approximation
mentioned in (1.a) when the term I is also neglected. '
LThis means: P (q) =A (q) = b (q) =0.)

(4) In (4.13), a
~ P(q)

~
'/H(q) term has been added

so that a more symmetrical formula appears. This is
the same kind of approximation we made in adding an
n' term in (3.16). On the other hand, since F(r) de-
scribes a short-range interaction, the approximation of
pi(r) by a sum of point charges (which was adequate as
long as an important part of Sec. III came from the
interaction of distant charges) may be too crude for
sma11 values of r. In other words, for such distances, we
cannot approximate P(q) by rrZ, as we implicitly did
in comment (1).

C. Conclusion

We have now succeeded in proving the following
statements. To third-order terms:

(a) The OPW method does not bring any funda-
mental modification to the quasifree-e1ectron scheme.

(b) Apart from a constant, the total energy of the
metal may be written as a sum of two terms.

The first term is of an electrostatic nature and repre-
sents the self-energy of ions, whose charge has been
increased by the OPW orthogonalization, embedded in
a compensating field of opposite charge.

The second term comes from the perturbation theory

6A. Blandin, paper contributed to the session on Solid Solu-
tions at the A.I.M.E. Meeting, Cleveland, October 196$
(unpublished) .
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APPENDIX

Let us define the following charge density:

~ik. r

pi(r) —= —Zs&» Z. c*(r)
Ls Qrs

(k)P)lr+q)
Pss " ' gsg»

L3

(A1)

where c(r) is the wave function of the state
~
c).

pi(r) is real Lpi(q) =pi*(—q) j and has the mean value

pi, s—=Lpr(q)7 s= ——P,&~s (k
~

I'
~
k), (A2)

Ev

where v is the atomic volume.
The charge density pi(r) —pi, is of the same nature

as p~, indeed, the mean value of that charge is zero
and, from (A1), pi(r) is a sum of negative charges
localized around the nuclear sites, the charge near
every nucleus being the same and equal to ~py p. We

' W. A. Harrison, Phys. Rev. 129, 2512 (1963).

and is expressed, as usual, as a product of the matrix
element of a bare potential by the corresponding matrix
element of the dressed potential.

(c) The total energy of the metal can also be written
as a sum of pair interactions. This two-body force has
a short-range and an asymptotic oscillating behavior.

On the other hand, throughout this paper we empha-
sized that part of the total energy which depends upon
the structure of the crystal and more or Jess neglected
the self-energy term which is a function of its volume.
The above formulas then are only useful for the study
of some properties of metals such as crystal structure,
elastic constants at constant volume. They can also be
generalized to binary alloys, giving then the effective
chemical interaction between the different kinds of
ions, and therefore their ordered structure. These, and
some other applications, have been reviewed by
Harrison. ~

If it turns out that the second-order perturbation
method proposed by Harrison' leads, for many metals,
to numerical results in good agreement with experi-
ment, then the above formulas will allow one to in-
vestigate the inhuence of the new terms arising from
the OPW method on this agreement.
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can then write pr(r) —pr, o ——nps so that

—2«("(&kl&v»lk& —&kl&lk)&kl v»lk)}
= —2«", 2 "o&k I

~ lk+ e)&k+~ 1
V» lk&

=n V»(r)ps(r)dr. (A3)

n ps(r) Vs(r)dr. (A4)

pz(r) with [Utr(r) —Vsz{r)j is just a self-energy term
which could be added to (3.11), but is so small that it
can be neglected. We can thus identify (A3) with

Finally from (A2) and from the definition of ps given
in Sec. III C we find that

On the other hand, V»(r) is exactly of the same
nature as Va [see Eq. (3.4a)j and the interaction of n=P s(cr&klPI k)/P c(y, r&kI k)=[& klPI k)], . (AS)
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Spin-Wave Interaction in the Itinerant-Electron Model of Ferromagnetism
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Using a simple itinerant-electron model of ferromagnetism with exchange interaction and Coulomb re-
pulsion between band electrons, spin waves, and their interactions are discussed. In the random-phase ap-
proximation, we obtained the diagonal elements of spin-wave interactions which reduce to Dyson's result in
the limit of localized electrons for our model. A diagrammatical interpretation of the result is also given.
When the band with down spin is partially filled and that with up spin empty, the spin-wave interaction con-
sists of the part arising from the modified exchange interaction, the part due to the electron kinetic energy
and the Coulomb repulsion, and the part which involves both of these effects. Among these, the second seems
to be rather small. For small values of the wave vectors of the spin waves involved, the spin-wave interaction
depends on the wave vectors in the same way as in Dyson's result. The modification on the exchange inter-
action is such that the short-range part of the original exchange interaction is suppressed, whereas the long-
range part remains unaffected. This arises from electron (hole) exchanges, and cancels in the limit of localized
electrons.

I. INTRODUCTION

INCE Dyson's theory' on the spin-wave interactions
of the Heisenberg spin system appeared, this prob-

lem has been a subject of many investigations. ' How-
ever, the experimental test of these theories did not
appear until recently. Experiments have been performed
on ferromagnetic metals such as' Ni and4 permalloy to
determine the temperature dependence of spin-wave fre-
quencies which arise from spin-wave interactions. In the
low-temperature region, they obtained the spin-wave
frequency which decreases with the temperature as T' ',
in agreement with Dyson's result. However, its magni-

*A part of this work was supported by A.R.P.A. and the U. S.
Once of Naval Research.
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tude, which is proportional to the square of the range of
exchange interactions, is too large and requires the range
of exchange interactions of about eight times the lattice
constant to fit the above mentioned theoretical result.
There are other evidences' which indicate the existence
of long-range exchange interactions. However, it was
pointed out that such a long-range exchange interaction
is inconsistent with other experimental evidence. ' It has
been suggested that the itinerant character of electrons
in these metals may be important. '

On the other hand this problem is also of theoretical
interest as another example in which interactions among
elementary excitations play a major role. ' '- ' Although
the property of elementary excitations in many-body
systems has been a subject of numerous investigations,
not much work. has been done on the problem of inter-
actions among them, which are essential in understand-
ing the temperature dependence of energies of ele-

' R. E.Argyle, S. H. Charap, and E.W Pugh (to be published) .
' W. Marshall, Eighth Ircterccatiorcat Conference on Low Tempera-

@ere Physccs, 196Z (Butterworths Scientific Publications Ltd. ,
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