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Green Functions in the Theory of Antiferromagnetism
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A Green function method has been used to treat the statistics of a general antiferromagnetic structure
with arbitrary spin value per site and with Heisenberg exchange interactions between any or all pairs of
spins in the system. The only restrictions placed upon the type of order are that there shall be a single di-
rection of spin alignment and that each of the two ferromagnetic sublattices shall be translationally in-
variant. Expressions are given for the sublattice magnetization and Neel temperature and, as a particular ap-
plication of the results, the Neel temperatures for certain face-centered cubic orders are calculated ex-
plicitly. The behavior of a general antiferromagnetic structure in the presence of an external magnetic field is
also examined. Expressions are derived for the parallel and perpendicular magnetic susceptibilities, and are
discussed in detail at low and high temperatures and also at the Noel point.

I. INTRODUCTlON

FEW years ago, Bogolyubov and Tyablikov' '
Qrst employed the double-time temperature-

dependent Green functions in an approximate treatment
of statistical problems in ferromagnetism. They demon-
strated the manner in which it is possible to derive a
formula for the magnetization of the Heisenberg ferro-
magnet which is a reasonable approximation over the
entire temperature range. The exact treatment of the
problem involves the solution of an infinite set of
coupled equations in the Green functions (see, for
example, Zubarev ) and approximate solutions are
obtained by making the set of equations finite by using
a decoupling approximation. In practice, almost all
authors have, for simplicity, concentrated on Gnding a
suitable decoupling which will isolate just one equation
from the rest and hence allow for a comparatively
simple solution.

The original Bogolyubov and Tyablikov theory was
applied only to the case of spin-half and uses the so-
called "random-phase" or "Tyablikov" decoupling
approximation. The extension to higher spin values
was accomplished by Tahir-Kheli and ter Haar' (to
whom we may refer for reference to earlier efforts in
this direction) using the same decoupling mechanism.
More recently, progress has been made toward im-
proving the calculation at low temperatures, ' ' and
Callen~ has suggested a more satisfactory decoupling
procedure. Recent papers by Tahir-Kheli' and by
Hewson and ter Haar' have also shed light on the kind

'N. N. Bogolyubov and S, V. Tyablikov, Dokl. Akad. Nauk
SSSR 126, 53 (1959) LEnglish transl. : Soviet Phys. —Doklady 4,
589 (1959)l.' S. V. Tyablikov, Ukrain. Mat. Zh. 11, 287 (1959).

s D. N. Zubarev, Usp. Fiz. Nauk 71, 71 (1960) LEnglish transl. :
Soviet Phys. —Usp. 3, 320 (1960)g.

4 R. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127, 88 and
95 (1962).

'K. Kawasaki and H. Mori, Progr. Theoret. Phys. (Kyoto)
28, 690 (1962).' T Oguchi and A. . Honrna, J, Appl. Phys; 34, 1153 (1963).

'H. B. Callen, Phys. Rev. 130, 890 (1963).' R. A. Tahir-Kheli, Phys. Rev. 132, 689 (1963).
s A. C. Hewson and D. ter Haar, Phys. Letters 6, 136 (1963).
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of de6ciencies which the existing decoupling approxi-
mations possess.

In contrast with the wealth of literature on the Green
function approach to the ferromagnetic problem, there
has been comparatively little published concerning the
analogous antiferromagnetic problem. Although the two
problems are obviously closely related, and similar
questions of decoupling procedure arise for both, the
inequivalence of the sublattices in the presence of
external magnetic Gelds and the almost limitless number
of possible spin patterns add to the difhculties of pre-
senting a comprehensive treatment of the antiferro-
magnetic problem. Of the papers which we know to
have been published on the subject, ' ' " only Pu
Fu-Cho" has included the effects of an external mag-
netic Geld or has tried to consider in any sense a general
antiferromagnetic structure. His treatment, however,
is restricted to spin-~» and to perpendicular suscepti-
bility at low temperatures.

The aim of the present paper is to present a treat-
ment, using the Green function techniques, of the
statistics of a general antiferromagnetic structure with
arbitrary spin 5, with Heisenberg exchange interactions
between any or all pairs of spins in the lattice, and in
the presence of an external magnetic field. The only
restrictions which are placed on the spin system are
that there shall be a single preferred direction of anti-
ferromagnetic alignment in the ordered state, and that
each of the two ferromagnetic sublattices shall be trans-
lationally invariant. To show the way in which this
latter restriction may be lifted, we also treat a special
case of an ordering which does not conform in this
respect. %e use the simple "Tyablikov" decoupling
throughout.

In Sec. 2 we treat the problem in the absence of an
external magnetic field, and expressions are obtained
for the sublattice magnetization and the Neel tempera-
ture T~. As a special application of the results, we

"I'u-Cho Pu, Dokl. Akad. Nauk SSSR j30, 1244 (1960); 131,
546 (1960) LEnglish transl. : Soviet Phys.—Doklady 5, 128 and
321 (1960)g.' M. E. Lines, Phys. Rev. 131, 540 (1963).
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obtain the Neel temperatures for the various face-
ccntered cubic antiferromagnetic orders which are
observed experimentally. In Sec. 3 vre introduce a
magnetic field parallel to the preferred direction of
ordering and evaluate the parallel susceptibility.
Finally, in Sec. 4, we discuss the perpendicular suscepti-
bility. The results obtained for the susceptibilities are
compared at low temperatures near T~ and at high
temperatures with the estimates of other methods.

in the form ((5,+; B))—where f(St,*) is an arbitrary
function of 5' at the site ttt, and where 5+~5,&iS„.
Using the Hamiltonian (2.4), together with the well-

known spin commutation relationships, we may write
the equation of motion of this Green function in the
form

Z((5,+; B))=—J S„
2'

2. THE FUNDAMENTAL GREEN FUNCTION
EQUATIONS

vr here

+P 2J;,(((5 *S,+—S,+S,*) B)) (2 5)
7 g

The double-time temperature-dependent retarded
Green function ((A (t); B(t'))) involving the two
Heisenberg operators A(t) and B(t'& is defined by

((A (t); B(t'&))= —iS(t—t')([A (t),B(&')$ ), (2.1)

where the square brackets denote a commutator;
single-pointed brackets denote a thermal average over
a canonical ensemble; and where e(t—t'& is a step
function vrith the value unity when t) t' and the value
zero when t&t'. If the Hamiltonian is not explicitly
time-dependent, the retarded Green function (2.1) is a
function of (t—t') and may therefore be Fourier trans-
formed vrith respect to this quantity. The transform is
a function of L~'(= Ace& and may be denoted by
((A; B))E. It may be shown to satisfy the equation of
motion (see Zubarev')

E((A; B&)E——(1/27r)(LA, Bj )+((pApC); B))E. (2.2)

The only other equation which we shall require from
Green function theory is that defining the relationship
between ((A; B))E and its related correlation function
(B(t')A(f&). This may be written'

(B(t')A(t)) = lim i
" ((A;B))-+' —((A»)= ~

)('E—tro(t —t')d~ (2 3}

where we vrork in a system of units for which A= 1.
In the present section vre shall consider an infinite

lattice of interacting spins for which we may vrrite a
Hamiltonian

ac= P 2S„S;.S, , (2.4)

where J,; is the exchange constant for the interaction
between the spins S, and S; (it is assumed to be a
function only of the distance between the spins) and
where P&;;) runs over all pairs of spins in the lattice.
We shall not need to restrict the sign of J;; in any way
and, in general, Eq. (2.4) will give rise to an antiferro-
magnetic ordering although the case of ferromagnetic
spin alignment will be contained in the theory as a
particular case.

Let us examine the motion of the function

((5,+; f(St*&St))E wh, ich —we shall write, for brevity,

Z=(~5.+; f(5.&5„-~ &, (2 6)

and where

J;,=0.

Using the "Tyablikov" decoupling procedure we write

«5,*5,+ B))=(5, )«5,+ B))

((S.'5 *;B))= (5 *)((5';B))

which gives, on substitution into (2.5&,

~~go
E((5.'; B))= +2 2~ .L&5.*&((5';B))

2'F 7 0

(2.7)

—(5')((S + B))$. (2.8)

Gtx ——P ((Sg+; B))exp) —iK (g—h)), (2.9)

vrhere X is the total number of spins in the lattice, and
where K is a reciprocal lattice vector which runs over
—,X points in the first Brillouin zone of the reciprocal
sublattice. In an exactly similar way vre define 62K for
the case when g and h are on opposite sublattices.
Choosing h to be on the "up" sublattice, we may
rewrite the equation of motion (2.8) in terms of Gtx

We novr restrict the order to one with a unique
direction of spin alignment and split the lattice into
two sublattices, the "up" and the "down, "with average
values of spin per site 8 and —S, respectively. This
presupposes that we knovr what the stable spin pattern
will be. For many problems this will indeed be the case
and for others, a simple molecular-field calculation will
often supply the answer. In cases of doubt, any of the
likely spin patterns can be assumed at this stage, the
incorrect choices being easily recognized and eliminated
later on when their instability can be detected by the
imaginary values which wil1 occur for some of the
frequencies of the elemeritary excitations. If the tvro
sublattices are translationally invariant, we may
Fourier transform with respect to the reciprocal sub-
lattices as follows. When g and h are on the same
sublattice vre define G&K by

((S,+; B))= (2/X& g Ggx exptiK (g—h) ),
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and 62K. We obtain

(E p8—)Gi»= (F/2')+P, SGs»,

(E+pS) Gs» ———) SGg»,
where

(2.10)

(2.11)

p= P 2J,,[exp[iK (j—g)]—1]+P 2J,„(2.12)

the spin-one case, Eqs. (2.19) and (2.20) may then be
solved simultaneously to give ((S')') and 8 as functions
of temperature. In general, by putting f(S*)=(5*)",
where e takes on values 0, 1, 2, , 2S—1, consecu-
tively, we obtain from (2.19) a set of 25 independent
simultaneous equations in the (2S+1) unknowns
((5')"+') ((5')' +'). The spin condition

X=+ 2J,, exp[iK (j—g)], (2.13)
(5'—n) =0 (2.22)

where

(1—A)F (1+A)F
4~Gi» —— +-

E+EpS E EpS—
A =~/(~' —~')"',

—(~2 g2) 1/2

(2.14)

(2.15)

(2.16)

and where Q, ,' runs over all values for which j and

g are on the same sublattice, and P, ," runs over all
values for which j and g are on different sublattices.

Solving (2.10) and (2.11) for Gi» we find

(where e takes on integral or half-odd-integral values
according to whether 5 is integral or half-odd-integral),
supplies the additional information which enables the
equations to be solved for 8. This method is just that
used by Tahir-Kheli and ter Haar' [except that these
authors use a rather more complicated form for f(5*)]
who give explicit results up to 5=3. The solution for
general spin 5 has been obtained by Callen' by writing

f(5') =exp(aS*) and exploiting the functional de-
pendence of F and (f(5*)5 S+) on the parameter "a."
His result [Eq. (52) of Ref. 7] is most conveniently
expressed as

Using Eqs. (2.3), (2.9), and (2.14), and employing the
identity

2S+x (x+1)'s+'+ (x—1)'s+'

2S+1 (x+1)'s+'—(x—1)'s+'
(2.23)

hm
(d+zs —E» pp —se E»— where, for our case,

x= (A coth(Ep8/2kT))». (2.24)
—2vrib((u —E»), (2.17)

we find, for the limit t—t' —+ 0,

(BS,+)= (F/Ã) P [A coth(EpS/2kT) —1]

)&exp[iK (g—h)]. (2.18)

For the case g=h, this becomes

(f(SI„')Ss Ss+)=-',F{(A coth(Ep8/2kT))» —1), (2.19)

where ( )» indicates an average for K running over
—,'X values in the first Brillouin zone of the reciprocal
sublattice.

Procedures for extracting an equation for S as a
function of temperature from a relationship of the form
(2.19) have been discussed by Tahir-Kheli and ter
Haar' and by Callen. ' The case for spin- —,

' is very simple.
If we put f(S*)= 1, then we get from (2.19)

S(5+1)—((5')')=8(A coth(Ep8/2kT))». (2.20)

For the case S=—',, we have (S')'= —' and Eq. (2.20)
reduces to

1/8= 2(A coth(EpS/2kT))». (2.21)

To obtain an equation for higher values of spin, we
choose f(S*) to be different from unity. Thus, for
example, for the case 5=1 the simplest expression is
probably f(5*)=5* Using the result . that (5*)'=5' in

Sr=p= 8p= S ', 8+O(Ps+'i)—- (2.27)

which may be compared with the result 8,=5—
pres

which would result from a use of simple spin-wave
theory"

As an example of the use of Eq. (2.26) we may
evaluate Tsr for the face-centered cubic (fcc) antiferro-
magnetic orders. The results for the simple cubic and
body-centered cubic lattices with a single exchange
between nearest neighbors are already well known, but
the problem for the fcc orders has not yet been treated.
Apart from molecular-field-type calculations" which

' R. Kubo, Phys. Rev. 8?, 568 (1952)."p. &. Anderson, Phys. Rev. 79, 705 (1950).

To obtain an expression for the Neel temperature (for
general spin 5), it is interesting to note that only the
single f(S')=1, Eq. (2.20) is required. At and above
TN we have (5,')=(5„')=(S,s)=$(5+1)/3, and we
obtain from (2.20)

2S(5+1)/3=8(A coth(EpS/2kT))». (2.25)

As T —+ T~ from below, 8—+ 0 and it follows that

5(5+1)/3kT~= (A/Ep)»= (p/(p —X ))». (2.26)

At T=0, x=(A)» which for three-dimensional lattices
will, in general, be a number a little larger than unity.
If we put (A)»=1+8, we obtain from (2.23)
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are more than usually poor for these orders, the only pre-
vious estimates'4 "have been made by using spin-wave
theory and attempting to extend it beyond its usual
low-temperature region of validity. We shall consider
the types 1, 2, and 3 order" (type 3 is sometimes called
improved ordering of the first kind) including nearest
and next-nearest-neighbor exchange interactions only,
which we shall denote by J& and J2, respectively.

For the types 1 and 2 order we may employ Eqs.
(2.12) and (2.13) directly to obtain

type 1: p=8J&(1+c&cs)
+8J2(c 2+c22+css —3), (2.28)

kTp
J,s {s+&)

0
0 0.5

Jp /S)
1.0 $.5

X= 8Jr(cscs+Cscr), (2.29)

type 2: ++X=8J r(clc2+cscs+cscl)
+8J2(CP+cs'+cs'), (2.30)

p,
—) = 8Jr(z1~2 ~2~3 ~2~1)

+8J2(sr2+s22+s22), (2.31)
where

cr=cos(K~a) ) cs=cos(Ksa), cs=cos(Ega), (2.32)

st = sin(IC, a), s2= sin(E„a), ss= sin (E,a), (2.33)

and where we have taken "a" to be the distance
between next-nearest neighbors. The Neel temperatures
may now be computed directly from (2.26) and are
shown in Figs. 1 and 2 together with the molecular-
field values" and estimates obtained from spin-wave
calculations. ""The latter are plotted for a particular
value of spin because the spin-wave estimates show
T~~ S(S+-',) and therefore cannot be represented for
general spin 5 by a single curve in Figs. 1 and 2.

Type 3 order (Fig. 3) is an example of a spin pattern
for which the "up" and "down" sublattices are not

I'IG. 2. The Neel temperature for the fcc types 2 and 3 order
as a function of the ratio of next-nearest to nearest-neighbor
exchange (i) as calculated from the present work, (ii) from Ref.
15, and (iii) from molecular-Geld theory.

translationally invariant. The results of the calculations
of this section may therefore not be directly applied for
this case. To treat this kind of ordering in the Green
function approximation it is necessary to subdivide the
lattice further. For type 3 order one can find four ferro-
magnetic sublattices which are each translationally
invariant, and in this way four Green functions
G;K(i=1, 2, 3, 4) may be introduced in place of the
two which have so far been sufhcient. The equation of
motion (2.8) now gives rise to four equations in the
G;K which may readily be solved for these functions.
Estimates for S and for T~ now follow from G, K in the
same way as before. The detailed solution of the problem
is given in the Appendix and the results for the Neel
temperature are shown in Fig. 2.

3. THE PARALLEL SUSCEPTIBILITY

In this section we shall consider an antiferromagnet
in the presence of an external magnetic field H which
is applied parallel to the direction (z) of antiferro-
magnetic spin a/ignment. We write for the Hamiltonian
of the system

x=g 2J;,S,'S, gag, H Q S,', —
( i~)

(3 1)

kTn
3

J)S{s+1)

0
0 -0.5 -1.5

where p~ is the Bohr magneton. Introducing again the
Green function transform

((S.', &))=((S.', f(S")Ss ))~:

and decoupling it in the "Tyablikov" approximation,
its equation of motion is

FIG. 1. The Weel temperature for the fcc type 1 order as a
function of the ratio of next-nearest to nearest-neighbor exchange:
(i) as calculated from the present work, (ii) from Ref. 15, and
(iii) from molecular-field theory.

' J. M. Ziman, Proc. Phys. Soc. (London) A66, 89 (1953).
"M. E. Lines, Proc. Roy. Soc. (London) A271, 105 (1963).

(~ gi~~&) ((S';&))=-
27r

+z»2gL(S *)((SJ+;&))—(S *)((Ss+ &))7 (3 2)

If we assume that the ordering is one that can be
divided into two trarislationally invariant ferromagnetic
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tt t

t

tt~1

t ~ 8 SUBLATTICE

$ ~ b SUBLATTICE

& C SUBLATTICE

$ ~ d SUBLATTICE

P= (1/kT)j (~i—imp)P(g)P —yP(8)P+gP($8)PJ&~ (3 1])
A'= (Ij,i pp—)8/kTp. (3.12)

For the case when spin h is on the down sublattice, we

may perform a completely analogous calculation to
obtain

(f(8 *)8 8")
sinh(n)+A' sinh(P)

~ ~

—1, (3.13)
cosh (n) —cosh (p)

I'zo. 3. The type 3 order of the fcc lattice showing the four trans-
lationally invariant ferromagnetic sublattices u, b, c, and d.

(E gp & @8' p—pS )G x—=),SgG—x,
where

F.= ([SI+,f(Si,')Si j ), —

(3.4)

(3.5)

for the case when k is on the "up" sublattice, and where
)compare (2.12) and (2.13)]

sublattices, then we may Fourier transform the Green
functions with respect to the reciprocal sublattices and
introduce functions G&K and G2K exactly as in Sec. 2

fEq. (2.9)). These are defined for the case when spin
h is on the "up" sublattice. In the case where an external
Geld is present the average spin per site on the "up"
sublattice (which we shall now symbolize as 8„) is no
longer equal and opposite to the average "down" spin
(Sq) and the equations of motion will therefore contain
these two averages in place of the single 8 of the
previous section. Using (3.2), the equations of motion
for GyK and G2K ale

(E gpsP IJiS~ —mph)G—ix (F—~/2Tr)+&S——„G2x, (3.3)

where n, p, and A' are as above, and where Fq is given
by (3.5) but where k is now on the "down" sublattice.
Note that for 88-+ 0, we have A' —+ A. and p ~ Ep8/k T
with A and Ep given by (2.15) and (2.16).

A. Temperatures Below the Neel Point

For treatment of susceptibility in the ordered state
we shall Grst consider the simplest case of 5=—',. For
this case, if we put f(S')= 1, we obtain from (3.9)

sinh(n) —A' sinh(P)
8+68= 2 (3.14)

cosh (n) —cosh (p)

~ ~

~

and from (3.13)

sinh(n)+A' sinh(P)—8+8S= 2 . (3.15)
cosh(n) —cosh(P) x

~

~ ~

We shall consider the case where gp~H/kT ~ 0 and
discuss the zero-field parallel susceptibility. In this
limit, Eqs. (3.14) and (3.15) may be combined to give

58= C/2 (O' —8'), (3.16)
where

(3.6)

8= (A coth(-,'Pp))x,

C= (—-,'n csch'(-,'Pp)) x,

(3.1/)

(3.18)

cf

2 2~jp~ (3.7)

and where

Pp= (8/kT)P(pi pp)' Vg'i'=EpS—/kT—. (3.19)

X=+ 2J,, expLiK. (j—g)]. (3.g)

(f(&P*)&I »+)

Writing 8„=8+88 and Sd ———8+iIS, we may solve
Eqs. (3.3) and (3.4) for Gix and, using the identity
(2.17) together with (2.3) and (2.9), obtain an expres-
sion for the correlation function (f(SI,*)Sp, SI+) in the
form

Neglecting C' with respect to 73' (an approximation
which is valid in the zero-Geld limit right up to the
Neel point) and noting that, for spin-ip, we have the
relationship 8= 1/28; we obtain

fI8= (8)'(n csch'(Ep8/2kT)) x. (3.20)

Using (3.10), it follows that

Sgpg8S

where

sinh (n) —A' sinh(P)
=- —,'F„—1, (3.9)

~ ~

cosll (n) —cosll (P)

ivg'pip'(8)'(csch'(EpS/2kT)) x

kT —(8)'((ii,+ii2) csch'(EpS/2kT))x

n= (1/kT)t g»&+&8(»+»)3, (3.10) For systems where there is no interaction between
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X„=Eg'lid' (8)'R/(k T—ps(8)'R),
where

R= (csch'(Zp8/2kT)) x, (3.23)

spins on the satne sublattice, we have p,i=0. Since ps
is not dependent on K, the result simpliftes for these
cases to

(3.22)

Thus, at very low temperatures, P(B) is a number
which rapidly approaches unity (even for comparatively
large b) as spin S increases. The Green function result,
theref ore, diGers slightly from the spin-wave estimate
for small values of spin, but the difference very rapidly
decreases as we move to higher spin values.

which is a result obtained previously (for the case
S=-,') by Ginzburg and Fain."For very low tern era-
tures, both (3.21) and (3.22) reduce to

Xi i
=Xg'iigP (8)'R/kT.

B. Temyeratures Above the Neel Point
p

In the region above the Neel temperature 8 =8s=5S
(8=0) and the Eqs. (3.9) and (3.13) become identical.
If we put f($*)= 1 in (3.9), we obtain

sinh(u) —A' sinh(P)
S S~ 8=8„,

cosh (u) —cosh (P)

and for Eq. (3.13)

(3.25)

For the case of general spin S, we have to resort to
the Callen solution (2.23) but where, for Eq. (3.9)

sinh(n) —A' sinh (P)
$($+1)—((S„*)')=h . (3.33)

cosh (n) —cosh (p)

However, for the temperatures where we have no long-
range order, we may write ((S„*)')=$(S+1)/3 and
(3.33) therefore gives us an equation for S„(=58)for
the case of general spin S. It is

sinh(n)+A' sinh(p)
g= gd= 8=8d. (3.26)

cosh (n) —cosh (P)
2$(S+1) slnh(n)

(3.34)

p=)h38/k T. (3.35)
where

+1) (B 1) For the inf'initesimal field limit, (3.34) reduces to

L(B+1)'"'—(B—I)"+'j' $(S+I)/35S=( /( '—P')) . (3.36)

3SS (cosh( }—cosh(P)) s
From these two equations for S and 8& we obtain,
after a little algebra, an expression for 5S. It is, in the where we have used the fact that A =0 when 8=0,
hmit gynic/k T((1, and where P now assumes the simple form Lcompare

(3.11)$
5S= sr F (B)(n csch'(Ep8/2kT)) x, (3.27)

and where B is given. by Eq. (3.17). For the case of
S= p we regenerate Eq. (3.20) as a particular case.

From (3.27), using (3.10), it follows that (for general
spin S)

Ke may use this implicit equation for 8S to derive a
series expansion for X1 t in inverse powers of the
temperature.

Let us write n=no+ni, where

Xg'pn'F (B)(csch'(Ep8/2kT) )x
~l 1 (3.29)

4kT —P(B)((iii+ps) csch'(EpS/2kT))x

np= gpss/kT

ni= (p i+ps)58/kT.

(3.37)

(3.38)

and for very low temperatures this simpliies to Expanding (3.36) as a power series in ni/no and p/no

X~, Xg'p~ F(B)R/4——kT. (3.30)

The simple spin-wave result for this very low-tempera-
ture region has been given by Ziman'" as

Xns, .w. Xg'pri'R'/4kT, ——(331)
where R' is obtained from R LEq. (3.23)j by replacing
8 by S. For T~ 0, B~ (A )K= 1+3 where 5, for most
three-dimensional lattices, is a number small compared
with unity. From (3.28) we find, to the lowest order in 3,

P(B)= 1+((2$+1)'5'~/2'8). (3.32)

'6 V. L. Ginzburg and V. M. Fain, Zh. Eksperim. i Teor. Fiz.
39, 1323 (1960) LEnglish transl. : Soviet Phys. —JETP 12, 923
(1961)j.

» J. M. Zimans Proc. Phys. Soc. (London) A65s 540 and 548
(1952).

r = 3kT/$($+ I),
Ci= &(ui+us)&x,

(3.41)

(3.42)

Co=2((pi+us))K' —((or+up)'+)h')x. (3.43)

$(S+1) 1 ni nis+P'
1——+

358 no no no'

ni +3niP
(3 39)

Ap K

from which it follows that

X i = (&g'un'/r)LI+ (Ci/r)+ (Cp/r')+ . . 3, (3 4o)



The molecular-Geld result differs from the above by
having C2=C~'. The coeScients C; should, for a given
lattice, be independent of the type of antiferromagnetic
spin arrangement which occurs below the Neel tem-
perature since the exact high-temperature expansions
for x» have this property. "That C& and C2, as given
above, do have this property is readily demonstrated
by noting that (X)K——0 Lsee Eq. (3.8)j, and therefore
(3.42) and (3.43) may be written

Xp

Yg

X=Xg=Xg

C,=(p)K,

C2= 2(p) x' —(p') K,

(3.44)

(3.45)
Fn. 4. The orthogonal coordinate systems x1, y1, s& and

x., y2, s2 as used in Sec. 4.

where

P= pl+p2'+~=K 2Jjf{expr &K (7 'C)1 1j (3 46)
that the susceptibility at the Neel point depends only
upon those interactions which are between spins on
opposite sublattices. This same result may also be
obtained by using (3.34) and examining the limit as
the temperature approaches T~ from the high-tem-
perature side, indicating that X, l is continuous in this
region,

7 g

and where Pj, runs over al/ pairs of spins in the
lattice.

As an example we may consider the face-centered
cubic lattice where we limit the exchange interactions to
nearest and next-nearest neighbors (Jq and Js, re-
spectively) which is the case considered in the previous
section. Direct application of Eqs. (3.44) and (3.45)
yields

4. THE PERPENDICULAR SUSCEPTIBILITY

In this section we introduce an external Geld H in a
direction s which we choose to be perpendicular to the
preferred direction y of antiferromagnetic spin align-
ment. %hen the field is applied, each sublattice rotates
through an angle p towards the s direction. let us
introduce two new sets of orthogonal coordinates, one
for each sublattice, which are defined with respect to
the equilibrium positions p of the sublattices. The new
coordinates x&, y&, z& for sublattice 1, and x2, y2, s2 for
sublattice 2, are shown in Fig. 4 and are obtained from
x, y, 2' by the transformations

(3.47)(Cg)f„=—(24Jg+12Js),

(Cs)f„=528JP+576JgJs+120Jss. (3.48)

C. At the Transition Temperature

To evaluate X&t at the Neel temperature we shall use
the result (3.29) which has been calculated for the
ordered state. Consider the limit as the temperature
approaches T~ from below. We may write

csch (Es8/2k T) —+ 2k T~/Ess, (3.49)

(3.50)

(3.51)

'x,
y&= 0

[s~ 0

X2

y2= 0
o

0 f0
sing
cosy

(4.1)—cosp y
sin p )

8

o o
SlIl y COS g—cosp sing s

F(B)~ 4S(S+1)/3B'
8-+ 2S(S+1)/3B.

The last result follows from (2.23) by noticing that
x=8 in the zero-Q. eld limit.

Inserting these relationships into (3.29) gives

(4.2)

kg'»'(1/Eo') I
(x~t)r~=

S(5+1)/3k T~ ((p,+p,)/E(P) K— K= Q 2J;;S; S;+ Q 2J;;.S; S,'
(s,P) (j,j')

Since, in the present notation, T~ is given by
+P 2J''{S'*S *z+sjn(2~)LS,zlS, wz 5'.wyS zzj

(i j)S(S+1)/3kT~=((p~ —ps)/Es')K, (3.53)

we may (noticing that p& is independent of K) write
(3.52) as

cos(2y)$5 "'S,"'+—S"S*'j) g»H-
&&P (—cospS,"'+sin pS,")—g»H

In the new coordinates, the Hamiltonian (3.1) may be
written

3.52

(& ) „=1Vg'p '/ 2p =Kg'y, '/Q—4J,, (3.54)
XP (cospSP'+sinyS'&) (4 3)

This is just the molecular-Geld result ' and it indicates
where, for this equation, the suffix i refers to spins on

fz H A 11re~a a a/ J M Luttja er Ph s Rev 1OQ 685 (1955) sublattice 1, and the suM j to sPins on subl«tice 2.
'9 J. H. Van Vleck, J. Chem. Phys. 9, 85 (1941). Since we shall be concerned only with time-averaged
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properties of the system, we shall assume that, in the
equations of motion for the Green functions, we may
neglect from the Hamiltonian all terms which either
exactly or to a good approximation average to zero
with time. In this approximation, the Hamiltonian
reduces to

Z, =Q 2J,, exp[iK (j—g)],

F,=([sg ',8] ),
p„=([sp,a] ).

(4.12)

(4.13)

(4.14)

X= P 2J, ,'S,'S,'+ P 2J;,'S; S,,
(i, i~) &j j')

+P 2J "{SP'5,"—cos(2q)[5 "'5 "&+5'&5'&])
(i,q)

gp~H—sing[+ 5,'~++ 5,''].

We shall consider the Green function transforms
((S,*~; 8&), ((5,»; 8&), ((5,*2; 3&&, ((5,»; 8)&, where
8 may be Sp, ' or Sz». That is to say, we consider the
case for which h refers to a site on sublattice 1. Equa-
tions of motion for these functions may be written
down using Eq. (2.2) and decoupled by simple random-
phase approximations of the form [compare (2.7)]

(&s,"s,";a» = &s,"&«s,-; a&),

«s, s;";a»=&s;"&«s, ; a».
(4.5)

(4.6)

((S,*',8»= (2/N) P G~z exp[iK (g—h)], (4 7)

Gqz= Q ((5,";8»exp[ —iK (g—h)], (4.8)

together with exactly similar equations for

and
((S "" ))(G2z) ((S *" )&(Gaz)

«s,-; a&)(G,.);

The decoupled equations are most conveniently ex-
pressed in terms of the Fourier transforms G,z(i= 1, 2,
3, 4) with respect to the reciprocal sublattices. Defining
G,z as follows [compare (2.9)]

A ~= [(~'—&~)/( '+&~)]"',
A2= [(~'+~~)/(~' —&2)]'",

Pg= [(p'+P.2) (p' —Xg)]'"8/2kT,

A= [4 '+~i) (~'—~2)]"'8/»T

(4.19)

(4.20)

(4.21)

With a given value of external field H, the equilibrium
value of q is that value which minimizes the free energy
of the system. The condition is

8/Bp{kT log[tr exp( —3C/kT)]) =0, (4.22)

and reduces to

Equations (4.9) may be solved for G,z and the asso-
ciated correlation functions then follow using (2.3),
(2.17), and (4.8) in. a manner exactly analogous to that
used in the previous sections. We omit the tedious but
straightforward algebra and simply give the results as
follows:

(5„~5,*~&= -',8([A ~ coth(f, )+A 2 coth Q 2)]
yexp[iK (g—h)])z, (4.15)

(S,~ S,")=-,'8([(1/A, ) coth(P, )
+ (1/A. ) coth(A)]

&&exp[iK (g—h)])z, (4.16)

(S~"Sg*'&= —,'8([A ~ coth Q,)—A 2 coth (P2)]
Xexp[iK. (g—h)])z, (4.17)

(SI,»5,&')=x8([(1/A ) coth(fi)
—(1/A2) coth($2)]

)&exp[iK (g—h)])z, (4.18)

the equations of motion for the 6;K are (BX/Bp) =0. (4.23)

E ip'8 —0 ihgS Ggz

62K0 1 Iiy
(4 9)8 iy'8 Gaz 2' 0—

04

y,
'= P 2J;,{exp[iK (j—g)]—1)

where we have written (5*')=(S")=8, and where

From (4.3) we see that this condition requires a knowl-

edge of the y dependence of the correlation functions
containing the s components of the spins, which cannot
be evaluated by using the simple decoupling procedure
of this paper. ' These difficulties prevent us from extract-
ing from the theory a general functional dependence of
X& on temperature. We may, however, obtain some re-
sults for certain restricted ranges of temperature.

A. Temyeratures Well Below the Neel Point

d gp~H sing
+P 2J;, cos(2p)+

8

X~——P 2J;, exp[iK. (j—g)) cos(2p),

(4.10)

(4.11)

For temperatures approaching absolute zero, the
hyperbolic cotangent terms in (4.15) to (4.18) approach
unity for all values of K. The correlation functions in
this region are thus determined by S together with
terms like

(Ag exp[iK (g—h)])z
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and
cosp= 0 ~ (4.24)

d

sin p =gp~HS/p 4Jg,(5,»5»+5,z&5 '2) . (4.25)

The solution (4.24) represents the ferromagnetic state,
and is stable for values of II&H, where

g1" H,S=P 4J,,($,»5 22+5, 5 "). (4.26)

In molecular-field theory, we should approximate
(522'Sgpg) by zero, and (5,*'5;") by (S)', to give the
result

gl"~H. = Q 4J;,S. (4.27)

For values of II&H, the total magnetization
M= Xgp&8 sin@ is proportional to H and we may write

3f d

gg2)" 2(8)2/P 4J. (5 ytS.»+5 ziS.zg) (4 28)
B g

which is a result recently obtained by Kanamori and
Tach iki."

In the very low-temperature range for which this
result is valid [note the obvious breakdown for the limit
T +T~ when (4.28) shows—the zero-field susceptibility
tending to zero] we shall assume that we may replace
(5,"5;*')by (8)' for all values of j—g, when we obtain

(A2 expfiK (g—h) j)x.
A careful analysis of these terms shows that for struc-
tures which exhibit long-range order they are, to a
good approximation, independent of p. This result is
just a mathematical demonstration of the usual physical
assumption which is made for the ordered state at low
temperatures —that the effect of a perpendicular Geld
is to change the angle between the average sublat tice
magnetizations without appreciably modifying the
motion of the spins about their equilibrium directions.
For higher temperatures the approximation will become
less good especially for large values of p where there will
be a considerable increase in 8 due to the component of
Geld parallel to the sublattice magnetization. Using this
approximation, we replace (5,*5@)type terms in (4.23)
by the values which they take in the absence of a Geld—
namely zero.

Eq. (4.23) now has solutions

This differs from the molecular-field result simply by
the term 6 in the denominator.

At the absolute zero of temperature the value of 6 is
given by

~= (1/48)(l:(1/~ )—(1/~ )j
&&expLiK (j—g)$)K, (4.31)

and, as a simple application of these formulas, we may
estimate X, (in the zero-field limit) at T=O for the
simplest case of the simple-cubic lattice with anti-
ferromagnetic nearest-neighbor exchange only. For this
case we find, using (4.19), (4.10) to (4.12) and putting
q =0,

7x cos(E.a)
(S,"'S;"')= (8/6) (4.32)

L1—(v K/3)'3'" x
where

&x= cos (E,a)+ cos (E„a)+cos (E,a), (4.33)

where j—g=a, and where the components of K each
run over values between —m./a and ~/a. Computing the
average over K gives the numerical result as

(5 2)5,.22)=0 138 (4.34)

from which it follows that

(Xi)2' P=Eg2Pi)2/24JI-1+ (0.13/8)i 2 (4.35)

which, to the first order in 1/5, is the result obtained by
Kubo" in his "second approximation" of the spin-wave
theory.

Some further results, which are of considerable
interest and comparatively simple to calculate, are the
values of the correlation functions (4.15) to (4.18) at
the Neel temperature. Since there is no long-range order
at TN, the x, y, and z correlation functions must be equal,
and an estimate of -any one of them will give a general
measure of the short-range order which exists at the
Neel point.

First let us consider the case where spins 5, and S;
are on opposite sublattices. As T~ T~ from below,
8—+ 0 and, from (4.18)

Xi exp|-iK (j—g)$
(Sg»5'») -+ kT~ . (4.36)

( ')' —&P

For the case when no external Geld is present p' and ) ~

go over to p, and X, as given in Sec. 2, and T~ is given by
(2.26). Ke may, therefore, write

where

Xi=&g'~~'/ Z 4Jz.(1+~)

a(8)'= (S,»5»).

(4.29)

(4.30)

S(5+1)(Xeep[eK (j—g)]
(4.37)

3 K

J Kp))p)2) i i)d M T@chQ i J Ph S c Jp @)i 17 1384 In an exactly similar way t-but using (4.16) in place of
(1962). (4.18)) we find, for the case where j and g are on the
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same sublattice

((5")')r„——S(S+1)/3. (4.39)

(5 Wis, Wi)r

p, —X

&(&+~)&l «2[iK (i —2)3
(4.38)

3 K

In particular, putting j—g=o gives the weB-known
result
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APPENDIX

In this appendix we consider the fcc antiferromag-
netic type 3 order for the case of nearest-neighbor (Ji)
and next-nearest-neighbor (J2) exchange only. This type
of order may be divided into four ferromagnetic trans-
lationally invariant sublattices (a,b, c,d) as shown in
Flg. 3.

Consider the Green function transform

Applying (4.37) to the (single-exchange parameter)
simple cubic lattice, for the case where j and g are
nearest neighbors, we have

((5.'; f(5.*)5~ ))E

(5 wls. w2)r

which is discussed in Sec. 2, AVe shall choose 5~ to be on
the "u" sublattice. %e define Fourier transforms

+ ) O'K/(1 &K/9))K G;K(i=1 2 3 4) with respect to the reciprocal sub-
(4.40)

27 (1/(1 2/9))
' lattices in the form

which computes to 0.1135(S+1). ((S,+ f(5),')5), ))E (4—/&) ——p GixexppiK (g—h)$,

B. Temyeratures Above the Neel Point Gix= 2 ((5'; f(5)')5) ))Eexp( —iK (0—h)3
(A1)

For temperatures T& T~ there is no long-range order
and we must, therefore, have x&——x, l for these cases.
That we do regenerate exactly the results of Sec. 38 by
using the equations of the present section is easily
demonstrated.

Above the Neel temperature we have q= —,'m, and
the Eqs. (4.10) to (4.12) and (4.19) to (4.21) reduce to
Ai ——A2 ——1, and P,=Eg/2kT (i=1, 2), where

for the case where 5, is on the "a" sublattice, together
with exactly equivalent equations for G&K, G3K, G4K for
the cases where 5, is on the "b," "c," and "d" sub-
lattices, respectively (QK runs over 4' values in the
first Brillouin zone of a reciprocal sublattice). The de-
coupled equation of motion (2.8) for the Green function
may be expressed in terms of G;K, when we obtain

Ei=ei+I 2+&+gl E&/8,

E2=ui+u2 &+gua&/8, —
(4.40)

(4.41)

with p~, p, 2, and X defined as in Sec. 3.
Let us rewrite 8 as 58 (for T)TE) to conform with

the notation of Sec. 3. From (4.15) and (4.16) we have

E—n'
p/

gf

. 7'

p'—
E+n'

gI

—7'

E—n'
pl

gI

7'
p/

E+n')

Ggx
G3K.G4K,

where F is as defined in (2.6), where

'F/22'

0, (A2)

0

((s*)')=&(s )')
=-,'S(coth(EibS/2kT)+coth(E25S/2kT))K. (4.42)

Since, for T)TE, ((S*')')=((5"')')=S(S+1)/3, we
have

n'=n8= L8Ji—12J2+8J2(ci'+c2')$8,

p'= pS= L8Jicic2—4J2+8J2c2'38,

8=4J LC e iKwe+c eiKwa]8

8'= bS=4JiLcie'Kw'+c2e 'Kw jS,

(A3)

(A4)

(A5)

(A6)

45(S+1)/388= (coth(Ei8S/2kT)
+coth(E258/2kT))K, (4.43)

which may be rewritten in the form

sinh (n)
2S(S+1)/3h8= (4 44.)

cosh (n) —cosh (P)

with c, defined by (2.32), and where we have written the
average spins on the "a"and "c"lattices equal to 8 and
those on the "b" and "d" lattices equal to —8.

Solving (A2) for Gix we extract the correlation func-
tion (f(5&')5)„5)+) by use of (2.3), (2.17), and (A1)
when we find

where

n= (1/kT) LgpEH+ 58(pi+ p2) $,
'P (1/kT)X58,

n —A

(4 45) (f(si,')SL Sa+)=—

(4,46)

which is Eq. (3.34) of Sec. 38.
coth — —2, A7
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where

W = P~&5—P (~2y 52)j/ ~I/2,

E 2 ~2 P2 +1/2

E 2 —~2 P2+QI/2

(~2 52)2 4~P (~2+52)+4'5 (~2+P2)

Putting f(Sy,*)= 1, Eq. (A'/) yields

n —A E18
S(5+1)—((S')')= —,'8 coth

2k T

Near TN, ((S')')=5(5+1)/3, and 8~ 0. We write,
therefore,

(A9) 25(S+1)/3 =kTN((n —A)/EI2+ (n+A)/822)K, (A13)

(A10) which in terms of n, P, y, 5 is

(A1 1) 5(5+1)

( '—p') +p b'+5') —2 ~5
(A14)

( +p)' —(~+5)'3L( -p)'+ b—5)'3

++A E8
+ coth (A 12) Using Eqs. (A3) to (A6), we have evaluated T& by

Eg 2kT computer and the results are shown in Fig. 2.
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Paramagnetic Resonance of 8-State Tons in Metals of High
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The paramagnetic resonance of Gd'+ in metals shows g shifts with respect to the free ionic g value which
are due to the valence-electron polarization in metallic hosts, and the effective exchange interaction of Gd'+
with these valence electrons. These shifts have been studied in metals and intermetallic compounds with high
paramagnetic susceptibility such as Pd, Ni5Y, and Pd3U and in many alloys involving these metals and com-
pounds . The effective exchange interaction is foun d to be generally much smaller than expected from the
atomic spectra. It is negative for valence bands of d character and positive in valence bands of Sfand s char-
acter, and is therefore not the result of simple atomic exchange only. The shape of the Gd resonance lines
gives information on the spatial variations in the valence-electron polarization of the host metals. Thus, it was
found that Pd alloyed with La or H segregates into two phases. The valence-electron polarization can be al-
tered by admixture of other magnetic ions, and it was therefore possible to measure the exchange interaction
for many rare earths and Fe, Co, Ni in Pd, and some rare earths in Ni~Y. The Gd line shape in these experi-
ments allowed a study of the nonlocal character of the valence-electron susceptibility, and it appears that in
Pd and in Ni5Y this susceptibility has a larger range than predicted by the free-electron calculation of Ruder-
man-Kit tel- Yosida .

I. INTRODUCTION

N a previous article, we have described the electron
paramagnetic resonance (EPR) of GdA12 and of

dilute al loys of Gd in the Pd series. ' The present paper
is a continuation of this work. The technique previously
described is exploited and expanded to study the
coupling between val ence electrons and magnetic ions
in several classes of alloys. At the same time we studied
the variation of the induced valence-electron p ol ariza-
tion, from the macroscopic down to the atomic scale.
It is found that the explanation of the valence-electron

M. Peter, D. Shaltiel, J. H. Wernick, H. J, Williams, J. B.
Mock' and R. Co,Sherwood' Phys o Revo I26' 1395 (j.962),o

polarization as due to direct ion-valence-electron ex-
change processes only' has to be abandoned. Also, it
appears that the spatial variation of the valence-
electron polarization is, in several cases, of a diff erent
nature than the one predicted by the theory of the
susceptibility of a free-electron gas. ' '

The EPR spectra observed were due to ions in the
5 state (Gd'+, and Mn in a not quite understood
valence state) and consisted of a single resonance line,
of about 500 0 half —half-width. The g value of this

' C. Zener, Phys. Rev. 87, 440 (1951).' M. A. Rnderman and C. Kittel, Phys. Rev. 96, 99 (1954).' K. Yosida, Phys. Rev. 106, 893 (1954).


