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where

f'= 2C~ cos($0+5)+ v, ,

lim (v,)=0,

and C is larger than 1. There is nothing in the restric-
tion of Eq. (32) that requires lim~ „„v,=0 or that

verge. From general theorems' about the trace func-
tions, we know that they must oscillate rapidly as the
energy traverses an allowed region with periods of the
order of 1/X, maxima greater than 2, and minima
less than —2. From our calculations on specific sys-
tems, we know that the trace functions for the individual
chains f' are given by

prevents the p; from making a systematic contribution
to the density of states. The only conclusion that can
be drawn is that the v; must be of the same order of
magnitude and must oscillate as rapidly as the cosine
term in Eq. (31). Although it is fairly simple to devise
a general argument that explains why our procedure
does not give exact results, it is more dificult to devise
one that also explains why it gives as good an approxi-
mation as it does.

ACKNOWLEDGMENTS

The author would like to thank Professor J. Korringa
for several interesting discussions and to acknowledge
helpful communications from Dr. M. Lax and Dr. J. R.
Klauder.

PHYSICAL REVIEW VOLUME 135, NUM BER 1A 6 JULY 1964

Electronic Structure of Alloys*

J. L. Bzzsv
Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois

(Received 2 January 1964)

A theory of the electronic structure of alloys is presented which takes proper account of the symmetries
present or absent in the alloy and does not rely on using Bloch's theorem either for the alloy or for the host
metal. The band structure is worked out in an approximation which is exact for an ordered alloy and which
gives a simple picture for a disordered substitutional alloy. Using this theory the band structure for the
d electrons of the transition metal alloys is qualitatively discussed. The rigid band model is shown to fail
for alloy constituents having a large valency difference and it is shown that the theory of this paper agrees
with the experimental results both for magnetic moments and specific heats in such cases. A simple physical
interpretation of these results is given using arguments similar to those of the conventional tight binding
approximation. It is suggested that the difference between NiA1 and FeAl alloys might be due to the alumi-
num conduction band lying above the nickel d band so that the latter fills, whereas the iron d band does
not lie below the aluminum conduction band. No reference is made to theories of ferromagnetism, though
it is possible that the methods used in this paper could be used to obtain a great deal more information from
alloys of the transition metals than is available at the moment.

I. INTRODUCTION

'~ 'HE purpose of this paper is to propose a theory of
the electronic structure of alloys which is based

on earlier work of Edwards and the author. ' ' In this
earlier work, the electronic structures of various dis-
ordered systems were discussed using a model of inde-
pendent electrons moving in a total potential formed
from individual ionic potentials which do not overlap
each other. The positions of the ions are supposed to
be given by some probability distribution. For example,
in the case of a liquid the probability distribution can
be taken as the distribution of given ionic positions as

*Research partially supported by the U. S. Advanced Research
Projects Agency, Contract SD—131—B.' S. F. Edwards, Phil. Mag. 6, 617 (1961).

2 S. F. Edwards, Proc. Roy. Soc. (I ondon) A267, 518 (1962).' J. L. Beeby and S. F. Edwards, Proc. Roy. Soc. (London)
A274, 395 (1962).

4 J. L. Beeby, Proc. Roy. Soc. (London) A279, 82 (1964). (To
be referred to as I.)

the liquid changes in time. The density of states can
then be written down in terms of an average of the
independent electron propagator over the distribution
of systems. The averaging process can only be done
approximately, but the approximation used is actually
exactly true for a perfectly ordered system. The results
obtained, therefore, give the correct limit in the case
when the substance being considered has the form of a
perfect crystal. The formalism is discussed in more
detail later ig. this section. In the case of a perfect
lattice this formalism is identical with that of Kohn
and Rostoker, ' which in the manner it will be applied
in this paper avoids some of the difhculties usually
associated with d electron band structure calculations.
In such a formalism it is not necessary to distinguish
whether the electrons are localized or free, though it is
always helpful if they do belong to one of the limiting

& ~. Kohn and N, Rostoker, Phys. Rev. 94, 1111 (19&4).
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classes. The philosophy is to start from the t function
rather than the potential. It is possible that one can
estimate the former to a good degree of accuracy.

The results of applying such a technique to alloys are
naturally rather complicated. The problem is clearly
already more involved than a pure metal band struc-
ture calculation, which is by itself a formidable under-
taking. It so happens, however, that the type of alloy
in which the impurity atoms substitute for host atoms
on randomly distributed lattice sites is especially simple
to treat. Thus, even though the formalism (which is
given in the Appendix) is valid for any type of alloy
regardless of the ordering involved (i.e., solid solution,
ordered, liquid, etc.), the remarks in this paper will

deal only with this simple, but physically very im-

portant, case.
In order to emphasize the new features to which this

theory leads, it is helpful to neglect many important
physical effects. It is particularly desirable to avoid any
band structure calculation, since the details involved
there would completely cloud the general changes
brought about by the formalism. It is fortunate that
the transition metals, which are involved in most of
the important alloys, possess a very useful simplifying
feature. The d bands in these metals interact with their
s and p band, but only in a way which does not seem
to have many important consequences for the density
of levels. Thus, following many band calculations, it
is helpful to ignore any interactions between the d
bands and the conduction bands. It is then possible to
discuss the behavior of the alloy d bands in a qualitative
manner without needing to do a band structure calcula-
tion and without losing all the physical content of the
theory.

The problem of ferromagnetism is completely avoided
in this paper. The remarks made about magnetic
properties depend only on the filling or emptying of the
d bands associated with the ferromagnetic elements
and it does not matter how such 6lling leads to any
given ferromagnetic eAect. What one should do is to
take the theories of ferromagnetism and repeat the
calculations of this paper in a quantitative manner —a
laborious task.

The behavior of the d bands is found to be similar
to the rigid band model in many cases, except when
the atomic numbers of the components of the alloys are
significantly different. Thus the new model predicts
correctly the filling of the d band, i.e., the reduction
in the magnetic moment per atom, which occurs when
chromium, vanadium, or manganese are alloyed with
cobalt or nickel. The difference between the rigid band
model and that of this paper is not trivial, even when

they lead to the same physical result. In the alloys just
mentioned, the energy levels of the d states in both
host and impurity atoms each form their own bands,
though the theory of this paper in no way implies that
the electrons in such bands are localized about the

type of atom, the energy level of which gave rise to
that band. Indeed, the concept of the position of any
given electron cannot be properly discussed in the theory
to be presented. It does seem, however, that some prog-
ress can be made in such a discussion, and it is hoped
that this calculation will be presented in a later paper.

An apparently less complicated problem is that of
the addition of aluminum or copper to iron or nickel.
In the case of iron the impurity conduction electrons
do not appear to go into the d band, whereas in nickel
they do. The important feature here is the relative
positions of the host and impurity energy levels. The
suggestion of this paper is that the Fermi level is lower
compared to the aluminum Fermi level in nickel than
in iron. The reasons why this is so are not clear, but
probably depend mainly on arguments concerning
screening and electrical neutrality and fall outside the
scope of this paper.

A detailed discussion of the behavior of mixed s and

p bands is much more diKcult. The s and p bands are
usually far from being tightly bound, which eliminates
one possibility of providing a model of the bands. There
are four energy levels involved and at least four pa-
rameters indicating the widths of the bands in the
pure metals. It is not clear that such a calculation can
be simplified in any case in which it is not trivial.
Without any simplification the problem is rather more
dificult than that of a band structure calculation fol-
lowing the method of Kohn and Rostoker. Only a rough
analysis of this case is attempted in this paper, from
which it does seem likely that a "rigid band" model
such as was used by Cohen and Heine' will in general be
reasonable because of the large bandwidths involved.

The principal feature of the theory to be presented
here lies in the choice of potential to be used. One is
used to describe the potential in a pure metal by sup-
posing that a self-consistent calculation has been carried
out to take into account the electron-electron inter-
actions. The resulting potential and the independent
quasiparticles moving in it are the basis of band struc-
ture calculations. It is an empirical fact that this
description of the pure metal can lead to excellent agree-
rnent with experiment. Now suppose that a similar
self-consistent calculation has been carried out in any
given alloy. The potential at any given site will depend
both on the type of atom at the site and on the atoms
occupying the neighboring sites. The dependence of a
given potential on the occupants of the neighboring
sites is probably not large. In any case, the theory
depends on there being no local deviations from the
lattice structure due to either small or large impurity
atoms. This absence of deviation from perfect lattice
structure will be assumed throughout, as will the inde-
pendence of any given potential on the types of atoms
in its neighborhood. The work of Friedel' suggests that

6 M. H. Cohen and V. Heine, Advan. Phys. 7, 395 (1958).
~ J. Friedel, Advan. Phys. 3, 446 (1954).
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FIG. 1. Schematic representation of the alloy potential used.

this assumption is best in the transition metals. Thus,
at each host atom site, there will be one potential and
at each impurity atom site another. The potential thus
defined for a given atom will alter from alloy to alloy
and even as the solvent/solute ratio changes. Such
alterations will probably be small and their effect may
well be less than that due to the changes in lattice pa-
rameters on alloying. Both these effects will be ignored
in the rest of this paper, despite the fact that the lattice
constant is always a parameter in the formalism. When
the structure of the crystal changes, however, the
potential may well change significantly and this change
must be borne in mind.

Thus, the picture of the alloy potential which one
has after making the calculation self-consistent and
neglecting some of the less important features is as
shown in a schematic one-dimensional representation
in Fig. 1. It is convenient, but not necessary to ignore
the fact that the value of the potential midway between
two atoms may depend on what types the atoms are.
This value of the potential may then be chosen as the
zero of energy so that the atomic potentials can be
assumed (1) spherically symmetric and (2) zero outside
a certain sphere, the radius of the spheres being such
that the potentials do not overlap. Such potentials
are commonly used in pure metal band structure
calculations. '

The alloy potential has, therefore, been reduced to
having the following four properties:

(1) The potential at each site is spherically sym-
metric and zero outside a certain radius.

(2) The potentials on two neighboring sites do not
overlap.

(3) The potentials corresponding to sites occupied by
atoms of any specific kind are identical.

(4) The potentials depend only on the structure of
the crystal and not on the lattice constant or relative
concentrations of the alloy constituents.

Condition (4) is a simplifying assumption which could
be relaxed shouM it be necessary. Given a crystal po-
tential satisfying conditions (1) to (4), it is a fairly
straightforward piece of algebra to extend the theory
of I to the alloy problem. This extension and a dis-
cussion of the geometric approximation used in the
theory is given in the Appendix. It is not necessary to go
any further into the theory in this introduction since in
the case of disordered substitutional alloys, with which

' F. S. Ham aud B. Segall, Phys. Rev. 124, 1786 (1961).

the bulk of the paper is concerned, there is a simple
physical picture using concepts similar to those of the
tight binding approximation which leads to the same
result. It will be helpful if the reader has some idea of
the work presented in I, but it is hoped that this paper
will be, for the most part, understandable without
knowledge of I. The algebra presented in the Appendix,
however, depends closely on the details of I.

Before proceeding to the details of the calculation, it
is perhaps worthwhile to give a simple illustration of the
way in which it is suggested that the rigid band model
is inadequate. One way of viewing the tight binding
approximation is to consider the ions which are to
form the lattice dispersed so far apart that they have
no eBect on each other. Consider a single bound energy
level. If now the ions are moved together, the bound
energy levels are all the same if one is considering a
pure metal, and therefore, being degenerate, will actu-
ally split to form a band. The total density of levels in
the band will stay constant, equal to the number of
ions present (forgetting multiple occupancy due to spin
or angular momentum degeneracy). As the ions come
closer and closer together, the band broadens further
and further and reduces its height.

If the same process were to be carried out in an alloy
of two types of ion, then what happens depends on the
relative positions of the energy levels in the different
ions. Consider now one bound level in each type of ion
(one is, of course, thinking of the d levels in transition
metals). When the ions start to approach each other,
but at such a density that they are still well separated,
the degeneracy will split the levels into bands, one band
for each of the types of ion present. These bands will
be narrow and will not overlap. The electrons in either
band will be localized around the type of ion from
which that band has originated. What happens when
the ions come closer together now depends on the band-
widths and on the splitting between the energy levels.
If the bandwidths are very much greater than the
splitting, then the separate bands will merge into a
composite band holding one electron level for each ion
present. This is just the rigid band model. If, on the
other hand, the splitting is much greater than the
bandwidths, the bands will to a good approximation
stay separate, each holding one electron level for each
ion of the appropriate type present.

These two limiting cases are illustrated in Fig. 2, in
which the pictures for infinitesimal densities, extremely
small densities 8, and metallic densities are compared.
These pictures will be seen later to be very similar to
those which arise from the theory of this paper. This is
not surprising, since it will be seen in what follows that
the situation considered is akin to a tightbinding situa-
tion and merely rewrites the arguments presented above,
but using a firmer mathematical foundation.

The relevant parts of the previous work will now be
briefly reviewed in order that some o$ the formulas may
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be used later. In I the density of states, p(k, E), written
in the form

1 1—(ImT(k)),
(E—k')' V

where

T(k) = exp( —ikLx —x'7)T(x, x')dxdx',

El

Eg

n(E)

Fig. Ro)

~ ~mete&

and where T(x,x') is the total scattering matrix of the
electron on the crystal, is expanded in terms of the
total scattering matrices (or t functions) for each indi-
vidul potential. Dirac brackets denote the averaging
over the distribution of systems. p(k, E) is de6ned for
all k, and is not restricted to any Brillouin zone so that
one is dealing with free electrons and not with Bloch
waves. The density of levels of the system is given by

hg

n(K)

(b)

ts(E) = p(k, E)dk.

The result given in I for the density of states is written
in terms of (i) a matrix 6 which depends on the struc-
ture of the lattice and on k and E, but is in no way
dependent on the potential and (ii) a diagonal matrix t,
the elements of which are the angular momentum com-
ponents of the t function or total scattering matrix for
the potential and are not dependent on the lattice.
Then according to I,

LL'

+(t(k,E"){6+66+6 G G+ )

where ~=t(E'~', E'~'). This result includes all multiple-
scattering terms and is an expansion in terms of some
disorder parameter rather than any potential strength.
Higher multiple-scattering terms are not always cor-
rectly dealt with in the disordered case, as will be dis-
cussed shortly. Equations (1) and (2) may be considered
to describe a procedure for evaluating the density of
states for a lattice of potentials in the case when the t
function for the potentials is known. It is therefore in-
structive to observe that one can construct such a t
function as follows: Consider a disordered substitu-
tional alloy with a proportion d of solute atoms so that
the solvent atoms are present in the proportion (1—d).
As the electron moves through the lattice (in a free-
electron-like manner) it will scatter off the lattice sites.
Since the potentials are not small the electron may
resonate with them so that it is necessary to describe
the scattering by the total scattering matrix of that
site, i.e., the t function of the potential there. But when
the electron arrives at any site there are probabilities
(1—d) and d that there will be solvent or solute atoms
present on that site. The alloy, therefore, scatters the
electron rather as if it were a pure metal with a poten-

Fro. 2. The density of levels formed by n& ions with bound
state EI and n2 ions with bound state E2 as the density, a., in-
creases from near zero to metallic densities. (a) bandwidth)&energy
splitting, (b) bandwidth«energy splitting.

tial at every site described by the t function

t(alloy) = (1—d)t(solvent)+dt(solute). (3)

This t function for the alloy need correspond to no real
potential and even if it should correspond to a potential,
that potential will almost certainly be pathological.
Given the t function of the alloy one can then insert it
into Eq. (2) and Eq. (1) to find the density of states.
The more elaborate calculation presented in the Ap-
pendix yields exactly the same answer, but does so in
a way which gives one greater confidence in the ap-
proximation and also enables one to discuss the dif-
fuseness which is actually present in the density of
states. This part of the problem is discussed in Sec. II.
The important approximation which has been made in
deriving Eq. (3) is that, although all order multiple-
scattering terms have been included, those terms
where, for example, the electron scatters off the poten-
tial at Ri, then off potentials elsewhere and finally
returns to scatter again off the potential at Ri are not
correctly evaluated. Experience in the simpler cases
suggests that this approximation is liable to give the
detailed shape of band edges incorrectly, though not
seriously so and is elsewhere a very good approximation.

The important difference between the foregoing re-
marks and many earlier theories is that the solvent
and solute atoms are treated on an equal footing. Thus
it has not been assumed that the electrons move in the
Bloch states of the host metal and are scattered by the
impurity atoms. %hat happens in a pure metal is that
the concept of Bloch waves is replaced by the p(k,E)
of Eq. (1) defined for all k and this represents the split-
ting of Bloch waves with crystal momentum k' into
their components with real (free electron) momentum
k= (k'+K, ), where K; is any vector of the reciprocal
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lattice. Thus the waves equivalent to Bloch waves in
the alloy are built up from various parts of p(k, E),
which is now defined in terms of the alloy t function (3).
It will indeed be seen later that the alloy bands often
have little resemblance to the pure metal bands.

In Sec. II an especially simple model is discussed of
lattices with vacancies, and the behavior of d bands in
such lattices described. This is then extended to binary
alloys in Sec. III and to a discussion of the transition
metals in Sec. IV. Section V contains a brief discussion
of the behavior of nontransition metal elements alloyed
with transition metals.

II. LATTICES WITH VACANCIES

In order to get some feeling for the techniques to be
used in discussing the density of states, it is useful to
begin by analyzing an even simpler problem than that
just presented in the Introduction. Suppose that the
impurity being substituted in the alloy had an ex-
tremely weak potential, so weak that it could be ig-
nored compared to the host potential. Then the alloy
would be made up of only one type of potential, with
vacancies appearing at random lattice sites. While this
may not really seem to be a good model of any alloy it
will be seen later that the mathematical problem to
which it leads is part of a better model of such an alloy.
Even so consider, for example, FeAl. The iron d elec-
trons are fairly deeply bound and are mostly concen-
trated about the Fe ions. The aluminum ion, however,
has no bound d state, so that even when the d electrons
stray as far as the Al ions they will interact only slightly
with the potential there and will certainly be far from
any resonance, Thus, the d electrons are influenced only
by the Fe ions and the Al potential may be taken as
zero when calculating their properties. It will be seen
later that the d electrons of FeA1 behave exactly as sug-
gested by this simple argument. This model of vacancies
in a perfect lattice will be discussed in the remainder of
this section.

Given that the model alloy consists of only one type
of potential, the theory of I is directly applicable to it.
The potential involved is that of the Fe ion and is the
same as in the pure metal. The lattice structure too is
the same except that the vacancies correspond to cer-
tain of the lattice points being absent. Thus, the matrix
6 in Eq. (2) is different in the alloy. G depends linearly
on the correlation function

becomes

1
c(j)=— P ei) (r~~ rt)) P e~3 ~ (r»—vP)

p re&rp r~+vp

Given that the proportion of vacancies is d and that
they are randomly distributed, there is a probability d
of any given site r being a vacancy v . Thus each sum
over vacancy sites gives, upon averaging, the same sum
over lattice sites reduced by a factor d. So in terms of
the pure-metal correlation function

where X is the number of sites in the lattice, one has

(5)

Hence, finally, because of the linear dependence of 6
on c, one has

6 =(1—d)G&, (6)

where superscripts a and p will be used to denote the
alloy and pure metal, respectively. So the matrix G in
Eq. (2) is different in the alloy case. The matrix t, corre-
sponding to the potential involved, is unaltered.

It is clear that, because of the randomness of the
vacancies, the density of states will not be in the form
of a relation between Z& and k. Particles moving in
states of a definite energy or a definite momentum will
be scattered in an incoherent manner by the vacancies.
Yet such concepts as the alloy Fermi surface are fre-
quently discussed, so it is of interest to see whether it is
possible to make any sort of an attack on this point.
To do this it is necessary to use some more formulas
from 19 [(I4.5), (I4.6), (14.9), (I4.10)] which give

LL'

where

where v is the number of Fe ions and the summations
are taken over all occupied lattice sites. This correla-
tion function can be evaluated by writing it in terms of
the totality of lattice sites and of the unoccupied sites.
Thus, if the lattice sites are denoted by r and the
vacancy positions by v„, the correlation function

Fs and Fr are the real and imaginary parts of F and
the functions s~ are related to the t function. In the
case of a perfect lattice I"I has the form of a set of 5

functions and the density of states is then nonzero only
when det(E"/s+F~)=0. In all cases other than a

9 Equations from Ref. 4 are numbered as in that paper, but
with the prefix I.
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—dE'~'b
PM.g-i= (8)

(pi~2/s+ (1—g) F~ i ]2+ (Ei&2iE)2$

which means that the density of states is no longer
nonzero only along a line in E,k but is distributed
about the line

det[E'~'/s+ (1—d) Fii&j =0, (9)

with a width at constant energy given approximately by

Dk=E'~'d/L(1 —d) (BFii&/Bk)
~ i„j, (10)

where E,ko satisfy Eq. (9). This is not a very useful
expression, since Eq. (8) is defined everywhere in E,k
space and the whole result for p(k, E) is extremely corn-

plicated. It is unlikely that any worthwhile comparison
of this expression with experiment could be made.
Following Eq. (7), the density of levels must be worked
out by integrating M from Eq. (8), multiplied by a
weighting factor, over all k space. In this integration
over k, the Lorentzian shape of Eq. (8) will not have a
violently different area from the 8-function shape it
would have if the width were taken to be zero. In
other words, the well-defined Bloch wave has been
spread by the disorder into something of the nature of
a wave packet. Vnless these wave packets by some
chance interact strongly, they will contain the same
number of electrons as the original Bloch waves. The
width may therefore be ignored in calculating the
density of levels, even though one cannot yet show that
it is everywhere small. From Eq. (10) it is seen to be
small for low concentrations of impurities.

In the case E(0 the matrix F is given by

F = (1—d)F&,

so that the imaginary part, Fr, as in the perfect lattice
consists of a sum of 5 functions. Thus, the density of
states is nonzero only where Eq. (9) is satisfied, so that
no width appears in this case. What has happened here
is that a width only appears when higher order terms
are taken into account in the geometric approximation.
However, a general analysis of that approximation sug-
gests that the higher order terms are usually only im-
portant near the edges of bands, which in turn suggests
that the width is, in general, small except near the band
edges. Evaluating Eq. (10) in the tight binding approxi-
mation [which is inconsistent since E)0 in Eq. (10)j
one observes that (BFii&/Bk) is proportional to (BE/Bk)
and this too implies that the width is greatest at the
band edges. Therefore, provided one only discusses the
density-of-states problem, and does not discuss, e.g.,
transport coefficients, it seems reasonable to ignore the

perfect lattice the distinction between positive and
negative energies is a little troublesome. Consider first
E)0.Equations (6) and (7) then give

F~= 6~ i'Eil2B= (1 if) Fi ifiEil&B

i

width on the density of states with the proviso that
detailed conclusions are not drawn near band edges.
Since the band structure is then given by Eq. (10) in
both cases, it is most convenient to evaluate the density
of states for 8&0 and to make a formal extrapolation
of the result to the region E&0 when this region is of
interest. This procedure will be followed for the rest of
the paper.

One can now return to the simple physical interpreta-
tion, given in the Introduction, of the manner in which
the electron moves through the lattice. In the case of
the lattice with vacancies the average t function at any
given site is (1—d)t& and this may be used in Eq. (2)
to give the density of states. A little care must be exer-
cised in doing this, however, principally because the t
function of Kq. (2) and the function s(k) of Eq. (7) are
not linearly related.

In the lattice with vacancies problem the density of
states is nonzero only where Eq. (9) is satisfied. This
gives a definite relation between E and k but it is
important to note that the density of levels is no longer
given by the usual integral

d5,
[gradE

/

(12)

E=Eo y(1 d)Fii&(k,—EO), —

whereas in the pure metal, one would have had

E=EO—YFz"(k,EO) .

(13)

Hence the effect of the presence of the vacancies can
be interpreted as a reduction in the overlap integral.
In the pure metal this reduction would have the effect
of narrowing the bandwidth by a factor (1—d), but
increasing the height of the density of levels by a factor
1/(1 —d), the number of electrons in the band thus
remaining constant. Equation (13) does indeed show
that the bandwidth in the vacancy case is reduced by
a factor (1—d). It is important to what follows to note
that the band shape does not change in its features,
only in its linear dimensions. However, it will now be
shown that the height of the density of levels does not

taken over constant energy surfaces in the Brillouin
zone. This is most conveniently seen in the tight binding
approximation. Concentrate on that part of Eq. (9)
corresponding to the angular momentum of the tightly
bound state. In order to avoid complications with
matrices, one may take the state to have angular mo-
rnentum zero, the extension to higher angular momenta
being trivial. It is then necessary to solve

Eu'/so(Ev')+. (1—,f)F~i (P Eil~) =0

Near the bound state energy Eo, E'~'/so(E'~') has the
form (E—Eo)/( —y) where y is proportional to an overlap
integral. The dependence of Fii&(k,E) on E is ignored
in the crudest tight-binding approximation. Thus, one
has



A136 J. L. BEEBY

increase in the alloy, so that the number of electrons in
the band is reduced by a factor (1—d), which is, of
course, correct. The argument hinges around the func-
tion s(k), which from I can be written in terms of the
matrix element

s, (k)n j,(kx)2 (x)R, (x)x'dx.
0

possessing the t function

t'= (1 d) t—1+dt2 (15)

where t' and t' are the t functions for the solvent and
solute potentials, respectively. Then by neglecting the
diffuseness of the density of states, as discussed in the
previous section, one sees that the density of states is
nonzero only when

Here j&(kx) is a radial Bessel function, 2/(x) the potential,
and Rl(x) the radial wave function of the electron in the
potential. In particular,

sl(E'/') =2r—' tang(,

det +F/2' ——0,
s~ (El/2)

where s'(E'/') is given by

s,'(E'/') = —E'/' Retl'(E'/' E'/')

(16)

(17)

give

s(k) E"
+ (1—d) F/2&

s(E") s(E'")
s(k)

s (El/2)

s(k)
(1—d) +FB

L(1—d)s(E'")) -L(1—d)s(E'")j
sk()

X —= (1—d)~'(E) . (14)
L(1—d)s(E'")j

This is (1—d) multiplied by the factor which would
have given the density of states in the pure metal,
n'(E), with a smaller overlap integral. The extra factor
(1—d) in Eq. (14) shows that, though the bandwidth
is reduced by (1—d), the density of states does not
increase. In other words, the effect on the band of re-
placing certain of the pure metal ions with vacancies, is
to decrease its width without changing its shape Las
will be seen by the factor 22'(E) j, in such a way that it
holds the correct number of electrons. Though the
argument has been given in the tight-binding limit, it
will be nearly true in other cases; the bandwidth will

be reduced with only a slight change in band shape.
This result will be useful in the next section where the
behavior of binary alloy systems is discussed.

III. BINARY ALLOYS

Consider once more the model of an alloy discussed
in the Introduction. The electron moves as if it were
in a perfect metal alloy with a potential at each site

where g~ is the phase shift. It was remarked above that
the effect of the (1—d) factor was to reduce the overlap
integral. This corresponds to a reduction of sl(E'/') by
a similar factor. The point to be made is that sl(k) will

change only slightly when this happens, because the
reduction in the overlap integral corresponding to the
bound electron can, in general, be achieved by a very
slight change in the shape of the potential, and this
need hardly affect sl(k) which corresponds in a certain
sense to an electron of positive energy. Thus, the last
three factors in the first of Eqs. (7)

det +F/2" =0.
s ~(El/2)

In the pure metal E'/'/s2'(E"') has the general form
(E—El)/( —pl) near the bound d state at El, giving
an equation which may be written formally as

El+71FR

This is really a matrix equation but will for the moment
be treated as a scalar equation. F is bounded as a func-

The feature of s' and t' which is important in the work
to follow is that they both have singularities at the
bound states of the electron in either solvent or solute
potentials. This is clear from Eq. (15) since a singularity
in either t' or P implies a singularity in /'.

It is necessary to simplify Eq. (16), since its solution
is still harder than an ordinary band-structure calcula-
tion. This process can be begun by noting the form of
F/2 in bcc and fcc lattices. In the case that s-, p-, and
d-bound states all exist in one or another of the com-
ponents of the alloy, F is a (9X9) matrix. The (4X4)
part of F which corresponds to the s and p bands and
the (5X5) part corresponding to the d band happen to
be numerically much larger than the (4XS) and (5X4)
"off-diagonal" elements. Thus it seems reasonable to
neglect the latter and hence to split the problem into
two parts, corresponding to the s- and p-bands problem,
and the d-band problem. This is a common approxima-
tion in the transition metals: the interaction between
s and d electrons is rarely considered. So far as this
paper is concerned, the aim is to expose the important
features of the model and not to attempt a rigorous
calculation. As mentioned in the Introduction, this
approximation should not be too serious.

The d bands alone can be discussed fairly well. Since
they are close to being tightly bound, the behavior of
s'(E, '/') can be approximated quite closely. It is useful
to assume the d bands to be so tightly bound that they
all have the same shape, this shape being mainly deter-
mined by the lattice structure. Consider first the solu-
tion of the relevant part of Eq. (16)

Pl. /2
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tion of k, showing that E lies within certain limits. The
remainder of the terms in Eq. (7) for p(k, E) will give
the shape of the band. 7 determines the width of the
band. Now add an impurity to this metal, the impurity
having a bound d state at E2 with overlap integral y2.
For the alloy n(E)

(a)

where

(1 d) &~
—/(E E)j—+dr~ /(E E)j—

(E Et) (E Es)

v'LE —E(d)j
(1 d) v tEs+ —dvsEt

E(d) =
I

n(E)

lies between E~ and E2, and

v'= (1—d)vt+dvs.
ntK}

(E)+Es-E(s)}

(C)

Figure 3 shows sketches for the behavior of E'/s/s'(E'")
both for the perfect crystals of metal potentials 1 and 2,
and for their alloy. It is clear that the behavior is con-
siderably more complicated in the alloy case than
in the pure substances. There is a singularity at the
energy E(d) where, because the function F is bounded,
the density of states is zero. (Since this constitutes a
band edge the geometric approximation is suspect in
this region and one should perhaps understand by zero
the phrase "much smaller than expected. ") Away from

E(d), the alloy E'/'/s'(E'/') becomes asymptotic to
1/~ {E—LEt+Es—E(d)3}.

s(XE}

g(JE}

FIG. 3. Curves showing the behavior of E"s/s'(E'") for both pure
metals and for the alloy.

Fxo. 4. An idealized representation of the density of states in
the cases of two pure metals, (a) and (b), and for their alloys
(c) when the bandwidth))energy splitting, and (d) when the
bandwidth((energy split ting.

The calculation has yet to be reduced to manageable
proportions. Consider, therefore, the following model.
The band structure is determined as the solution of the
equation

E&/&/$'(E&/s) = F

and the density of states increases as the absolute size
of F decreases. Thus, for crystals of potentials 1 and 2

the densities of states are as given in Figs. 4(a) and 4(b).
The widths of the bands are given by 2y,

~
F,„~ and

the heights are inversely proportional to the widths.
For the alloy this model possesses two parameters, p'
and

~

Et—Es
~
. The width 2y'

~
F,„~ is a weighted mean

of the widths of the constituents, and this must be
compared with the energy difference ~E&—Es~. The
two limiting cases are very different:

(a) Width»iz, —E,
i

Here E"'/s'(E'/') is asymptotic to

(1/y') {E—[Et+ Es —E(d)$}

and is only very different from that line in the neigh-
borhood of E(d). Thus, in this case, the band. is as
drawn in Fig. 4(c), having width 2y'~ F,„~ and being
centered on the energy E,+E,—E(d). There is a sudden
decrease to zero at the energy E(d) which lies about
halfway up the band for a symmetrical band. This de-
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Eji

//7'

Cr.

gE)

(b)

F&G. 5. The suggested
behavior of the density
of states in the nickel al-
loys (a) NiZn, (b) NiFe,
(c) NiCr, (d) NiMn.
The dotted line repre-
sents the position of the
Fermi surface prior to
alloying.

(c)

n(K)

crease is a consequence of the approximation, in general
one would expect noticeable decrease in v(E), but not
right down to zero.

In this case one is only interested in the behavior
of E'~'/s'(E'~') when it is very small. This happens
near Er and E2, where E'~'/s'(E'I') =—(E—Er)/(1 —d)yr
and (E E2)/F2, resp—ectively. This leads to the situa-
tion as presented in Fig. 4(d). These two cases are
clearly closely connected with the simple tight-binding
discussion of the alloy problem given in the Introduc-
tion. What the theory presented above has enabled one
to do is to discuss the approximations involved in the
case of an alloy. It wouM further enable one to put the
whole calculation on a quantitative basis were the ion
potentials sufficiently well known.

Before considering the cases intermediate between
(a) and (b), one should consider the behavior of the
real shape of the bands rather than the model bands
just discussed. The important feature described in the
last section for the single band in the presence of va-
cancies was that, though changing its width, it did not
change its shape or height. By this means the band
managed to contain the correct number of electron
states. It is not unreasonable to assume that the same
effect occurs here. Thus, it is presumed that s'(k) is not
changed on alloying, while s'(E"') is changed, so that
the bands given in Fig. 4(d) and by the dashed line in
Fig. 4(c) will have the characteristic shape of the
tightly bound d bands. In each case the band heights
actually adjust themselves so that the bands contain
the appropriate numbers of electrons, i.e., 5 in Fig. 4(c);
5 (1—d) in the Er band and 5d in the Er band of Fig. 4(d).

In intermediate cases the bands of Fig. 4(c) go into
those of Fig. 4(d) by moving apart and changing their

relative sizes from holding an equal number of electron
states to holding numbers proportional to the number
of atoms possessing the energy level in question. These
conclusions are, for the most part, in contradiction to
the rigid band model, which corresponds to the dashed
line in Fig. 4(c). Thus it will be seen in the next section
how the breakdown of the rigid band model in alloys
between transition metals of much different valences
can be explained simply by the model presented in this
section.

The real band-structure problem is not quite so
simple as has just been suggested, because the shape
of the band is not symmetrical about the energy level
E,, due to Brillouin-zone effects. Thus, the gap at E(d)
will not appear in the middle of the band (in term of
numbers of electron states) even when the energy levels
are close together. It is perhaps better to say that the
gap appears at E(d) which for small concentrations of
impurities is close to the impurity bound-state energy.

When the bands are not tightly bound there will be
other complicating features, which really need much
more detailed calculation before they can be described.

Finally, in this section, it is necessary to make a few
remarks about the spatial localization of the electrons.
Even though an electron lies in a band which is formed
around the energy level associated with a given type
of atom, it is not true that the electron is actually local-
ized around atoms of that type. The electrons will all
spend some time on one type of atom and some on
another. What one can say, however, from the tight
binding type of approach to the two-band picture, is
that the electron will spend most of its time near to
one particular type of atom, unless its energy happens
to lie roughly in the middle of the two levels. Thus it is
important that talking of a "Ni band" or a "V band"
does not imply any localization of electrons in space,
but only the position in energy of the band in question.

The results derived above will now be applied to the
problems of actual transition-metal alloys.

IV. THE TRANSITION-METAL ALLOYS

The discussion of the previous section has provided a
qualitative picture of the way in which the d bands of
alloys behave when both constituents of the alloy have
bound d states. The most important physical situations
in which this occurs are in the alloys of the transition
metals. All that remains is to determine the positions
of the d electron bound states in these metals, after
which one is able to describe the predictions of the
model for such alloys. The model will be seen to give
significantly different results from those of the rigid
band model in just those cases in which the latter fails:
where the valency difference between the alloy con-
stituents is large.

In the free atoms the binding energy of any given level
increases as the atomic number increases. Thus, going
from vanadium to nickel in the transition metals, the
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s state goes from 7.5 to 9 eV while the d state goes
from 16 to perhaps 25 eV. (These figures are roughly
estimated from the ionization potentials. ) This sug-
gests that in the crystals of these metals the d levels
will move lower with increasing atomic number. The
decrease per unit change in atomic number will prob-
ably be less than in the free atoms, partly because the
d levels are raised relative to the s levels by the manner
in which the crystal potential of our model is formed.
But it seems reasonable to choose a value of between
1 and 14 eV lowering of the d level for unit increase in
atomic number.

The d band itself in the transition metals has a width
of the order of 4—8 eV depending on the source used,
so that if it is assumed that the band is roughly sym-
metrical about the energy level it is possible to analyze
the behavior of the various alloys in detail as follows:

(a) ¹ielrel Based A11oys

(1) Copper and zinc Her.e the splitting between the
host and impurity energy levels is small compared with
the bandwidth so that the situation of Fig. 4(c) applies.
The band will be of the same shape as the nickel band
except for the gap between the energy levels )see Fig.
5 (a)7. The band will fill just as in the rigid band picture
and the magnetic moment will decrease according to
the electron/atom ratio. There is no change from the
rigid band model. (See also next section. )

(Z) Cobalt and iron. Again the energy level splitting
is small so that the band shape is roughly unchanged.
The gap will now lie above the nickel energy level
LFig. 5(b)7, but the band will be filled to a point above
the gap where the situation is just like that of the rigid
band model. The magnetic moment will increase as the
electron/atom ratio decreases, according to the usual
two-band picture of ferromagnetism. Note, however,
that for large iron concentrations a behavior similar to
that of manganese is found, which is a deviation from
the solution proposed here.

(3) Chromium and vanadium. These elements have
valences considerably different from that of nickel and
the rigid band model does not explain the behavior of
their magnetic moments. According to the model of
this paper, since the energy splitting is large, the situa-
tion of Fig. 4(d) will apply, the band becoming two
bands, one about each energy level. On this picture the
lower band will contain 10 state& per nickel atom, so
that, since the electrons will fill the lowest available
states, the band around the nickel energy level will be
filled by the impurity d electrons, as shown in Fig. 5(c),
so that these elements behave in a similar manner to
copper and zinc. This filling of the band accounts for the
decrease in magnetic moment observed experimentally,
in contradiction to the rigid band model where the band
empties . (See Fig. 6, in which the heavy line shows the
behavior predicted by the rigid band model. )

(4) 3Ianganese One might exp. ect the behavior of

2.0-

l.0-

Fe

Fro. 6. The number of unpaired spins per atom plotted against
electron/atom position in the periodic table. fcc crystals are to
the right of the dashed line, and bcc crystals to the left. See, e.g.,
the review by J. Crangle PFtectrornc Stroctmre and Alloy Chemistry
of the Transi&on Flements, edited by Paul A. Beck (Interscience
Publishers, Inc. , New York, 1963)j.

manganese in nickel to be anomalous even given the
crudity of the model used here, since the manganese
energy level, and hence the gap in the density of levels,
is near to the nickel Fermi level [see Fig. 5 (d) 7. Without
a more detailed calculation involving some theory of
ferromagnetism, it is impossible to suggest exactly
what the model predicts. One of many explanations is
perhaps worth mentioning. The nickel band is assumed
to just overlap the manganese energy level, so that at
first an almost common band is formed with the result
that the moment increases as increased proportions of
manganese reduce the electron/atom ratio. As the
nickel bandwidth decreases it will pull away from the
manganese energy level to such an extent that the
model of Fig. 4(d) is appropriate, so that the manganese
d electrons will fill the nickel band, reducing the rnag-
netic moment as in NiCr (see Fig. 6). The behavior
of nickel-manganese alloys is indeed anomalous, some
magnetic ordering changes being involved. These order-
ing changes may not be entirely unrelated to the dis-
cussions of this paper, since each of the d subbands
will separately behave as in Figs. 4 and 5, The band-
widths will vary between the subbands and so vary
the energy splittings. One must clearly have a much
more detailed understanding of the band structure in
the pure metals before being able to make definitive
statements about the magnetic-ordering question.

(b) Cobalt Based Alloys

(f) Iron, nickel, and coPper. As in the nickel alloys,
provided the energy splitting is suKciently small, the
rigid band model gives a correct explanation of the
band shape, the gap in the band predicted by the model
discussed above being well clear of the Fermi level.

(Z) Chromium and manganese The pictu.re here is
the same as for NiV and NiCr, the d band forming
around the impurity d level loses its electrons to the
band around the cobalt d level, which thus fills up.
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FIG. 7. Suggested specific
heat of VNi plotted against
electron/atom ratio.

Cr

(c) i'ron Based Alloys

(J) Mattgattese, cobalt, vanadium, aed chromium. Here
again the rigid band picture prevails, so that only the
electron/atom ratio is important.

(Z) nickel. The behavior of FeNi is not really well
described by this model, since the band gap should be
well clear of the level to which the band is filled. One
would expect the rigid band model to work correctly.
An effect similar to that involved in NiMn might be
the cause of this behavior.

It will be seen, therefore, that this Inodel explains in
a qualitative manner nearly all the magnetic moment
results for the transition-metal anoys. In order to get
the model in its proper perspective, it is useful to see
to what extent such a model could arise from other view-
points. The approach to alloys which is usually adopted
is one in which the effect of an impurity potential on
the band structure of the host crystal is analyzed. Such
calculations involve screening and other e6ects by
means of which good agreement with experiment can
often be obtained. A result very similar to the one given
above has been given in such terms by Friedel. ' "What
happens in Friedel's picture is that in, e.g., CoCr, the
Cr d shell becomes a resonant level above the Fermi
energy and at least one of its magnetic subbands will

become empty, the electrons going mainly into the d
band with the opposite spin direction. The remaining
electrons in the Cr d band must then be considerably
-extended in space to account for the neutron diffraction
data, " which shows that the reduction in magnetic
moment occurs around the Co atoms and not by an
increase in the moment of the Cr atoms in the opposite
direction. Such a viewpoint is not too far diferent from
that discussed in this paper.

If the model suggested above is correct for the
transition metals, then the specific heat for metals of
large valency di6erence should be diferent from that
predicted by the rigid band model, especially near the
lowest electron/atom values. As the low-atomic-number
energy band empties, one should observe a peak in the
specific heat such as drawn in Fig. 7 for Vwi. "'

Thus, the picture given in this paper, crude as it is,
can explain fairly well the behavior of the d electrons
in the transition-metal alloys. With further refinement,

"J.I&riedel, Nuovo Cimento Suppl. 7, 287 (1958)."C. G. Shull, Congres Solvay, Bruxelles, 1954 (unpublished).
»~ E'os added ~rI, proof. Experimental results on VNi alloys do

not show this structure (T. M. Srinivasan, unpublished).

and probably with some more detailed understanding
of the pure-metal band structure, it seems likely that
these alloys could contribute much to one's understand-
ing of the problem of magnetism.

Before leaving this topic it is of interest to compare
the theory presented so far with an approach used by
Hubbard" to a different problem. The problem con-
sidered by Hubbard is that of the effect of correlations
on narrow energy bands. He takes first only s bands and
extends the theory in a second paper" to include d
bands. The particular correlation effect which Hubbard
considers is the effective repulsion felt by electrons of
opposite spin because of exchange integral effects. Thus
an electron of given spin sees a different potential de-
pending on whether the ion in question is or is not
already occupied by an electron of opposite spin. Hence
the problem of determining the band structure for
electrons of spin-up (say) is like an alloy problem, and
will be given by curves like Figs. 4(c) or 4(d) depending
on the parameters involved. The band structure for
spin-down electrons can then be determined in terms
of the spin-up electrons and the whole treated self-
consistently. Such a treatment is outside the scope of
this paper, but it is worthy of note that the curves of
Figs. 3 and 4 are almost identical with those derived by
Hubbard.

V. ALLOYS OF THE TRANSITION METALS
WITH OTHER ELEMENTS

Following the remarks of the Introduction, and the
proof given in the Appendix, the behavior of an alloy
is described by the t function

t'= (1—d)t'+dt', (19)

compounded from the t functions of the alloy constitu-
ents. In the last section the d part only was considered
for the transition metals. Consider now the alloy FeAl
discussed already in Sec. II. The t function for the Al
ion will contain only a very small d part, since the
lowest d state in aluminum is a resonant state far above
zero energy. Thus for the d levels one has t'~(1—d)t',
precisely as was discussed in Sec. II. Thus, in the case
of alloys between transition metals and lighter elements,
one expects the d band to behave as discussed in that
section, the bandwidth reducing, but the shape re-
maining constant.

The behavior of the s and p bands has thus far been
neglected. The t functions for both s- and p-angular
momenta will have pairs of singularities corresponding
to those of the constituent t functions. The bands will
be mixed just as in the ordinary metal case, so the
behavior of the alloy s, p bands is likely to be extremely
complicated. The only possibility of a simplifying fea-
ture in this case is the large width usually associated
with these bands. If this dominates the splitting be-

"J.Hubbard, Proc Roy. Soc. (L. ondon) A276, 238 (1963).
+ J. Hubbard, Proc. Roy. Soc. (London) A277, 237 (1964).
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tween energy levels, then one might expect a rigid band
type of theory to work except for isolated alloys where
the Fermi surface lies close to one of the gaps, The pre-
scription suggested by this theory is as follows. The t
functions for the s and p bands in the alloy have to be
formed separately from those of the pure metals. One
must then consider the mixing of the bands correspond-
ing to these averaged t functions. It will be noticed that
the work of Cohen and Heine, ' which gives such good
agreement with many experimental results, could be
considered to use just such a prescription. The policy
in this paper is to neglect the s-p band. problem alto-
gether and to derive only those results which do not
need a discussion of this point. Thus in the alloys
among the transition metals, discussed in the preceding
section, it was implicitly assumed that the alloying did
not change significantly the general shape of the s-p
band and in particular the number of s states available
below the top of the d band.

Such an assumption concerning the s and p bands
can also be made in the case when the alloy constituents
are not both transition metals. In this case, however,
one must be careful to 6x the position of the modified
bands with respect to the d band. Define the "solvent
Fermi level" by putting into the modified s and p
bands the number of electrons appropriate to the solvent
atom. When solute atoms are added to the solvent
crystal, the levels will adjust themselves to minimize
the energy. If the bands arising from these levels are
6lled with the number of electrons appropriate to the
solute, one will find a "solute Fermi level. " If this
level lies above that of the solvent, then electrons will

spill over into the solvent bands. Thus, in the NiV
alloys discussed earlier, the vanadium "Fermi level" is
considered to lie above that of nickel.

The suggestion of this paper concerning the difference
between FeAl and XiAl alloys can then be stated in the
form of a comparison of the Fermi levels involved.
What seems to happen is that the aluminum Fermi
level adjusts itself in iron, and in other host metals to
be nearly the same as the solvent Fermi level, This
mould mean no spill over of electrons into the iron d

band, which contains, therefore, the same number of
electrons/atom with the result that the magnetic mo-
ment per iron atom does not change. "This last conclu-
sion depends upon the result of Sec. II which showed
that only the bandwidth and not the band shape changes
with increased impurity concentration. Also the low-

temperature specific heat does not change in agreement
with experiment. That this does not work for nickeP'
would seem to be due to the aluminum Fermi level lying
above that of nickel, so that the nickel d band is 6lled,
the magnetic moment being reduced. It would certainly
seem that it is the behavior of NiAl which is anomalous
rather than FeAl. One possible reason for the solvent

'4 A. Arrott arid H. Sato, Phys. Rev. 114, 142& (1959).
~ R. M. Bogarth, Ferromugnetisnz (D. Van Nostrand and

Company, Inc., New York, 1951).

and solute Fermi leve1s being equal could be simply that
the aluminum prefers to be electrically neutral, so that
the appropriate number of electrons arrange themselves
to stay near to the AI ions.

The conclusions just drawn may well not work for
the lighter transition elements, since the d bands there
are not too tightly bound and the results of Sec. II will
not apply. Thus, the behavior of Till ternary alloys
is not in contradiction to the above remarks.

VI. CONCLUSIONS

It has been shown how the rigid band model for the
d electrons of transition metals may be improved to
account for the experiments on the magnetic moments
of alloys involving transition-metal elements having a
large valency difference. The theory proposed has been
discussed only in a qualitative fashion, but seems to
6t the results quite well. A simple physical picture of
how the rigid band model breaks down has been given
by analogy with a pure-metal tight-binding calculation.

All this is not very startling, and could even be de-
scribed as an empirical correlation of the experimental
results. This is, however, not quite fair, since the theory
itself is based on approximations which are probably
valid in the cases discussed and which could be worked
out quantitatively if such an elaborate calculation were
justifiable.

The principal virtue of the whole scheme is that it
does open the possibility that the transition-metal-
alloy experimental results may be of great value in
understanding the phenomena in the pure transition
metals. This has already occurred in the dilute alloys
of the transiton metals in other substances, which have
introduced several new features into the problem of
ferromagnetism.
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APPENDIX

(a) The Geometric Approximation with Two
Types of Potential

The symbolic series (I2.2) for the T function may be
written in the same form

T=P t +P t„G(tp+ P t GstpGst, + ~ ~,
a a&P a&P, Pgy

where more than one type of potential is present, but
now t is the t function, centered on the position E,
corresponding to the type of potential present on the



J. L. BEEBY

site R . To make this point explicit and to assist in the
summation of the series it is necessary to split T into
four parts, given by

T"=P t '+Q t 'Gl)tp'+ Q t 'Gl)tpGpt '+.
e n&P a/P, P&y

T"=Q t 'Gptp'+ Q t 'GptpG&)t, '+
n&P ~&P P&v

(A1)
(A2)

g&'/) — P S P&'/)

g; ugP
(A3)

where S; is the number of atoms of type i. As in I,
this approximation leads to the correct answer in the
case of a perfect lattice (i.e., an ordered alloy) and is
rather hard to discuss in any other case. It should be a
good approximation in the case of a substitutional alloy
with a small proportion of impurities. In the case of
alloys in which the two components appear in propor-
tions of the same order, the approximation should again
be fairly good provided that the electronic mean free
path is much longer than some local "range of ordering. "
As suggested in the text, the approximation is likely to
predict least accurately the details of the density of
states near band edges.

Each 5&'/) is now treated as in (I2.10) to (I2.14) and
the radial integrations performed [cf. (I2.15)j. There
are now two sets of radial integrals for t' and P. Finally
(A1) and (A2) tak.e the forms:

T"(k) = (42r) Q Nl Vr, (k) Vl, (k) {tl'(k,k)
LL'

+ [tl(k ~1/2){Q)1+ Q G)R&RGR)

i=1,2

gl)gRGR/g)'6/)+. . .}f1 (P)/2 k)j,}

wjth simjlar definitions for T" and T2'. Here t i js gj
by the t function corresponding to the potential v;,
when the atom at n is of type i, and is otherwise zero.
T'& corresponds to that part of the total T function in.

which the electron scatters firstly off an atom of type i
and lastly o6 one of type j. Each internal summation
in the third and higher order terms will also split into
separate summations over the atoms of types 1 and 2.
(These and the following remarks may be extended in

a trivial manner to alloys with more than two types of
atoms present. )

Now proceed exactly as in I. Each t function is
analyzed into its angular-momentum components and
the angular integrations, involving Go, carried out
[cf. (12.7)]. The summation corresponding to (12.8) is
now complicated by the presence of the two different
potentials. The approximation to be used is, however,
stiH the same; each 5 t'('&'~ is replaced by its average
value. The bracketed superscripts here indicate that the
5 in question lies between t functions corresponding to
potentials of types i and j. Thus, each 5 ~("' will be
replaced by

T"(k)= (42r)' p N1VI. (k)VL,.(k)[t'(k 8'")
II'
R)&'{G12+ Q G)R~RGR2+. . . }t2(gl/2 k)$

i=l,2

where ~'= t'(E'/2, E'/2), with similar expressions for
T"(k) and T"(k). Care must be taken in summing
these series, for the G" are already matrices (with re-
spect to angular momentum) without regard for the
superscripts i, j. The sums are in terms of two de-
nominators Ml and M2

M —(1 G22~2) (612~2)—1(1 Gll~l) G21~1

M —(1 Qll~l) (+21~1)—1(1 622~2) +12~2 (A4)

and are explicitly

T"(k) = (42r)' Q N, Vr, (k) Fr, (k)(t/'(k, k)hl1, .
LL'

+[tl (k El/2) M —1{@21+(1 G22~2) (+12~2)—1Gll}

&&t)(E)/2 k)j .} (AS)

T"(k) = (42r)' g N I"1.(k) I'I, (k){t'(k 8")M -'

X[622+ (1 +22~2) (G12~2)—1@12jt2(gl/2 k) }
(A6)

T"(k) and T"(k) are found. by interchanging super-
scripts 1 and 2 throughout Eqs. (AS) and (A6).

These expressions for T(k) are clearly too compli-
cated to be of any real general use, even though in any
specific problem once the potentials and their distribu-
tion are known, the calculation of p(k, E) is not a great
deal harder than a similar calculation involving only a
single type of potential. The dominant features can be
obtained from the zeros of the denominators, i.e., when
[Mlt =0, ~M2) =0. (The zeros of (Ml) and (M2( are
actually identical. ) For substitutional alloys the equa-
tions are a little simpler, and in the particular case of
disordered substitutional alloys, to be discussed in part
(b) of this Appendix, can be reduced to a useful form
which has the straightforward physical interpretation
discussed in the text. There is a good chance that in the
ordered case too a useful expression could be derived.
This has not so far been attempted.

(b) The Substitutional Alloy

If it is supposed that the atoms forming the alloy are
distributed on a perfect lattice, in such a way that the
solute atoms are randomly distributed on the lattice
sites, then the above formulas can be reduced to more
convenient proportions. Following (IS.2), S&") can be
written in terms of the correlation functions

eh'1&)) — Q e I (R,'—Rl ))E; ~&a
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The superscript to R indicates the type of potential
which must be present at the site R in order that the
term be included in the sum. In the case being considered
here, all the c&'&) are the same to within factors involving
the proportion of the solute present, d. Such a correla-
tion function was evaluatecl explicitly in the text [see
Eqs. (4) and (5)], and the details will not be given here.
In terms of the perfect-lattice correlation function c'(I)
the results are

for the density of states. It will again be assumed here
that the error involved in neglecting the diffuseness in
the density of states is small and that it can be ignored
without serious error.

Thus for E(0, the function G' of (I2.14) for the
perfect host lattice is the only way in which the lattice
structure enters the problem, the G" being given from
(A7) by

G"=G"=dG, G"=G"= (1—d)G.
c""(I)=c""(I)= (1—d)c'(I),
c&"~(I)= c&"~ (I)=dc'(I) . (A7) The matrices Mq and M2 simplify a great deal now,

becoming

As was discussed in the text, following Eq. (7), it is
now necessary to decide whether to discuss the case
E)0 or the case E(0. The former case leads to the
density of states having a width, which is physically
correct, whilst the latter leads to the simpler expressions

Mg ——[(1.—d) G~']—'[1—d G~' —(1—d) Gc']

M, = [dG,q-~[1—dG,2—(1—d) G,q
so that, finally, the important factor in the expression
for p(h, E) is given by

ImP'(Q)) = Im( g T (4& (Q) )=+(4~)2 P 1'z (Q) I'z, (Q) {[dt2 (P +~&2)+ (1—d) t~ (P +~~2)]
ij=1,2 LL'

QIm[{1—[dg2+ (1—d)g~]G}—~G][dt2(+~~2 P)+ (1—d)t~(g~+ P)]} ~, (A8)

where the reality of t'(p, q) for E(0 has been used.
Now, by comparing with (I2.16) in the same region of
energy, one is able to see that Eq. (A8) is the density
of states for a perfect lattice having a pseudo t function
given by

t'= dt'+ (1—d)t' (A9)

and this is exactly the result predicted by the simple
physical arguments of the Introduction.

In this approach one sees more clearly the approxima-
tions which have contributed to the derivation of Eq.
(A9). They are:

(1) The geometric approximation, which implies that
certain terms have been wrongly evaluated. These
terms are those in which the electron scatters off one
potential (all multiple scattering terms are included by

the use of the 5 function), moves away to scatter else-
where, then returns to scatter off the original potential.
It has been suggested, without any real proof, that this
approximation only leads to significant error when the
energy being considered lies in a band gap or near to
a band edge.

(2) The neglect of diffuseness in the density of states.
This is very similar to the suggestion that there exists a
reasonably well-defined Fermi surface in alloys. This
was discussed to some extent in the text where once
more the error seemed likely to be largest near the band
edges. However, this width in the density of states is
heavily involved in transport properties and must be
carefully considered when calculations of transport
coefficients are being attempted.


