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Several attempts have been undertaken in the literature to explain the observed stability of the face-
centered-cubic (fcc) configuration for rare-gas crystals (except helium), which structure, according to calcu-
lations based on pair potentials, should be somewhat less stable than that of hexagonal closest packing (hcp).
These attempts have failed or the results been found to be inconclusive. It is shown here how the fcc stability
can be explained in terms of three-body exchange interactions between nearest neighbors in the crystals. Qn
the basis of detailed results for neon atoms, the stability analysis may be based on an effective-electron model
with Gaussian distribution of charge. No multipole expansions are invoked. The three-body interactions in
first and second orders of perturbation theory follow simple symmetry principles, and their combined effect
stabilizes the fcc over the hcp structure by a difference of up to four percent of the cohesive energy for the
heavier atoms. Finally crystal stability is considered in its relation to total cohesive energy, and energy of
vacancy formation, for the close-packed structures.

detail the mechanical stability of cubic and hexagonal
lattices with central forces between the atoms (mechan-
ical stability refers to the static lattice energy only).
Similar considerations were given by Xabarro and
Varley" for hexagonal structures with an additional
interaction energy depending only on the volume of the
solid (like the Fermi energy of free electrons).

The result of these analyses was that the rare gases
should all crystallize in a hexagonal close-packed (hcp)
structure, which is favored over the face-centered-cubic
(fcc) configuration by about one-hundredth of one
percent of the cohesive energy. This difference is
extremely small, but it is remarkably constant with
respect to allowed changes in the potential function " '4

Further, it has been shown that neither zero-point
energy, ""nor the possibility of thermal transitions"
can invalidate this conclusion.

However, it is known from experiments that solid
neon, argon, krypton, and xenon have fcc structure
and that only He' exhibits a hcp phase. In attempting
to explain this deviation between theory and experiment
it should be remembered that the predicted difference
in lattice energy between the two structures is very
small. Therefore, any explanation which singles out
the rare-gas crystals as a special case is subject to
uncertainty. For this reason we will enlarge the basis
for the analysis by including also the stability of
alkali-halide crystals. In this way, no ambiguity
concerning experimental verification can arise.

According to the Born-Mayer theory of ionic solids
all alkali halides should crystallize in the so-called
sodium chloride mod. ification, consisting of two inter-

INTRODUCTION

"F.R N. Nabarro and J. H. O. Varley, Proc. Cambridge phil.
Soc. 48, 316 (1952)."J.A. Prins, J. M. Dumore, and Lie Tiam Tjoan, Physica 18,
307 (1952).

"T.Kihara and S. Koba, J. Phys. Soc. Japan 7, 348 (1952)."T.Kihara, Rev. Mod. Phys. 25, 831 (1953)."T. H. K. Barron and C. Domb, Proc. Roy. Soc. (London)
A227, 447 (1955).

"L.Jansen and J. M. Dawson, J. Chem. Phys. 23, 482 (1955).
A1292

~ NE of the essential problems in solid-state physics
and crystal chemistry concerns the explanation of

the stability of observed crystal structures and, as the
case may be, the interpretation of transitions between
different structures exhibited by one and the same
chemical compound at different external pressures or
temperatures.

In the history of the stability problem two classes of
solids, namely, those of the rare-gas atoms and of the
alkali halides, have, due to their simplicity, received
extensive interest in the literature. A forerunner was
Zwieky, ' who in 1923 carried out calculations on the
breaking strength of sodium chloride. Hund2 undertook
the first stability calculation for ionic solids, whereas
Lennard-Jones and Ingham' compared, for atomic
solids, the lattice energies of the face-centered cubic,
body-centered cubic, and simple-cubic lattices. Later
Goldschmidt4 established empirical rules for predicting
the lattice types of ionic and other structures from a
knowledge of ionic and atomic radii alone.

A series of important analyses concerning the
stability of alkali-halide crystals followed, first by
Mayer, ' then by lVlays and Jacobs. ' From the work of
Born and Mayer' dates the well-known Born-Mayer
potential for ionic interactions, consisting of an expo-
nentially decreasing repulsion at short distances, a
1/E-electrostatic interaction between the net ionic
charges, and supplemented by relatively weak van der
Waals.'forces. Born' and his collaborators investigated in
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penetrating face-centered-cubic lattices. This structure
is favored over the cesium chloride modification, where
the interpenetrating lattices are simple-cubic, by a few
percent of the lattice energy. Since the lattice energy
amounts to 150—200 kcal/mole, the predicted difference
between the two structures amounts to a few kcal/mole
in favor of the sodium chloride modification.

It is known from experiments that all Li, Na, K,
and Rb halides, plus CsF, crystallize in the NaCl
structure. However, CsCl, CsBr, and CsI exhibit the
CsCl structure, contradicting the Born-Mayer theory.
In addition, it is found that all K and Rb halides,
except KF, show pressure transitions to the CsCl
structure. Such transitions are indeed predicted by the
Born-Mayer theory, but the calculated transition
pressures are considerably higher than the experimental
ones. For example, the experimental transition pressure
for RbCl is 4.900 atm, the calculated value =35.000
atm. It appears, therefore, that the Born-Mayer theory
overestimates the stability of the sodium chloride modi-
fication for the K, Rb, and Cs halides, with the possible
exception of KF. On the other hand, for some of the
halides with the smallest cations Li and Na, and also for
CsF, the Born-Mayer theory predicts transitions to the
CsC1 structure which have experimentally not been
found. This indicates the tendency of the theory to
Nederestimate the stability of the NaCl modification for
halides with rather digerelt sises of cation and anion.
For excellent reviews of the stability problem for
alkali-halide crystals we refer to the treatise by Born
and Huang" and to a recent analysis by Tosi and
Fuml

It is to be noted that, since the cohesive energy of
rare-gas crystals is only of the order of a few kcal/mole,
compared with 150-200 kcal/mole for the alkali-halide

solids, the predicted energy difference between the two
crystal structures at normal pressures is for the alkali
halides of the order of 104 times that bet~eee the two

close packed coefig-lratioris for rare gas crystals. -

Ke postulate that the failure of the theory to
reproduce the correct experimental properties of rare-

gas crystals and alkali-halide solids has the same

physical exptariatiori. This assumption, is based on the
observation that the alkali-halide ions are isoelectronic
with the rare-gas atoms. Consequently, the interactions
between ions, on one hand, and between rare-gas
atoms, on the other hand, are formally identical if we

subtract the purely Coulombic ion-ion interactions and

disregard polarization effects in view of the high sym-

Inetry of the unstrained ionic crystals. This simplifies

the analysis considerably, since the difference between
solid helium and the other rare-gas crystals cannot
then, as Cuthbert and Linnett" have suggested, be

'6 M. Born and K. Huang, Dynamical Theory of Crystal Lattices
(Oxford University Press, New York, 1954), Chaps. I and II."M. P. Tosi and F. G. Fumi, Phys. Chem. Solids 23, 359 (1962).

' J. Cuthbert and J. W. Linnett, Trans. I"araday Soc. 54, 617
(1958).

ascribed to a difference. between the two- and eight-
electron outer shells of the atoms.

The above assumption leads to the pra. ctically only
explanation that the deviations from theory for the
stability of rare-gas crystals and solid alkali halides
must be due to corisiderabte many body-componerits of
the static Azteractioes between the atoms or ious. It must
be expected that the many-body interactions may be
limited to those between triplets of atoms (ions), since
otherwise a molecular description of these solids would
completely break down.

The triplet interactions must be of considerable
magnitude, since the two-body potential barrier to be
overcome for alkali-halide crystals is of the order of a
few kcal/mole. This indicates that they must be of
exchange type and, therefore, of short range, so that we
may restrict ourselves to triplets of atoms or ions of
small dimensions in the crystal. The pair-potential
barrier for rare-gas crystals is very much lower, but
here the differences in triplet configurations between
the two structures are a.iso very much smaller, as we
will see.

POSSIBLE MANY-BODY INTERACTIONS AS
APPLIED TO CRYSTAL STABILITY

The first explicit calculation of three-body interac-
tions between atoms was carried out by Axilrod and
Teller" (triple-dipole effect). It concerns a third order-
perturbation calculation of induced-dipole interactions
between three nonoverlapping atoms, i.e., a straight-
forward extension of London's 1/E' van der V~aals
interactions from second order. Axilrod" applied this
effect to rare-gas crystals and found that it does favor
the fcc configuration, but that the difference with the
hcp structure is too small to account for the absolute
stability of the cubic lattice. In addition, the limitation-
to dipole interactions and the exclusion of overlap
(exchange forces) invalidate an application to the
immediate neighborhood of an atom in the crystal.
On the other hand, the triple-dipole effect has been
found to account for experimental third-virial coefB-
cients of compressed argon, " where its application is
justified.

It was also known that first order interactions (over--

lap or exchange forces) between closed electron shells
are not additive"; the first explicit calculation was
undertaken by Lowdin" for ionic crystals, followed by
Rosen" and Shostak" for three helium atoms. There

'9 B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943).
so B. M. Axilrod, J. Chem; Phys. 17, 1349 (1949); 19, 719,

724 (1951).
~' H. W. Graber and R. D. Present, Phys. Rev. Letters 9, 247

(1962).
sr H. Margenau, Rev. Mod. Phys. 11, 1 (1939).
~ P. O. Lowdin, A Theoretical Investigation into Some Properties

of Iolic Crystals (Almqvist and Wilksell, Uppsala, 1948).
P. Rosen, J. Chem. Phys. 21, 1007 (1953).

"A.. Shostak, J. Chem. Phys. 23, 1808 (1955).
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exists a remarkable similarity between the relative
three-body interaction. s in the Axilrod-Teller (relative
to additive second-order forces) and the Rosen-Shostak
(relative to additive first-order forces) calculations in
that both relative effects are negative for an equilateral
triangle, and positt've for a linear array of atoms. No
direct attempts were made to apply these effects to
crystal stability. In addition, solid helium is not of
direct importance as its exhibits hcp structure.

A number of different-type many-body interactions
have further been reported, partly based on electrostatic
effects in which overlap of charge clouds is treated
classically, or on the Drude model of harmonic oscilla-
tions for the atoms with dipole interactions. "Finally, it
was shown by the author and McGinnies27 28 that also
second order (v-an der Kaals) interactions cease to be
additive if exchange effects are taken into account.
A tendency towards stabilization of the fcc structure for
rare-gas crystals was observed for dipole-dipole and
dipole-quadrupole interactions. None of the above
effects can, however, be used as a key to the explanation
of the stability of rare-gas crystals for one or more of the
following reasons: (a) They concern systems of little
direct interest (helium); (b) overlap effects are neglected
or treated classically; (c) the use of a multipole expan-
sion for the interactions between the atoms.

On the other hand, it appears possible to base the
analysis on a model which is sufFiciently simple for
numerical calculations, which avoids the defects
mentioned above and which retains the possibly
essential features of the stability problem. "We observe,
first that preference for one or the other of the crystal
structures under consideration is not an isolated
property of a specific rare gas or alkali halide, but that
it is common to a number of representatives from both
series. Consequently, this preference cannot depend
sensitively on the precise analytic form of the wave
functions, but it must be determined by some general
parameters characterizing the electron-charge distribu-
tions of the atoms or ions.

Further, explicit calculations with neon wave
functions" have shown that (i) contributions to three-

body interactions arising from exchange of more than
one pair of electrons (multiple exchange) between the
same pair of atoms are not important for densities up to
that of the crystal; (ii) coupling of inter- and intra-
atomic exchange effects may also be neglected. Since
neon crystallizes already in the cubic configuration, it
follows that also for the other rare-gas crystals we may
neglect effects due to multiple and coupled exchange.

%'e are then left with an average of sirIgle-excharlge

effects, each term involving one electron of each atom
(ion) of a pair. This average may be replaced by an
exchange between "egecti ve" electrons, one such electron

26 cf. L. Jansen, Phys. Rev. 125, 1798 (1962) for detailed
references."R.T. McGinnies and L. Jansen, Phys. Rev. 101, 1301 (1956).

r' L. Jansen and R. T. McGinnies, Phys. Rev. 104, 961 (1956).

per atom (ion), each representing an average of the
charge distribution of that atom (ion). The problem
becomes then formally the same as that for three
hydrogen atoms with parallel spins of the electrons. "

The charge distribution of the effective electrons is
chosen to be of Gaussian form

where r is the distance from the effective electron to its
nucleus and where p is a parameter which can be
determined empirically. Since crystal stability depends
critically on the interactions between atoms (or ions),
we choose P such that it fits the 1/R'part of an empirical
potential function, which yields values of P between
1.07 and 0.454 in units of 10' cm ' from neon to xenon"
A sensitive test is then to see how well these values of p
agree with the repulsive (first-order) part of an inter-
atomic potential function. The agreement is excellent
for neon, whereas for the heavier rare-gas atoms p
appears to increase somewhat with decreasing inter-
atomic distances. "It should be noted that the precise
values of P do not matter for stability, since we are only
interested in a range of such values for the heavy rare-
gas atoms. For alkali-halide ions it is generally necessary
t;o use different p values for cation and anion of the same
halide. Ke will return to this problem in a following
publication.

After this simplification of the stability problem,
first- and second-order perturbation calculations are
carried out for triplets of atoms (ions), and the result
is summed over the lattices. Since the three-body
interactions are of exchange type and, therefore, of very
short. range, we will limit ourselves to triplets formed by
a central atom and any two of its nearest neighbors. In
the case of alkali halides it proves generally necessary
to include also triplets formed by a central ion and any
two of its next nearest neighbors.

RARE-GAS ATOMS: FIRST- AND SECOND-ORDER
THREE-BODY EXCHANGE INTERACTIONS

We will now evaluate first- and second-order interac-
tions for a triplet (abc) of rare-gas atoms; the electron
charge distribution of each atom is replaced by that of
an effective electron with characteristic parameter p as
given by Eq. (1).For the atomic wave functions we take

~(r) = i "'(~)= (P/~"')"' exp( —P'r'/2) .

the zero-order wave function for the triplet is then
(Slater determinant. )

@=[3!(1—A.b,')j '"det{t.(1)t b(2)q, (3)}, (3)

"To represent also ions with charges plus one and minus one,
we should formally use two effective electrons per ion, counter-
balanced. by nuclear charges of plus three and phis one, respec-
tively. The exchange eGect then becomes formally the same as
that between ions of lithium hydride. However, we will subtract
electrostatic interactions between the net charges from the outset,
so that ions and atoms can be represented by the same model.
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where a, b, c denote the atoms, 1, 2, 3, the effective
electrons, and where

A, s,s=A, ss+A, .s+hs. s 2d, sd—.Ds. (4)

in terms of the overlap integrals 6 ~, etc., between the
diGerent pairs of atoms. The perturbation Hamiltonian,
H q, ', can be written as

H, s,'= H. t,'+EI.,'+Ht„',

d, E~
E (0)

1

)(

0,2

0.1 cC3)

c(3)

in terms of the perturbations between the different
pairs. An essential advantage of the Gaussian effective-
electron model is that it enables us to evaluate all
three-center integrals numerically zvitholt making use of
multipole expansions. This is important, since it is
known" "that 6rst- and second-order multipole series
are only semiconvergent (asymptotic series).

0

-0,1

First-Ord. t.r Calculations

The results of the first-order perturbation calculation
for triplets of rare-gas atoms have been given earlier. ""
Let Ei (H, b,') den——ote the total first-order energy for
the triplet (abc), where the expectation value is deter-
mined with the zero-order wave function (3), and let
Erie' ——(H q, ')io' denote the sum of first-order interac-
tions between the three isolafed pairs of atoms which
form the triangle, with the corresponding zero-order
pair wave functions. Ke determine the relative three-
body component of the first-order energy, i.e.,

gEi/E (Ol= (E E (ol)/E (0) (5)

as a function of P and of the triangular dimensions. For
the application to the stability problem of rare-gas
crystals we limit ourselves, as stated before, to triangles
formed by a central atom and any two of its nearest
neighbors in the crystal. There are 12 nearest neighbors
in both the fcc and the hcp structures, so that we have
66 of such triangles in either lattice. Any one of these
isosceles triangles is specified by the nearest-neighbor
distance, E., in the crystal and by the opening, 0, of the
triangle at the central atom. It appears that AEi/Eit"&
is only a function of the dimensionless parameter pR,
and of 0.

All first-order integrals occurring" in L&"~ and E~&"
can be written as products of overlap integrals (A, t„
A„, etc.) and the function

erfx
exp( —ys) dr= (~'"/2)

S p g

for different values of x. They can readily be evaluated,
since, e.g. ,

0,q' ——exp (—P'R, q'/2),

' F. C. Brooks, Phys. Rev. 86, 92 (1952}.
"A. Dalgarno and F. T. Lewis, Proc. Roy. Soc. (London)

A69, 57 (1956)."L.Jansen, Physica 25, 599 (1957);Phys. Rev. 110,661.(1958)."L.Jansen, Phys. Letters 4, 91 (1963). ,

"'4 A list of these integrals is given in Table II of Ref. 26.
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FIG. 1. Relative hrst-order, three-body interaction 681/El&'&,
for triangles a=b=1, c (units of nearest-neighbor distance) of
argon and xenon atoms, as a function of the angle g between the
sides a and b. The symbols h and c denote the hcp and fcc lattice,
respectively; the number of triangles at a speci6c angle 8 is given
in parentheses.

for Gaussian distributions (R,q is the internuclear
distance between atoms a and b), and F(x') may be
determined by interpolation, using Tables of the Error
Function and its Derivative (Natl. Bureau of Standards,
Washington, 1935).For solid neon, argon, krypton, and
xenon the values of PR are 3.44, 2.40, 2.10, and
1.99, respectively. The results for DEi/E, t'& for solid
argon and xenon are given in Fig. 1 and in Table II
of Appendix III, as a function of the opening 0 of the
triangle at the central atom.

The values for solid krypton lie in between those for
argon and xenon; for solid neon the results are not
sufficiently accurate because all three-body interactions
become very small; they indicate that the negative part
of DEi/Ei "i is close to those of argon and xenon, but
that the positive part (II) 110') lies close to the
horizontal axis.

Ke note that for values of 8 between 60' and 110',
DEt/Et& & is negative, implying that three-body interac-
tions of such triangles decrease the inferatomic repulsion;
for 0 larger than 110' the 6rst-order interactions are
more repulsive than the sum of interactions for the three
isolated pairs. This change of sign agrees with the results
found by Rosen'4 (Shostak" analyzed only the case
(I= 180') for three helium atoms.
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ALE I.The nine diferent triangles a, 0, c with a =5= i, between
the hcp and fcc structures.

C2 $2 Cm

hcp 1, 1, 8/3
fcc i, i, 3

tII No. a', P, c' 0 No.

110' 3 1, 1, 11/3 146' 6
120' 6 i, i, 4 i80' 3

It is easy to show that a curve of the type as given in
Fig. 1 stabilizes the hexagonal close Packe-d confbgurati on.
To see this we determine first the differences in tri-
angular arrangements between the fcc and hcp struc-
tures, i.e., we compare the 66 triangles formed by a
central atom and any two of its 12 nearest neighbors
in the two lattices. It appears that of these 66 triangles
57 are the same between the two structures, but 9 are
diferent. The dimensions of these 9 triangles and the
corresponding values of 8 are given in Table I (a, b, c,
stand here not for the atoms, but for the sides of the
triangle in units of nearest-neighbor distance).

For a comparison with AEi/Ei "& we have, in Fig. 1,
also indicated the important values 0=110' and 146'
(hcp) and 8=120' and 180' (fcc), supplied the corre-
sponding points of the curves with h (hexagonal) and
c (cubic) and written in parentheses the number of
triangles for that value of 8 in the corresponding struc-
ture, according to Table I.

Since the coordination number of the two structures
is the same, we determine the first-order energies for the
same values of PR. To compare the two lattices the
values of AEi have to be calculated for a fbxed value of
Ey~ ~ itself, for example, at 8= 120'. This transformation
of the total pair interactions may be carried out
according to a 1/R" dependence, or an exponential
decrease of the pair repulsion, which makes very little
difference. It fiattens the curve for AE&/Ei&'& slightly
between 8=120' and 180', leaves the zero value at
8=110' unchanged and lowers the value for an equi-
lateral triangle somewhat. This, however, does not
affect the following argument.

In good approximation AEi/E&N& increases (slowly
and) linearly with 8 between 120' and 180'. Let us
indicate its value at 146' by X, at 180' by X+n. Then
at 120' the value is very nearly X—n, whereas at
8=110' the contribution is Y=O. The comparison
yields (Et&0& evaluated at fixed 8):

LE,(f-)—E,(h. )7/E, o =6(X—)+3(X+ )
—(6X+3F)=3 (t (X—n) —F7)0. (6)

Since E~t'& is always positive, this means that the fcc
lattice has a higher (positive) first-order energy than
the hcp configuration, so that the hexagonal close packed-
lattice is stabilized by fbrst order three body snt-eractions. -

Numerically, this difference is found to be a few percent
of the first-order lattice energy; it is, therefore, of the
correct order of magnitude, but has the mrong sign.
The type of curve of Fig. 1 is of particular importance
also for second-order three-body interactions.

Second-Order Calcu1ations

Since rare-gas crystals are held together by second-
order (van der Waals) interactions, three-body compo-
nents of such forces may be of essential importance for
crystal stability. This expectation is confirmed by the
results of the following analysis, of which preliminary
results have been published elsewhere. ""

We consider again a triangle (abc) of atoms and
three effective electrons 1, 2, 3. For the second-order
energy one has to evaluate

(Habc )Oa(Habc )ao

Eo—Ii„
1

(LH b (H. b ')7') (")
~av

where E, is an average excitation energy defined by
the averaging procedure. The index f(. numbers the
excited states of the system (energy E„), Eo is the
unperturbed ground-state energy. The brackets denote
again an expectation value for the ground-state wave
function (3).

Since (H, b,') can be taken directly from the first-
order calculations, the only unknown quantity is

(H, b,"). Let Eoio& denote the sum of second-order
energies between the three isolated pairs of atoms which
form the triangle. Then the quantity

gE /E (0& (P E io&)/E lo&

measures the relative second-order three-body interac-
tions for the given triplet of atoms. It should be noted
that the average excitation energies defined by the
expressions for E2 and E~~') are not necessarily the same
quantities. It can be shown, " however, that their
difference may be ignored for the present purposes. In
forming, then, the ratio ZEO/Eo ", the quantities E„
cancel to a sufhcient degree of accuracy.

The next step consists in substituting the explicit
expression for H, b,

' in Eq. (7), together with the
determinantal wave function (3), and in evaluating the
various expectation values which occur. V,'e retain
again H ~, in its exact form, i.e., no multipole expan-
sions are invoked for the interactions.

EVhereas the resulting equation for E2(" is relatively
simple, the formal expression for (H, b,") is already of
considerable complexity. The square of 4 contains 21
different terms and, if we decompose H &,

"into squares
and double products,

H b, s=H b'0+H, s+Hb, o+2H b H,
+2H, b'H b,'+2H„Hb, ',

then there are in total 126 integrals to be evaluated,
many of three-center type.

"L.Jansen, Phil. Mag. 8, 1305 (1963).
oo L. Jansen and S. Zimering, Phys. Letters 4, 95 (1963).
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ota io, , otes the distance between
dR F th

a b andc. n
'ddl f E.ween the mi

ons are obta ned by permutlng a,
R,b, whereas R(,b) (b, ) s a

es the angle between

are linear corn
'

auxl laly functions are

E(x)= e" e dt;—
X 0

(17)

erfx
1.(x) =

S X7l 0
1/2

e "dt'

—S2e "'[ f (u/2'(') j'du; (19)

X(x) = (2/xzr)(z)
0

e"dtdN, ;
—( 2+( +*)'1)(e

—t+2+ (u—x)2] e
—u (20)

O(u, v, 8) =- in — ' — in +0)j "' sinndndydx;in '" ()' x-in ' '—2()x sinn s)n(y'+ '—2ux sinn sing) ' — inx e I X— (21)

E(u, z), 8)=

0 0 0

( + '
in z) — sinn sin(y+8)] '('

22)

mson Zimering.

0 0 0

collaborator, Samsonal sis is essentia
'

lly due to my co amathematical ana ysis'7 The following ma



LAURENS JANSEN

Q(u, v, 8) =— x'e *'(zzz+x' —2ux sinn sing) '"Lv'+x' —2vx sinu sin(y+8)] "'

&&erfL(u'+x —2ux sinn sing)'"]erfL(v'+x' —2vx sinn sin(y+8))'('] sinndndydx; (23)

R(x) =1—x'L'(x)+ (2/zr'") fL(x2'")—e 'L-(x)]. (24)

$(x) = (4/x) Le
—("—)'—e—("+*)'] e "dt, —

~

du.
o o

(25)

It is seen that the integrals 0 and P are special cases of the general integral Q, namely, those cases in which the
first, then the second of the error functions occurring in the integrand of Q is replaced by 1, respectively. It
is found also that the integral R is a special case of 0 and that $ is a special case of Q, through the relations

R(x) =—O(x,0,0') and $(x) =Q(x,x,0'). (26)

The linear relations between the auxiliary functions 0', to K and the basic integrals E to 5 are given in Appendix I.
We can now write the second-order pair energy, Ez(o), for the triplet (abc) and the expectation value (FI,b,")

occurring in the tot.al second-order energy E& PEq. (6)] in terms of the auxiliary functions, as follows:

0', (PR.b)
—D.boa(PR. b)

E..Eo—"'/P'e'= —(& b'&'/P' '+L(a ), (&c)],
1—h.b'

(27)

where e is the electronic charge, and where L(ac), (bc)] signifies that the corresponding expressions for the pairs ac
and bc must be added. The expression for (H, b,')' can be taken directly from the first. -order calculations.

The equation for (H, b, 'z) reads

(1—A.b,') (H.b,")/p'e'= (8(pR.b)
—A.b'$(pR. b)+2(:(pR. b,pR.„Qbac) —2h. b'h (pR.„pRb„pR,(.»)

+f (ac~ (bc)])+( 6,b''L)—(PR«,PR, (,b), g ac (ab)) 2h~b'&—(PR.b,PR„)PR,(.b))

+tea b~a c~ b c L) (pRa by pRa ( b c) q pR (a b) ( b e ))+2' a b~a c~ b o~ (pRa bq pR ac y pR e (a b ))
+L(ba), (ac), (ca), (bc), (cb)]j. (28)

It is to be noted that the total number of permuta-
tions for the last four terms is six, compared with three
for the first four terms of (28), since for the last terms
permuting a and b, or a and c, or b and c is geometrically
different for the arguments of the functions S, F, g,
and oC. In the first two terms on the right of (28) one
recognizes again part of the two-body interaction for
the pair ab, but the normalization constant has changed
from 1—h, ~' to 1—D,~,'. The difference between these
terms of (28) and (27) leads then to three-body effects
which are purely due to overlap.

The final step in the evaluation of the relative second-
order three-body interactions involves substituting
the corresponding linear combinations of the basic
integrals (17)—(25) for the auxiliary tunctions in (27)
and (28) and computing the basic integrals for the
arguments determined by the triangles considered. In
principle, the basic integrals must be evaluated by
electronic computation. However, it was found that for
many isosceles triangles, asymptotic series expazzsiozzs

which are suKciently accurate can be given for these
integrals. The two parameters which determine the
accuracy of these series are pR (R is the length of the
two equal sides of the triangle and P is the Gaussian
parameter) and the opening, 8, of the triangle at the

central atom. For small PR, i.e., for the heavy rare-gas
solids, and 0&90' the series have to be replaced by
machine calculations. For all other configurations the
final relative three-body interactions can be evaluated
in analytic form; the expressions are of the type of a
sum of exponentially decreasing functions of the
triangular dimensions, plus a sum of inverse powers of
these dimensions. Ke list in Appendix II the asymptotic
series used; further details on the calculations and error
estimates are given in a separate report. " Some
numerical results for the auxiliary functions are
compiled in Table IV of Appendix III.

We consider, as in the first-order calculations, tri-
angles formed by a central atom and two of its twelve
nearest neighbors in the hcp and fcc configurations.
The relative second-order three-body interactions (8)
are functions only of PR and of 8.

In Fig. 2 and in Table III of Appendix III, t(.E /E, (')

is given as a function of 8 for solid argon (PR=2.4).
There appear to be two important contributions to
DEz/Eo('), due to:

(i) effects involving diatomic excha)zge only, i.e.,
'8 S. Zimering and L. Jansen, Technical Report 2846-6, BMI-

Geneva, July 1963 (unpublished). Copies of this report are
available upon request.
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rIG. 2. Relative second-order, three-
body interaction nA'~/E2&'&, for tri-
angles o b 1=, c=(units of nearest-
neighbor distance) as a function of
the angle 8 between the sides u and b.
The curves I and II denote diatomic
and triatomic exchange contributions,
respectively; (I+II) is the total
second-order effect. Curve III rep-
resents the Axilrod-Teller (third-
order) effect, magnified twenty times.
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terms arising from exchange of electrons between two
of the three atoms on the triangle (curve I);

(ii) effects of triatomic exchange, i.e., those involving
all three atoms on the triangle (curve II).

The total result for AEs/Es&s&, i.e., the sum of
diatomic and triatomic exchange effects (curve I+II)
has a surprising 0 dependence: It is practicatty identical
with the one obtained for the erst order effect. -From the
analytical form of the 6nal result we conclude further
that AE2/Es&ol for neon, krypton, and xenon behaves
in the same way as the 6rst-order effects for these
solids.

Since the total pair energy, E2&'), for the triangles is
always negative, we conclude that for values of 0
between 60' and approximately 110' three-body
second-order interactions decxease the interatomic
attraction compared with an additive sum-over-pairs;
for larger values of 0 the three-body forces are attractive.
This change of sign agrees with the third-order Axilrod-
Teller effect, which is also plotted in Fig. 2 (curve III).

It is observed that the second-order exchange forces
are approximately ZO times larger than the third-order
three-body interactions, and that the exchange effect
exhibits a much stronger 0 dependence between 0=90'
and 120'.

The AEt/Et&'& and AEs/Es&" curves are of the same

type Therefor. e, we can follow the same analysis as
given in first order concerning stability. Since E~&"

and Es&o' have oPPosite sign, the conclusion is now
reversed. : Second order three body in-teractions f-avor the

face centered cubic conf&,-guration -for rare gas crystals. -

Summed over the triangles listed in Table I this
difference, relative to the total two-body energy of the
crystals, is of the order of one percent in favor of the
fcc structure for argon, krypton, and xenon Lon the
basis of Eq. (6)).

TOTAL THREE-BODY EXCHANGE INTERACTIONS
AND CRYSTAL STABILITY

In Fig. 3 we compare the relative three-body interac-
tions in 6rst- and second-order for isosceles triangles
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0.2, —

0.1

h(6)

pair interactions between the atoms on the triangle are
rePulsive T.hissituationappliesforalkali, hal-idecrysfals,
where it is to be remembered that we have subtracted
the electrostatic interactions between the ionic charges.
The reason why E('& has now reversed its sign compared
with van der Waals crystals is because the Madelung
energy has compressed the crystal to the extent that the
closest ions repel each other. In this case the total
three-body energy DE has the same sign as hE&, the
erst-order effect, and we conclude:

-0.1

—0.2

(o)
1

to)
2

—0.3
60 90o

110o
I

120o

146o
l

150' 1BOo

FIG. 3. Comparison between the relative Grst- and second-order
three-body interactions for triangles o=b =1, c (units of nearest-
neighbor distance) of solid argon (PE=2.4) as a function of the
angle 8 between the sides u and b. The nine diferent fcc and hcp
triangles (Table I) are also indicated.

(PR,H) of argon atoms. Indicated are also the points of
the curve referring to the nine hcp and the nine fcc
triangles of Table I.

Three main conclusions can be drawn from the figure:

(A) DE&/Ei(') =DEs/Es(') for all triar(gles cor&sidered.

This has the consequence that we may write the to/al
(first-order plus second-order) relative three-body
interactions for each triangle as follows:

gE/E(o) = (gE,+gE,)/(E, ((&)+E,(&)))

=AEt/Ei") =AEs/Es&'&. (29)

The following two possibilities are then to be dis-
tinguished:

(Ai) E&'& =Ei&"+Es&'&(0. This means that the
total pair interactions between the atoms on the triangle
are attractive. This situation applies for van der 8'auls
crystals, such as those of the rare gases. Since E~~'&&0,
E2&'~&0, we see that in this case ~E has the same sign
as AE2, and we conclude:

The stability of rare-gas crystals is determined by
two-body interactions and by three-body interactions
in second order of perturbation theory, i.e., the same
order as the van der Waals forces themselves.

(A,) E"(= ,E'()+,E'())0, implying that the total

The stability of alkali-halide crystals is determined by
two-body interactions and by three-body interactions
in first order of perturbation theory.

(B) First-order three-body exchange interactions
favor triangles with snsa/l opening 0;

(C) Second-order three-body exchange intera, ctions
favor triangles with /urge opening 8.

On the basis of these properties of three-body inter-
actions the stability problem for rare-gas solids can be
solved. Since the pair energy, E('&, for each isosceles
triangles is negative, DE has the same sign as DE2, i.e.,
the total three-body effect favors the face centered -cubic-
corrfiguratiots

fo rare gas crysta-ls. To estimate the energy
difference between the hcp and fcc structures relative to
the pair energy of the crystal we proceed in the following
way. I et e denote the value of the pair energy at the
equilibrium nearest-neighbor distance, E, in the lattice,
and let 6() denote the total (first- plus second-order)
three-body energy for an isosceles triangle with opening
0. Then 3e is the value of E('~ for 0= 60'; for the other
isosceles triangles it is sufficiently accurate to calculate
L~'(" on the basis of a Lennard-Jones (12,6) potential.
The values of E(') at 0=60', 90', 120', 146', and 180'
are then 3e, 3e(0.745), 3e(0.691), 3e(0.684), and
3e(0.677), respectively.

To calculate 60 we note that, for the isosceles triangles
considered, E&"& is practically precisely —2E&"&. This
gives

AEi+ DEs f DE& 0Es
E((0=

~
+2 E(()) (3())

E $)+E (()) ( E (&&) E ((&)

From Fig. 3 we determine values of hg of —0.48&,
—0.1341&, =0; 0.1244&, 0.1231&,' and 0.1219& for
0=60', 90', 110', 120', 146', and 180', respectively.
By using lattice sums for the hexagonal and cubic
structures we find that the total pair-energy of these
crystals is the same to within 10 '%%uo and equal to
8.4&X, where LV is the total number of atoms in the solid.

To determine the total three-body energy of the hcp
and fcc structures we sum over all isosceles triangles
with two atoms nearest neighbors of the third one.
There are 66 of such triangles formed by a central atom
and any two of its 12 nearest neighbors. In the fcc
structure there are 24 triangles at 0=60, 12 at 90',
24 at 120', and 6 at 180 . In summing the three-body
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(&..h) S..—(&..h) h.,-= 0.044.
8,.4eS

(34)

Since &&0, this implies that the face-centered cubic
lattice is more stable than the hexagonal close-packed
configuration for solid argon by about 4% of the pcsir
cohsesiue energy, thus largely exceeding the 0.01%
diGerence in the pair energy which favors the hcp
structure. If we take, in first approximation, only the
difference between 3 fcc triangles at 8=120' and 3 hcp
triangles at 8= 110' [Eq. (6)j, then we find the same
value to within 0.1%. This shows again, as was noted
earlier, that the essessfsal stabilssirsg factor in going from
the hcp to the fcc structure is the transition of three
triangles from 0= 110' to 8=120'.

COHESIVE ENERGY AND ENERGY OF VACANCY
FORMATION FOR THE FCC AND

HCP STRUCTURES

It is important to compare also the total cohesive
energies of the fcc and hcp configurations for solid
argon. Ke find directly, from (31) and (32),

(E„h)4„=8.4Ee (1—0.206),

(E„h)h„=8.4%6 (1—0.251), (35)

implying that the cohesive energies for the cubic and
hexagonal structures are decreased in absolute value by
21 and 25%, respectively, because of three-body
interactions. The magnitude of this effect is surprising,
since it is generally believed that the values of inter-
molecular potential parameters determined from gas
data are in good agreement with a pair-potential inter-
pretation of the cohesive energies of rare-gas solids. ""

It appears, however, that the three-body component
of the cohesive energy is extreme/y sensitive to the precise

~ E. R, Dobbs and G. P. Jones, Rept. Progr. Phys. 20, 516
(1957).~ J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular
Theory of Gases and Lgqggds (John Wiley 8z Sons, Inc., New York,
1954), Chap. 2.

energy over the crystals, it has to be noted that every
equilateral triangle is counted three times in the
summation, all other triangles only once. Ke obtain for
the cohesive energy, E„b, of the two structures

(Ecch) rcc/X = 8.40+814 60+12600+246120+6&1801 (31)

and

(E„h)h,p/1V =8.4c+8660+ 12Agp+ 3311p

+18&120+6A146+3i1180~ (32)

Hence, the relative difference is

(~eoh) fee (+eoh) hcp 6+120+3+180 (3+110+6+146)

8.4&X
(33)

By substituting the values for 2 &, given earlier, we And

values of AE/E"& for srnal/ values of 8, whereas the
stability of the cubic configuration is not sensitive at all
in this region. For example, if we decrease dE2/Z2"i
at 8=60' by 10% from 0.18 to 0.16, and at 8=90'
from 0.06 to 0.05, then we obtain with (30), (31), and
(32), for the cohesive energies

(E„h)1„=8.4%6 (1—0.028),

(E„h)h,p
=8.4%6 (1—0.073),

so that with a small change the three-body part of the
cohesive energy for the fcc and hcp structures decreases
to about 3 and 7%, respectively. This result shows that
the difference in three-body energy between the two
lattices may be comparable with the three-body compo-
nent of the cohesive energies themselves. Our present
precision in the evaluation of some of the basic integrals
for small values of 8 does not seem to exclude definitely
this possibility.

Another quantity of special interest in this connection
is the erwrgy of pacarscy formati ors in solid argon. Foreman
and Lidiard" have recently compared experimental
data on the specific heat of solid argon for temperatures
between 40'K and the melting point with theoretical
results obtained on the basis of a lattice dynamical
calculation using the anharmonic Einstein model. The
difference between the two curves was ascribed to
vacancies in the lattice, which allows the calculation of
the free energy of vacancy formation. They found a
considerable discrepancy with theoretical results by
Nardelli and Repanai Chiarotti4' based on two-body
interactions between the atoms, in that Foreman and
Lidiard's values are smaller by a factor of about 1.7
than the two-body results. A preliminary m.alysis35 of
this effect on the basis of three-body interactions has
been given earlier. "

Ke consider a fcc crystal of S argon atoms without
vacancies, and compare its cohesive energy with that of
a crystal with S atoms plus one vacancy; the difference
is then the (static) energy of vacancy formation, A' „.
For the crystal without vacancies, we have, from (31),

&coh= &58.40+8A60+12Ago+24A120+6A180(. (31')

In the case of X atoms plus one vacancy we loose, first
of all, the two-body energy of one atom, 8.4c. To
determine the three-body interactions, we calculate
these first with an atom at the site of the vacancy (i.e.,
a system of X+1 atoms without vacancies) and then
subtract att three-body interactions which involve the
atom at the vacancy. The result for the (static)
cohesive energy, E„h', for X atoms plus one vacancy is

E. h'= (X—1)8.40+ (X+1)L8660+12hgp+246120
+6+1801 L24+60+36600+72&120+18&180). (31")

41 A. J. E. Foreman and A. B.Lidiard, Phij Mag. 8, 97 (1963).
G. F. 5ardelli and A. Repanai Chiarotti, Nuovo Cimento 18,

1053 (1960).
48 Equations (3) and (4) of Ref. 35 are inaccurate because of the

omission of additional three-body interactions.
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The (static) vacancy energy, E „,is then

E „=E—„h E—,.h'= 8.4e+16d sg+24hgg

+48+120+12'is 0 ~ (36)

Comparison with (31) shows that the three-body
component of the vacancy energy is just Reive that of the
cohesive energy per atom for the perfect crystal. From
(35) we find, therefore, that E „=8.4e(1—0.412),
whereas the two-body value would be 8.4e. For the
ratio between the two-body vacancy energy and (36) we
obtain 1/0.588=1.70, in excellent agreement with the
value determined by Foreman and I idiard.

It should be noted that E „,like the cohesive energy,
exhibits extreme sensitivity with respect to the values
of DEg/Es&'& for small t&: If we take again 0.16 instead
of 0.18 for the relative second-order effect at 0=60',
then the vacancy energy increases to 8.4e(1—0.056)
and the above ratio becomes 1.06 instead of 1.70.
Consequently, zf Foreman and Lidiard's analysis is
correct, then also the cohesive energy of the fcc lattice
has a considerable three-body component.

CONCLUDING REMARKS

Ke have found that the stability of the face-centered-
cubic con6guration for rare-gas crystals depends pri-
marily on the type of curve for AE/Eis& as a function of
the opening, 0, of the isosceles triangles formed by a
central atom and any two of its nearest neighbors in the
crystal. Moreover, the difference in three-body cohesive
energy between the fcc and hcp structures changes
very little even if we decrease the magnitude of DE//E&g&

at 8= 60' by 40% whereas the three-body components
of the cohesive energy and the energy of vacancy
formation decrease by almost an order of magnitude.

One then has to make sure that this type of behavior
for AE/Eig& is not induced by the specific choice of a
Gaussian distribution for the effective charges. The
answer to this question is twofold. First of all, a
Gaussian distribution is in very good agreement with
the two™body potential between neon atoms, with the
same value of the parameter P for large and small
interatomic distances. "In addition, it appears that the
outer part of a Hartree-Pock charge distribution for
argon atoms can be fitted with a Gaussian function;
the resulting value for P is the same to within five
percent as that determined from long-range interac-
tions. " Secondly, we have compared in Fig. 2 the
AEg/Eg"& dependence on 0 with that of the Axilrod-
Teller eBect, magnified twenty times. In this way, good
agreement is obtained at 8=60'and 180'; the differ-
ences for intermediate values of 0 are the result of
exchange, and not of the Gaussian distribution.

The same comparison applies for the Rosen-Shostak
6rst-order three-body interactions between three helium
atoms. ""Rosen found that for an equilateral triangle
and a linear array of helium atoms, DEi/Eitg& can be
represented by A expt rz(R, s+R—„+Rb,)5 with

2 = —1.15;a =0 33 and 2 =+98; a =0 66 for these two
cases, respectively (all distances are expressed in atomic
units). If we take R, s——R„=1.98 a.u. (=1A), then
DE&/Ei &g& is equal to —18%at 60' and +6.6% at 180',
in excellent agreement with the Gaussian AE&/Er&"
values for argon. Since the Rosen-Shostak effect is due
to exchange, its values for intermediate 0 must lie close
to those given by the Gaussian model. It appears,
therefore, that the Gaussian distribution plays a
"neutral" role in determining the 8 dependence of the
relative three-body interactions.

Upon increasing the value of the dimensionless
parameter PR, i.e., upon going to lighter rare-gas atoms
or expanding the crystal, the positive part of the
DE/E "& curve approaches the horizontal axis. For solid
helium (He'), the differences between the three-body
energies of the fcc and hcp lattices disappear completely,
and the hcp structure becomes more stable because of its
more negative two-body energy. The transition to
face-centered cubic structure observed by Dugdale and
Simon44 may, consequently, be interpreted in terms of
two-body interactions alone. '4 Recently, a third solid
phase of He4 was found which is probably body-centered
cubic. 4'

Although the diQerence in cohesive energy between
the two close-packed configurations of rare-gas crystals
was found to amount to as much as 4% its absolute
value is still very small, namely, of the order of 0.1
kcal/mole for the heavier atoms. Solid neon appears to
be a limiting case and it is therefore not excluded that
it couM be observed in hexagonal packing by special
crystallization techniques. It is of interest to note
that recently Meyer, Barrett, and Haasen" have
observed a metastable hexagonal argon phase which
sometimes occurs in polycrystalline blocks frozen from
a bath of liquid, with a high density of stacking faults.
Upon the addition of small amounts of nitrogen, the
hexagonal phase becomes stable near the melting point
of the crystal.

A large number of other van der %aals crystals are
known to crystallize in close-packed structures. Some
of them, for example nitrogen and carbon monoxide,
exhibit a transition from fcc to hcp with increasing
temperature. The same general type of three-body
exchange interactions must be expected to play a role
for stability in those solids, supplemented by orienta-
tional two-body forces (e.g. , due to electric quad-
rupoles). Kihara'z has recently built experimental
models of such molecules and shown that they crystal-
lize in the observed structure for su@ciently strong
quadrupole moments.

~ J. S. Dugdale and F. E. Simon, Proc. Roy. Soc. (London)
A218, 291 (1953).

'5 Cf. A. F. Schuch, W. C. Overton, Jr., and R. Brout, Phys.
Rev. Letters 10, 429 (1963).

4' Lothar Meyer& C. S. Barrett, and P. Haasen (to be published) .
"T.Kihara, Acta Cryst. 16, 1119 (1963).
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No attempt has been made in the present analysis to
extend the calculations beyond second-order perturba-
tion effects, nor to include simultaneous interactions
between more than three atoms. The reason is, 6rst of
all, the prohibitive complexity of higher order calcula-
tions and, further, the belief that such a double-series
expansion (in the number of simultaneously interacting
atoms on one hand, and in orders of perturbation theory
on the other hand) must converge rapidly in order to
render an "atomic" description of van der Waals
crystals at all valid. The comparison with the Axilrod-
Teller third-order eRect given in Fig. 2 supports
this supposition. The relative three-body interactions
between rare-gas atoms are considerable at short range;
this result seems to be indirectly confirmed by the
recently established chemical reactivity of the heavy
rare gases, indicating that the closed electron shells
are less stable than was originally believed.

We found that the rare-gas crystals are constructed
according to a minimum-energy principle involving
two-body interactions and triplet energies which follow
simple symmetry principles. These principles may be
illustrated by considering a central atom in the crystal
and its twelve nearest neighbors, of which six are on a

hexagon in the central plane, and three on triangles
above and below this plane. In the hcp structure the
two triangles have the same orientation, whereas in the
fcc con6guration one triangle is rotated by 60' with
respect to the other. This rotation implies a very small
loss in two-body energy, but a substantia1. gain in
three-body interactions, involving the transition of
three hcp triangles at 0=110' to fcc triangles with
slightly larger opening, namely 120'.

In a following publication the stability of alkali-
halide crystals will be analyzed on the same basis.
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APPENDIX I
Linear Relations between Auxiliary Functions 8 to X [E{ls. (9)—(16)) and

Basic Integrals E to S [E(is. (17)—(25)$

8(x) = 1/x'+2L'(x)+ (2't'/ )Lg(g/2'{')+I{I (x) 4L(x)/x 4M(g—)—'

e(x)=1+1/x'+(2/x) ( /~)"-I- E(-',x)+2L,'(-'-x) —(4/x) (-', x) —4R(-', x).
8(x),x2, 0() = [1/x) —L(x))j[1/x2+I. (x,/2")/2"' —2L(g2) 3+[1/x,—I (x,)j[L(x)/2'{')/2"' —L(x))]

+ (1/4r )[O(glpg2~ G) P(X1cg2 j &) P(g2pgl j &)+Q(g2yg)j &)) y

where n= gx), *2.

~(g),x2 n) = 1/x)'+E(x))+2I. (xz) L(g2)+ (2"'/x))L(x, /2'{')
+I(r (x2) —(2/x, )[L(x,)+L (x2)$—2M (x2) —(2/~4{')P (gi, x9 j Q) y

where o.= gg&, x~.

g (g, g, g,) = .1/g, g,—L (x,)L (xb/2')')/2'{'+ L (x))[L(gb) —1/x2]+L (*2)[L(xb) —1/x)1+[L(xb)
—(g,+g,)/g, ggj[L(gb) —I.(gb/2"')/2"'g+4r"'[O(glyg2j 'Xg)&g2)

—P(x„g„+x„g,)—P(x„xb, +x„xb)+S(xb)j.
(g,g, xb) = [1/x,—L (g,)3[1/» 2L (g,/2)+ (2/4r)'{')+ [I,(-', »)—1/x)][L (gb) —L (xb/2'{')/2"'g

—I(!(gb)+4r '~'[O(g, /2)xb, +g)/2, xb) —P(x)/2, xb, +x)/2)xb)+Q(xb, o)j.
g (gi, g2, ga) = 1/gP+E(~x))+E(g2)+X(gb)+2L(k») [I (x2) —1/x))+2/x)[L(gb/2'{')/2' '—L(xg)$

—(2/ '{')[P(x,/2, x„gg /2, x )+P(x,x, ; gx„x )$.
X(g1)g2)g3y(g4)gbyx6)) = [L(2x,)—1/x, )][L(2g))+L(xb)—L(gb/2U')/2"' —1/x)]

q- [L(g,)—]/g, ] [L (g,)—L (g4/2'{')/2'{']+ m
—@'[0(x)/2, xb, g x)/2, xb)

P(x)/2, gxi4, +x)/2, g4) P—(x„gb,' ggb, gb)+—Q(g4, xb,' 4g4, gb)]

The variables x&, x2, xb, x4, x,, g() have the following meaning: ~(p&«, p&bc, p+b(ac)):

xg

pR„
X3

P+b(cc)
x4

P+(ac)(bc)
x5

W (ab) (ac)

x6

P~c(ab)

For the remaining five K functions the variables are found by permutations, as explained in the text of the paper
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APPROX II

(A) Asymptotic Series Expansions Used for the Evaluation of the Basic Integrals

2
A (x)—=-e—"

g

1 1 3 (2e—3)!!
edt= —+ + + + +

g2 Qg4 4g6 g n—lg2n

21
L, (x)= — e-"dt=

X'/2 X 0

erfx 1 *' 1 1X3 (—1)" '(2tt —3)!!
+ + +

x x x'v'&' 2x' (2x')' (2x')" '

e *' ' u ' 1 2s&se '/2( 1 7 27 321
m&~)= ~"'~ ei& ~&N= r&z) — -11+ + + + + )x &) 4 2"') 2

1V(x) —= & —[(~—~)s+~') e
—((~ +)'+~' ))qe

1 1 3 3X5 (2)s 3)—I!
e&dt du= —+—+—+ +'''+ +''')

g4 X6 X' X2"

oo

S(x)=- (
—( —*)' e

—( + )')i +
$3

2 ~Rj2
e-"dt

~

du=7rs&'E(x) 2'&'w—

and
21/2 $ ~

—x

Z(*)—= 1—xsl.s(x)+(2t'~i&')
t 1.(x2'&') —e-*'I.(x)g=

(B) Double-Series Development Used for the Evaluation of Q(u, t),&r), for Large u and v

Q(u, v,&r) —=

2x' 7l

—1/2(u'+r' —2ur sin8 sin&&) "' (v'+rs —2vr sin8 sin(y+&r))

XerfL(u'+r' —2ursin8sin(e)'"j erf$( +vr' 2vr sin—8sin(&t+n))'"~r'e " sin8d8dyd&

(2m)!! (v+m+1)!!

(2I—1)!!(2m —1)!! (tt+m)!!
=2 ZZ

a+m even (2u)=!!

2ur "t' 2vr
sill p S)11 (&r+ (o)Q

where N&t,

X erf(u —r,) erf(v —r,),
(us+ r2) 1js (v2+ rs) 1/s

0=roar~( - (r,gr~~& .&r~=v —~,

merical details andand e is a positive small number. e eriva ion o. Th d
'

t of these series expansions, together with numerica
error estimates, is given in a separate report. "

APPENDIX III

Summary of Some Numerical Results

followin tables a number of numerical results for the relative 6erst- and second-order three-body interac-
~ ~

d with Fi s. 1 and 2, respectively; in Table IV values for the auxiliarytions are given. Tables II and III are associated witii igs. an, respec iv

s -order three-body interactions d,Eq/K&') for isosceles triangles of argon atoms (pR =2.4TAnr. z II. Numerical results for relative )irst-or er, ree y
and of xenon atoms (pR=2.0), as a function o t e ang e e ween

Argon
Xenon

—0.200—0.214

900

—0.075—0.075

109'28'

0
+0.008

0.027
0.051

146'27'

0.038
0.076

180'

0.041
0.098
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TAnLE III. Numerical results for relative second-order, three-body interactions AE1/E1&0& for isosceles triangles of argon atoms
(PE=2.4), as a function of the angle |& between the sides E,&, and Ro, of the triangle. The relative contributions of diatomic exchange
and triatomic exchange are also given.

diatomic
E1/E1&0& triatomic

total

60'

+0.280—0.458—0.178

+0.1.40—0.192—0.052

109'28'

+0.086—0.070
+0.016

120'

+0.081—0.035
+0.046

146'27'

+0.072—0.015
+0.057

180'

+0.070—0.011
+0.059

TAsz.z IV. Numerical values for the auxiliary functions.

xi
xg ——pRb,

Numerical
value&106
of &t($1)

Numerical
value)& 10'

of $($1)

60 21 561 38 572
90' 1973 1031

109'28' 647 118
120' 420 38
146'27' 191 5
180' 142 1

B. &' and 5& [Eqs. (11) and (12) of the text); x =&3E,&, =PE„=2.5.

1
2
8/3
3

11/3

Function

4&:(X1,$1,n)
xy =PRa0
x2 ——pRb.
o.= QACC

&& (x1/x)' ($1/x)'

60' 1 1
90' 1 2

109'28' 1 8/3
120' 1 3
146'27' 1 11/3
180' 1 4

b2 Numerical
b =coso. value&(10'

1/4 64
1/2 6
2/3 1
3/4

11/12 &1

Ze (xI,x2,o.)
xg=pR b

x2 ——PRa.
n= peck

2n.&sS($1,x.,n)
xg ——pR„
x2 —PR e(ah)
n= /ac(ab)

2n. &1S($1,$1,n)
xI=pRb,
x2 —PRa(a b)
n= /bc(ab)

Zhb, 2$(xg, x2,0.)
xg ——pRa,
x2 =PRa(bc)
n= +ca(fc)

60'
900

109'28'
120'
146'27'
180'

60'
90'

109'28'
120'
146'27'
180'

60'
90'

109'28'
120'
146'27'
180'

60'
00

109'28'
120'
146'27'
180'

1
1

1 1
1 1

1 1

1 3/4
1 5/4
1 19/12
1 7/4
1 25/12
1 9/4

1 3/4
2 5/4
8/3 19/12
3 7/4

11/3 25/12
4 9/4

1 3/4
1 1/2
1 1/3
1 1/4
1 1/12

0

1/4 32
0
1/9 4
1/4 3

25/36 &1
1 (1
3/4 3052
4/5 1607

49/57 938
25/28 884

289/300 791
1 760

3l4 3052
9/10 1167

18/19 442
3/28 354

33/100 195
1 150

3/4 3052
1/2 300
1/3 86
1/4 56
1/12 12
1 7

C. 8, 5', &1, and R LEqs. (13)—(16) of the text);
x=pRab=pRac=2 5

Function

4a b2C(xI, x2,x3)
xI ——pR„
x2= pRbc
xl PRc{ab)

60'
90'

109'28'
120
146'27'
180'

(x1/x)' ($1/x)' (x /x)'

1 1 3l4
1 2 5/4

8/3 19/12
1. 3 7/4
1 11/3 25/12
1 4 9/4

Numerical
value)& 10'

—624—360—340—330—324—320

A. a and &8 PEqs. (9) and (10) of the text/; x PE=~b PR=„2 5=.
Function

25/0 8($1&$2&$1)
xi =pRac
x2 =pRab
x3 =PRa(bc)

46ab F($1&$2&$1)
xl ——pR„
x2 =pRab
x3 =PRb(ac)

4a.&,
'r ($1,$1,$1)

xz ——PR b

x2= pRbc
PRc(a b)

4~b, r(x„x„x,)
xg—-pRb,
X2 =Pac
x3 =PRa(bc)

21Kb'Ar, .g ($1,$1,$1)
xi =pRac
x2 =pRa(bc)
x3 =PR(bc) (ac)

2nab beg+( 1& $q $11)x

xy =pR„
x2 PRc(a b)

x3 =PR(ac){ab)

2nab kgh ($1)$2)$1)
xI ——pRb.
x2 =PRa(ah)
x3 =pR(ah) (bc)

4~ah ~bc (X17X2qX3)
xg —pRaa
x2 ~pRab
x3 =pRb(„)

60'
90'

io9'28'
120'
146'27'
180'

60'
90'

109'28'
120'
146'27'
180'

60'
9P'

iP9'28'
120
146'27'
180'

60'
9P'

109'28'
120'
146'27'
180'

60'
9PO

109'28'
120
146'27'
180'

60'
90'

109'28'
120'
146'27'
180'

60'
90'

1O9'28'
120'
146'27'
180

60'
90

iO9'28'
120'
146 27'
180'

(x1/x)' (xg/x)'

1 1

1
1 1
1 1

1
2
8/3

11/3

1 1
1/2 1
8/3 1
3

11/3 1

3/4
1/2
1/3
1/4
1/12
0

3/4
5/4

19/12
7/4

25/12
9/4

1 3/4
2 5/4
8/3 19/12
3 7/4

11/3 25/12
9/4

(x /x)'

3/4
1/2
1/3
1/4
1/12
0

3/4
5/4

19/12
7/4

25/12
9/4

3/4
5/4

19/12
7/4

25/12
9/4

3/4
1/2
1/3
1/4
1/12
0

1/4
1/4
1/4
1/4
1/4
1/4

1/4
1/2
2/3
3/4

11/12

1/4
1/4
1/4
1/4
1/4
1/4

3/4
5/4

19/12
7/4

25/12
9/4

Numerical
value X10'

—312
+30
+12
+4
+1(1

441
76
18
7

+2

441
81
24
13
3
2

441
40
13
6
1

(1

6032
2510
1140
712
396
339

6032
1228
409
222

74
41

6032
1120
354
178
59
34

1225
488
250
155
73
51
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TADLR IV (continlted)

Function

4&422212.X(xl,x2,x2)
xg ——PR,
xg ——pRb,
g3 = PRb(tto)

60'
900

109'28'
120'
146'27'
180'

(xl/x)' (x2/x)' (x /x)'

1 1 3/4
1 2 5/4
1 8/3 19/12

3 7/4
1 11/3 25/12

4 9/4

Numerical
value)& 10'

1225
+232—13—41—51—57

Function

4+oh +bcX( xl) g2) x)2

Xg =PRb0
x2 ——pR,
X3 =PRg(bo)

60'
90'

109'28'
120'
146'27'
180'

(gl/g)2 (g2/g)2 (g /g)2

1 1 3/4
2 1 1/2
8/3 1 1/3
3 1 1/4

11/3 1 1/12
4 1 0

Numerical
value )(10'

+1225—24—65—115—77—67

functions 8—BC LEqs. (9)—(16) of the text) are collected for isosceles triangles abc of argon atoms. To simplify the
notation the dimensionless nearest-neighbor distance pE, b pE„——is represented by x; the numerical results for
the auxiliary functions correspond with x= 2.5.
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Polar Refiection Faraday ESect in Metals*

EDWARD A. STERN, $ JAMEB C. MCGRoDDY, AND WILLIAM E. HARTEf,
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(Received 30 August 1963; revised manuscript received 28 April 1964)

If one rejects plane-polarized light from a nonferromagnetic metal with a magnetic Geld normal to the re-
Qecting surface, the rejected light is found to have its plane of polarization rotated from that of the incident
beam, and is slightly elliptically polarized. This effect is known as the polar reflection Faraday eGect (PRFE).
The PRFE has been measured for aluminum and silver as a function of wavelength in the range 4150-8000 A..
The equipment to measure this effect to an accuracy of about 2% is described. Detailed studies on aluminum
have shown that the PRFE is much less sensitive to the condition of the surface than ordinary optical-
constant measurements and the measurements presented appear to be representative of bulk properties. The
frequency dependence found for both aluminum and silver can in large part be explained by the simple intra-
band theory. Although the theory relates the PRFE to the off-diagonal term of the conductivity tensor, the
inconsistency of the many optical measurements of aluminum makes the determination of the oG-diagonal
conductivity ambiguous. In the case of silver, the real and imaginary parts of the off-diagonal conductivity
can be obtained with a fair degree of accuracy.

I. INTRODUCTION

"Thas been well known for quite some time that plane-
& - polarized light after reQection from ferromagnetic
metals magnetized normal to the reQection plane be-
comes elliptically polarized with its major axis rotated
from the initial polarization direction. ' The angle of
rotation of this magneto-optic Kerr eRect is of the order
of one degree, and it is caused by the spin-orbit inter-
action. ' Less well known and certainly not as intensely
studied experimentally is an experimentally similar
eRect in nonferromagnetic metals which we call the
polar reflection Faraday eGect. Plane-polarized light

*This research is partly based on the Ph.D. dissertation of
James C. McGroddy, University of Maryland, 1964.

t Temporarily at Royal Society Mond Laboratory, University
of Cambridge, England, during sabbatical leave. Guggenheim
fellow 1963—1964.

)Present address: Laboratory for Physical Sciences, College
Park, Maryland.

'F. A. Jenkins and H. E. White, Fundamentals of Optics
(McGraw-Hill Book Company, Inc. , ¹wYork, 1957), 3rd ed. ,
Chap. 9.

' P. N. Argyres, Phys. Rev. 97, 334 (1955).

incident normally on a nonferromagnetic metal surface
with a magnetic field normal to the surface, suffers on
reflection a small rotation of the plane of polarization
and also becomes slightly elliptically polarized. The
reason why this effect has not been well studied experi-
mentally is not hard to surmise when one realizes that
the angle of rotation is about 10 ' deg for a field of 10'
Oe. The amount of an elliptical polarization is also cor-
respondingly smaller. In a rather remarkable bit of work,
especially considering the experimental techniques
available at that time, Majorana was apparently the
first one to measure the polar reQection Faraday effect,
doing so for Al, Ag, Au, Pt, Bi.' His accuracy was under-
standingly poor but he unquestionably showed the
existence of the effect. Later and independently the
eRect was rediscovered and measured with greater
accuracy taking advantage of the more modern tech-
niques available. "

' Q. Majorana, Nuovo Cimento 2, 1 (1944).
4E. A. Stern and R. D. Myers, Bull. Am. Phys. Soc. 3, 416

(1958).' E. A. Stern, Bull. Am. Phys. Soc. S, 150 (1960); J. C. Mc-
Groddy and E A. Stern, ibid.. 8, 392 (1963).


