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excludes the other, and they may be taken together in
order to reduce the calculated nucleation field.

In Sec. I, it was assumed that p;(1 (for i = 1, 2), but
from the equations (6) and (9) we can see that, if it is
assumed p;&1, the calculated nucleation field remains
the same as plotted in Fig. 1 for the same value of p.
This means that the exchange energy and the magnitude
of the magnetization vector can be assumed to be larger

in the surface layer than in the bulk and still the calcu-
lated nucleation field is lower.
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We show how the partition functions for finite clusters with spin--, Heisenberg interactions may be com-
puted efhciently and generally to any desired number of powers in reciprocal temperature. As an example, we
have expanded the zero-magnetic-field free energy to the twenty-Grst power for the linear Heisenberg model
and for nonzero magnetic field give an expression good through the tenth power. We introduce the concept of
the two-point Pads approximant and use it to analyze the energy for the linear Heisenberg model.

1. INTRODUCTION AND GENERAL THEORY

ECEXT advances in the ability of experimental
physicists to measure the nature of the singularity

in various thermodynamics functions near the critical
point have raised anew the question of the adequacy of
the Heisenberg model of magnetism to describe real
substances in the critical region. ' Studies by various
authors' have shown that in the analogous Ising model,
the most precise method now known of determining the
predictions of models of this sort is the analysis of the
exact power-series expansions (in reciprocal tempera-
ture, etc.) of the various thermodynamic functions.
The major problem involved in extending the power
series for the Heisenberg model has been the calculation
of the traces of the spin operators involved. In this
section of our paper we show how that step can be

*Work supported in part by the U. S. Atomic Energy Com-
mission.' J. L. Gammel, W. Marshall, and L. Morgan, Proc. Roy. Soc.
(London) A275, 257 (1963).' See, e.g., G. A. Baker, Jr., Phys. Rev. 124, 768 (1961) 129,
99 (1963);J. W. Essam and M. E. Fisher, J. Chem. Phys. 313, 802
(1963); M. F. Sykes and M. E. Fisher, Physica 28, 919, 939
(1962); M. F. Sykes and C. Domb, J. Math. Phys. 2, 52, 63
(1961).

greatly simplified and easily adapted for a computer.
In the last section of our paper we will apply our
method, as an example, to the linear Heisenberg model,
and analyze, by means of the Pade approximant
method, the energy and magnetic susceptibility. We
digress in the second section to introduce the concept
of the 2-point Pade approximant, which turns out to be
extremely useful in discussing the linear ferromagnetic
Heisenberg model.

Bomb' has pointed out that the partition function of
an in6nite lattice can be simply expressed in terms of
the partition functions for finite clusters. That this
procedure is possible follows from the fact that the
logarithm of the partition function for a general lattice
can be written in the form

in Z(i) = P p it) ~,
where ot denotes a connected graph, p &t) is the number
of distinct ways it occurs on lattice (j), and p is a
unique function associated with graph n. By applying
(1.1) successively to various finite clusters we may solve
for the y 's, and then, knowing the lattice constants

3 C. Domb, Phil. Mag. Suppl. 9, 1.49 (1960), p. 330.
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nearest
neighbors

cluster

where the e; are the vectors of Pauli spin matrices asso-
ciated with site i. The partition function is

As the parts of the Hamiltonian represented by the
first and second sum commute, they must be simultane-
ously diag onalizable. The sub spaces in which the
second sum has degenerate eigenvalues are very simple.
They are spanned by the (N) vectors with m spins down
and all other spins up. Hence, the entire Hamiltonian
(and all powers of it) must be decomposable into block
matrices of dimension at most (g). For the 11 spin case,
the order of the largest block is now reduced from 2048
to 462.

A further comparable reduction in block size is
possible on the basis of the following observation. The
Dirac relation,

(rr" e ) =2P" I—(1.4)

tells us that (e; e,), even in a 2048)(2048 representa-
tion, is a linear combination of the permutation operator
I';; and the identity operator I. By the well-known
results of group theory, any representation of the
symmetric group may be broken down into irreducible
representations of the syrrnnetric group. Following the
analysis of Wigner4 we can easily break down the
representation into its proper irreducible components.
If A&~&(R) is the submatrix with all but k spins up, which

represents permutation R, then the corresponding
eigenvalue of P;o„is (N —2k). Furthermore, according
to Wigner, ' this representation is reducible as

6&'&(R) =5" '&(R)yD&" (R) (1 5)

where k&X/2, and D&"&(R) is an irreducible representa-
tion of R of dimension (~&, )—(P„), and (~) is the usual

4 K. P. Wigner, Group Theory and its A pplication to the Quantum
Mechanics of Atomic Spectra, translated by J.J. GrifBn (Academic
Press Inc. , New Vora', 1959), Chap. 13.

for an .infinite lattice, obtain an expression for its
partition function in terms of the q s. Since y is
proportional to K'+", where l- is the number of lines
in e, and X&0, we may exhaustively catalog all the
n's required to obtain the expansion of the partition
function to a given power of E.

Normally, using the finite cluster method, one is con-
fronted with the probIem of taking the traces of powers
of 2NX2N matrices, where T is the number of spins in
the cluster. For 10th order, open, connected configura-
tions E can be 11 and so we get 2048)&2048 matrices.
Since the labor in computing a power of a matrix is
proportionaI to the cube of its order, we get agout 10"
operations per power, a formidable task even for the
fastest computers available today. We can simplify
the task in the following way: The Hamiltonian is

8=—k~ Z ~' ~—(~&) Z ~- (12)

binomial coefficient. For k) x21&1', 6'~ "& (R) is related by
a similarity transform to 6'"&(R). Thus, due to the
repetition of the D'~&(R), the maximum block size is
reduced (for %=11 to 165) and there are the same
number of representations as before this reduction was

performed. The partitition function, (1.3), for a finite
cluster is given exactly by

(-,'pJ)z V'i2&

Z(P,a)= g g Tr(r. ')
L,=o I ! a=o

N—k

&(N 2m) PpH—

m=k
(1.6)

where Fa is the matrix representative of P,&„,t„(2P;;
I) in t—he kth irreducible representation, $ j denotes

the greatest integer, and Tr(X) is the trace or character
of X. These irreducible representations, in the Young
tableaux description, are those irreducible representa-
tions with at most two horizontal rows and contain
exactly k squares in the second row. As the matrix
representatives for permutations on E items are easily
constructed in terms of those for X—1 and X—2 items

by following the standard prescription, ' we wi11 not
belabor it here. The special case of (1.6) for H=O,

oo (~pJ)z [N/2]

Z(P, O) = Q g Tr(I'a~) (1'—2k+1)
I.=o L, 1 I =o

(1.7)

5 See, for instance, M. Hamermesh, Group Theory and its A ppli-
cation to Physical Problems (Addison-Wesley Publishing Company,
Inc., Reading, Massachusetts, 1962), Chap. 7, especially Sec.
7.7.

'

P. J. Wood and K. Pirnie (private communication).
~ See the papers of Ref. 2 and the works referred to therein for a

fuller discussion of the Pade approximant method.

has been given previously by Wood and Pirnie. '

2. TWO-POINT PADE APPROXIMANT

The Pade approximant LM, 1V] is the ratio of two

polynomials PN(z) jQ~(z) of degrees X and M. The
coe%cients are chosen so that the power-series expan-
sion of the quotient agrees with that of the function
through the term s~+N. These approximants have
proven powerful in the inference of quantitative infor-
mation from power-series coefficients and from qualita-
tive information about the analytic structure of the
function. ~

Sometimes it happens that one has information about
a function at two (or more) points. We propose to take
it into account by requiring the Pade approximent to
satisfy exactly the condition at the second point as
well as those at the first, which is the origin. In the
examples we will discuss, we impose the value of the
function at infinity on the ltd, X) Pade approximants.
The required modification in the linear equations which
determine the coeflicients of P and Q is slight. One

replaces the equation, which makes the last power-
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series term agree, by one which makes the Pade ap-
proximant equal to a given value a,t infinity. We have
run a few cases to i11ustrate the nature of the results
which might be obtained and to indicate what may
and may not reasonably be expected of this method.
We have considered

a(x) =1—exp( —x),
-(*)=(1+") /(1+*),
c(x) = [(1+x+x')'&'—1]/x.

The standard [1V,1V] Pade approximants do not con-
verge to u(~), ' because infinity is an essential singu-

larity, but oscillate 0, 2, 0, 2, 0, , indefinitely. When
the value a(~) =1.0 is fixed, then the $E,lV] Pade
approximants converge rapidly. The [7,7] gives a(5)
to one part in 10' and more accurate1y for smaller rea1
arguments. The most inaccurate region is for large but
not in6nite arguments where there can occur errors of
a,bout one percent. This represents a substantial im-
provement in the large argument region over the stand-
ard Pade approximant as pointed out above. In this
example we have used the two-point method to specify
the value at an essential singularity.

For the function N(x) the point at infinity lies on the
branch cut' connecting the two branch points at
&i, when we use the cut convention defined by the
$1V,E] Pade approximants. Continuing from positive
or negative real values of x, we get +1 and —1, re-

spectively, for u(~). When we specify +1 as the
asymptotic value, all the poles and zeros by which the
[1V,cV] Pade approximants simulate a branch cut lie
in the left-half plane. u(1) is given by the [8,8] approxi-
mant to better than one part in 10' and for smaller
real positive arguments the accuracy is better. For
1arger arguments the accuracy decreases to about two
percent in the range 10&x&30 and, of course, then
increases to zero error at x= ~.

If we specify N(~) = —1, then all the poles and zeros
simulating the branch cut are in the right-half plane.
If we now consider negative real values of x, the
accuracy picture is much the same as it was for the
positive case of N(x). The pole at x= —1 is located to
within 3 parts in 10' by the [8,8] approximant. The
maximum error is about 3%%uq here. For the function
u(x) we have used the two-point method to specify
which lip of a branch cut for the approximant to
converge to.

The function c(x) has branch points at x= ——,'
&i+23. The standard Pade approximant would cut this
function so as to connect these branch points and form a
single-valued function. The branch cut would cross
the real axis at x= —2. If we continue through this
cut along the negative real axis, we obtain c(—~) =
—1. If we continue along the positive real axis, we

8 G. A. Bal.er, Jr. , J. L. Camrnel, and J. G. Wills, J. Math.
Analysis App. 2, 405 (1961).

obtain c(+~)=+1, the branch given by the standard
[X,Ã] Pade approximants. When we fix the value
c(~)= 1, we specify the value at a regular point and do
not much perturb the structure of the approximants,
except to greatly accelerate convergence in the neigh-
borhood of that regular point. The [5,5] for this case is
good to better than one part in 104 for all positive real x.

When we speci6ed c(~)= —1 in an effort to cause the
[X,A'] Pade approximants to choose the other branch
in the region of large negative x, we were not especially
successful. Although through the [2,2] Pade approxi-
mant, it appeared as though the desired branch was
being taken, as we went to higher approximants the
branch cut was made in the same general way as
before and, in fact, the [5,5] Pade approximant does
not become negative until

~
x~ )170. We see from this

example that specification at a regular point works
very well, but that specifying the value alone, does not
cause the [JV,1V] Pade approxirnants to change their
"natural" Riemann sheet. It may be that with a more
nearly balanced ratio between coeKcients given at zero
and infinity one could force a change of what is the
"natural" Riemann sheet, but we have not investigated
this point.

3. THE LINEAR HEISENBERG MODEL

and for the infinite linear model

lim [lnZ&N&/1V]= P q .
N~oo a=I

(3.2)

If we know the exact partition functions for finite
clusters through ten links, then we obtain

10

q =lnZ«0& —1nZ&s (3.3)

The q for the linear graphs are unusual in that they are
proportional to (E)' rather than E~ as are, for ex-
ample, the p's associated with simple closed polygons.
This means that the 6rst ten q

's suKce to give 21
terms in the zero-held expansion of the partition func-
tion. In a nonzero magnetic field the q are again pro-
portional to E and in particular we can only obtain
the magnetic susceptibility through E" from ten
p 's. The proof of this unusual property of the linear
clusters is easily given. If we stop at the e-point chain,

In order to illustrate our method we have obtained an
expression from which one can calculate the series
expansion for the linear Heisenberg model through the
tenth order in E=—',PJ and all orders in H=P&JH. For
H=O we obtain the 21st order in E. The counting
problem is elementary here. If (» denotes a linear chain
of j links then the P "& of Eq. (1.1) become

(3.1)
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I ABLE I. Tl I f&!p ),

0

2
3

5
6
7
8
9

10

0
1
2
3

5
6
7
8
9

10

1

81
729

6561
59 049

531 441
4782 969

43 046 721
387 420 489

3486 784 401

10
100

1000
10 000

100 000
1000 000

10 000 000
100 000 000

1000 000 000
10 000 000 000

9
45

289
2085

15 929
125 725

1013 329
8287 765

68 522 089
571 285 005

4794 694 529

10
60

432
3456

29 312
257 280

2308 224
21 024 000

193 626 112
1798 447 104

16 817 027 072

(j=9)
35
63

651
2919

26 355
158 223

1340 763
9275 959

76 729 795
573 903 327

4716 628 011

(2 = 10)
44

120
1008
6240

52 160
401 280

3408 384
28 511 232

247 929 856
2162 104 320

19 202 244 608

75
45

1755—4605
99 435—506 445

7915 515—58 431 005
773 505 163—7029 326 445

85 971 909 915

110
20

2576
—640

139 136—190 720
10 037 120—29 383 936

857 096 192—3964 248 064
82 144 987 136

90—198
3034—21 414

293 210—3172 358
43 207 642—557 643 494

7814 375 002—109 145 995 590
1575 964 920 794

165
—270
5364—30 840

486 224—4666 080
67 609 920

—822 459 264
11 798 357 248—160 690 048 512

2342 240 605 183

42—126
1722—15 246

210 762—2697 246
39 837 402—592 359 726

9273 490 026—147 414 544 830
2393 875 707 642

132—360
5472

—46 080
677 120—8578 560

131 632 896—1986 734 592
32 177 373 184—527 081 914368

8898 064 781 309

we are omitting Brout graphs from the free-energy
expansion for which the basic graphs are chains of n or
more links. Thus, the first error in the series arises from
Brout graphs based on the basic graph in Fig. 1. But
the first such nonvanishing Brout graph is shown in
Fig. 2, and has 2n links. This is because, associated with
any Brout graph is the corresponding cumulant, and
any cumulant is the sum of products of moments of
subgraphs (partitions of the lines in the Brout graph).
However, the moment of any such graph having an
undoubled link vanishes. '0

For a nonzero magnetic field, the partition function

per site is given through tenth order in K by

Ztp &"& (P,H)
lim [Z„t &(p H)]'I~= +O(E"), (3.4)

Z o&P&(P,H)

where Zp&'&(P, H) is the expansion through kth order
given by Eq. (1.6) of the partition function of a cluster
of length j. We have tabulated in Table I the traces
needed to evaluate Eq. (3.4). We have derived from
Z2~&') and Z2~'9) the following terms in the series ex-
pansion for the free energy per site for an infinite
lattice. It is

InZ&' & —1nZ~ &~(lnZ&"&/ po)~ln2+3E /(2!)—6Es/(3!)—30E /(4!)+360EP/(5!)+504E /(6!)
—44 016Er/ (7!)+204 048Es/(8 ~)+8261 760E'/ (9!)—128 422 272E"/(10!)—1816480 512E"/ (11!)
+7656 2054 400E"/(12'.)+1.24207469568 X10"E"/(13!)—5.1042832542 X 10"E'4/ (14!)+5.8068671970

X10"E"/(15!)+3.6632422458X 10"E"/(16!)—1.14118428294X10"E"/(17!)—2.3612862501

X 10&PE's/(18!)+1.881307595X10"E"/(19!)+2.53020316X10sPEsP/(20!) —3.04552721

X10"E"/(21!)+ +H'[-'+E —8E'/(3!)+40E4/(4!)+336E'/(5!) —6384Es/(6!) —10 240'/(7!)
+1461 888E'/(8 ) 9566 720E'/(9~) —434 804 480E"/(10.)+ ' ' 3 (3 5)

These results agree with those published previously by
one of us, ' and also with those published by Domb'
and Wood" through E'Il and E'II'.

We have used the standard Pade approximant
method to analyze the magnetic susceptibility. First,

Fxo. 1. Basic graph. l~ LINKS)

' G. S. Rushbroo)tet J. Math. Phys. S, 1106 (1964).
'0 G. S. Rushbrooke and P. J. Mood, Mol. Phys. 1, 257 (1958),

theorems III and IV."C. Domb and D. W. Wood, Phys. Letters 8, 20 (1964).

to determine the nature of the singularity at E= ~
(T=0) we have computed the PX,E+jj Pade
approximants for j=—1,0,+1 to [d(ln2C, )/dEj, where
Q=Xp/Pps is the reduced susceptibility. In Fig. 3 we
have plotted from the fE,X—1$ Pade approximants
the values of Efd(ln2(;)/dEj. The limit as E tends to
ininity is the power of the reduced magnetic suscepti-

( I LI IIII S)

FIG. 2. First nonvanishing Brout graph based on the
basic graph of Fig. 1.
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the fE,X+1) approximants to f1'.(K))s", as fg(K))"'
should diverge linearly as X~ ~. The limit of
fg(K))s"jK as given by these approximants as E
goes to in6nity is the coeKcient of the singularity. The
values obtained are

0.5

0
0 2.0 4.0

Fro. 3. Efd Inx
/dE) versus IC based
on the LS, E 1j-
Padd approximants.

f1,2)=3.5,
t 2,3)= 2.4424,

f3,4)=3.4158 )

f4,5)=3.0686.

These results lead us to speculate that

x= («P'

(3.7)

(3.8)

bility singularity. The PT,X 1) w—ere used to obtain
the correct asymptotic behavior. The other values of j
tend to con6rm this curve, and seem to rule out here
the exponential behavior which the linear Ising model
shows. As can be seen from Fig. 3 the 3l odd approxi-
mants uniformly decrease and the E even uniformly
increase. As the values at infinity are

as E tends to inanity. We wish to emphasize, however,
that there must be considered to be about a ten percent
error in the coeKcient and the power. The error of the
f4,5) approximant is apparently less than one percent at

0.50

f2, 1)=0.1428,

f3,2)=6.9735,

f4,3)=0.3627,

f5,4)=0.7438.

(3.6)
0.25-

We estimate, with the aid of Fig. 3, that the limit is
(ss)+0.1. Since the f4,3) rises above 0.5 and the con-
verged portion of the curve shown in Fig. 3 is monotonic,
we have selected —', as the simplest fraction in the
allowed range. Using this hypothesis we have calculated

Q.OO '

0

Fro. 5. Speci6c heat based on the L11,10$ Pade approxitnant for
the ferromagnetic and the antiferromagnetic cases.

I.O—

0.0

-l,O

X= 1, and is probably no more than ten percent o8 at
E= ~. The closest nonphysical singularities are at
about E= —0.11&0.47i. The approximation to
based on the f4,5) is

g (K)=f(1+5.7979916K+16.902653K'

+29.376885K'+29.832959K4

+14.036918K') —: (1+2.7979916K

+7.0086780K'+8.6538644K'+
4.5743114K4))s's. (3.9)

Since the energy is known" to tend to a 6nite limit as
E tends to infinity and the values are known" to be

lim E(K)= 1,
+-++Oo

-2.0
-IQ 0.0 2.0

lim E(K)=—4ln2+1,
Q~oc

we have used the two-point Pade approximant method
introduced in the previous section to analyze the energy.
For the ferromagnetic case we have an error in the

Fro. 4. E(K) based on the (9,9j two-point Pade approxirnants.
The plus side is the ferromagnetic case and the minus side is the
antiferromagnetic case. The asymptotic limits are indicated by the
large tic marks. Ii is measured in units of ~~J.

"H. A. Bethe, Z. Physik 71, 205 (1931);with A. Sommerfeld,
EIundbuch der I'hysik, edited by S. Flugge (Springer-Verlag, Ber-
lin, 1933), Vol. 24, part 2, p. 618.
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L9.91 of less than one part in 10' at K= 1 and less than
half a percent for E=-2 at which point the value is
95'%%uq of the asymptotic value. Loss of calculational
accuracy in the 20th coeKcient prevents us from using
the $10,10) where only about three places remain in the
solution. When the standard Pade (one-point) approxi-
mant method is used, we may estimate E for K= ~ to
about 10% by averaging the twenty percent amplitude
oscillation at E= ~. The oscillation occurs because
E= ~ is an essential singularity. For E& ~ agreement
is rapidly obtained with the two-point method. It
should be noted that the signs of the energy series are
periodic with period 7, a rather long period. Conse-
quently, a fairly large number of terms are required to
obtain accurate results. The radius of convergence of
the power series is about 0.5, the nearest singularities
being located at about —0.11~0.47', the same place
as for the reduced susceptibility. Unfortunately, the
antiferromagnetic case is quite similar to the function
c(x) discussed in Sec. 2. There is again a cut which
crosses the negative real axis in the neighborhood of

—2. We do, however, obtain the value at E=—1 to
better than 3% accuracy and it is again about 95% of
the asymptotic value for E= —. In Fig. 4 we have
plotted our results for the energy as a function of E.

We have compared our results with those obtained
by Katsura and Inawashiro" on the basis of an expan-
sion through second order in J&I with JL summed to all
orders. The agreement for the antiferromagnetic energy
is good. There is a deviation reaching about 6% in the
range E=0.2 to 0.5. For the ferromagnetic energy the
agreement is good for E=O to 0.3 but starting around
K=0.3 there is a large kink in their results which
causes them to be off by about 20% near K= 1 although
their error drops to only 3% at E= oo. Their ferro-
magnetic susceptibility agrees nicely with ours for
E=O to about 0.5 where theirs falls below ours due to
the finiteness implicit in their approximation. In Fig. 5
we have plotted the speci6c heat at zero magnetic
Geld as far as we believed our results to be reliable.

"S.Katsura and S. Inawashiro (private communication).
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The zero-Geld NMR of Mn~' has been observed directly in the antiferromagnetic state of MnF&. A single
resonance, with linewidth Av"~1.3 Mc/sec, was observed in the frequency range of 630-675 Mc/sec and
the temperature range of 1.3—20.5'K. The extrapolated Mn" NMR frequency at O'K is found to be op~'

=671.4+0.2 Mc/sec. Combining the O'K Mn" NMR frequency together with the dipolar Geld Hs;~
=+5.770 kOe and the hyperGne coupling constant A"= —(90.78&0.3) )& 10 ' cm ', measured for Mn + in
ZnFs, gives avalueforthezero-point spin deviation of 1—(S)/S=(0.43+0.34)%. This value is to be com-
pared with the value predicted by spin-wave theory of 2.37'P&. The observed temperature dependence of the
Mn" NMR frequency agrees, within experimental error, with the temperature dependence of the F'~ zero-
field NMR in antiferromagnetic MnFs. Upper and lower limits of 1300 kc/sec and 600 kc/sec are placed on
the contribution to the Mn" NMR linewidth in antiferromagnetic MnF2 by the Suhl-Nakamura interaction.

I. INTRODUCTION

~'UCLEAR magnetic resonance (NMR) tech-
niques in antiferromagnetic media provide a

convenient method for obtaining information about the
thermodynamic properties of these ordered spin sys-
tems. In particular, information concerning the zero-
point spin-deviation, temperature dependence of the
sublattice magnetization, and indirect nuclear spin
interactions are readily obtained from NMR measure-
ments. ' MnF2 is a particularly well-suited crystal for

' For a review of NMR in antiferromagnetic media the reader is
referred to the article by V. Jaccarino, in 3Iagnetism; edited by H.
Suhl and G. Redo (Academic Press Inc., New York, 1964).

studying the properties of antiferromagnetic spin
systems since the Mn'+ ion. is an S-state ion (S=5/2)
and therefore the anisotropy field results mainly from
the dipolar interaction. MnF2 has the rutile structure
with tetragonal symmetry and in the antiferromagnetic
state the Mn'+ ions are ordered such as to consist of
two interpenetrating sublattices with oppositely ord-
ered spins.

An estimate of the zero-point spin deviation (S)/S
for MnFg has been given by Clogston et at.' by making a
comparison of the electron paramagnetic resonance
(EPR) measurements of Mn'+ in ZnFs with the specific

'A. M. Clogston, J. P. Gordon, V. Jaccarino, M. Peter, and L.
R. Walker, Phys. Rev. 117, 1222 (1960).


