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A model is considered which can reduce the theoretical nucleation Geld. It assumes nonuniformity in the
ferromagnetic crystals due to the Gniteness of the crystal, namely, the existence of a surface layer with dif-
ferent physical properties from those in the bulk. Since atoms near the surface of the specimen are in a lower
crystal symmetry than the inner atoms which are far from the surface, different free energies are assumed for
the bulk and the surface layer. These are taken as changes in the magnetocrystalline anisotropy constant, in
the exchange energy constant, and in the magnitude of the magnetization vector. The nucleation Geld is cal-
culated for an in6nite slab of Gnite width and for an inGnite circular cylinder. For a relatively small width of
the surface layer, it was found that the nucleation Geld is reduced by a factor 2 with respect to a crystal in
which no di6erent property of the surface layer is assumed.

I. INTRODUCTION

'HE micromagnetics theory predicts a very large
energy barrier for domain nucleation in a pre-

viously saturated ferromagnetic crystal. The experi-
mental observations show that the domains nucleate
before the applied magnetic field reaches the predicted
value' of the nucleation field H = —(2K/f, Jt/J, ), —
where E is the magnetocrystalline anisotropy constant,
J, is the magnitude of the magnetization vector, aiid E
is the demagnetization constant along the s axis. This
discrepancy between the predicted value for the applied
magnetic Geld and the observed value at nucleation is
known as the Brown's paradox. ' In this work an attempt
is made to reduce the theoretical nucleation field H by
assuming a nonuniformity in the physical properties of
the ferromagnetic specimen. 1A'e shaB consider a speci-
men formed from two regions: the inner part, which
will be called the bulk, and a shell near the surface of
the specimen, which will be called the surface layer. The
physical meaning of this assumption lies in the fact that
the atoms near the surface of the crystal are in a lower
symmetry' than the atoms far away from the surface.
The technique of spin-wave excitation provides in-
formation' about the existence of a thin layer near the
surface of the specimen in which the properties of the
matter are difterent than the properties of the bulk
material.

The aim of the present model of reduction of the
nucleation field is to show how much the finiteness of
the specimen can inhuence the existence of Brown's
pal adox.

II. GENERAL THEORY

A ferromagnetic material infinite in the s direction,
which has a uniaxial magnetocrysta1line anisotropy, is
considered. The applied magnetic field Ho and the

direction of easy magnetization are in the s direction.
The exchange energy constant 2 is assumed to be

A in the bulk

p~A in the surface layer,

where p& is a positive parameter. Since a nonuniformity
is assumed in the exchange energy, then there must be a
nonuniformity in the magnitude of the magnetization
vector. The magnitude of the magnetization vector Z,
is assumed to be

J, in the bulk

p2J, in the surface layer,

where pl(p2&1 is assumed.
For the surface layer a lower value of the magneto-

crystalline anisotropy coeKciente P K is assumed.

E in the bulk

0 in the surface layer.
(1c)

A more general model will be obtained with the assump-
tion that the easy direction of magnetization in the
surface layer would make an angle' different from zero
with the easy direction of the bulk. For an easy direc-
tion in the surface layer which is normal to the easy
direction of the bulk, the nucleation Geld will be more
positive than the present model, ~ but it complicates
very much the numerical computation.

As we are interested only in the value of the nucle-
ation field, it is sufhcient to solve the linearized Brown's
equations. '
2AV'n;= J,(itU;/cts:)

+J,((2K/J, )+EEp i)U;/cts)cr;, (2a)—
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III. INFINITE SLAB

The form of the specimen is an infinite slab in the
(y,s) directions of width 2(p+1)d, where p is a param-
eter and d is the width of the assumed surface layer.
Then the two different regions are (a) the surface layer
pd& ~x(((p+1)d, and (b) the bulk ~x( &pd. Now we
will assume that n;= U;=0 and P,=P;(x); then, from
(2b) we will get the two equations for the two regions.

d'Pi/dt2= T'(1—h)Pi,. i
t

i
&p, (3a)

(3b)d'P~/dt'= p'T'hP2; p—&
t
t I

&p+1,
whel e

t=*/d, T =d K/~, h= IIP,/2K, p =p,—/p, . (3c)

ln order to simplify the calculation of the eigenvalue h,
we will deal separately with the odd and even solutions
of (3).Because the numerical calculations show that the
even solution gives a more positive nucleation field, we
will deal only with this solution for 0(t&p.

The boundary conditions (2) are in this case

(dPi/dt) g=o
——0; (dj8p/dt), ,„i0(4a)=——

(Pi =P2) I=.; L(dt'ti/dt) (dP2/«)3~=. =o— (4b)

2AV'P, =J, (BU,/By)

+J,{(2K/J, )+lip BU—;/Bs)P; (2b)

where n and P are the components of the magnetization
vector in the x and y direction, respectively, i = j. refers
to the bulk, and i=2 refers to the surface layer. The
boundary conditions on the surface of the specimen are

Bnn/Be =0, BPg/Be =0. (2c)

Here e is an unit vector normal to the surface of the
specimen. U; is the magnetostatic potential and is
related to n; and P; by Poisson's equation 7'U;=
4~J, (Bn,/Bg+BP;/By) U2 i.s also related to the mag-
netostatic potential for the external region of the speci-
lIlen by the usual boundary conditions' of potential
theory on the surface of the specimen. The boundary
conditions (2c) and the usual boundary conditions for
the magnetostatic potential' involve only the functions
n&, P2, and U2, which belong to the surface layer. In
order to determine a unique solution, one needs extra
conditions on the boundary between the bulk and sur-
face layer. These are obtained from the assumption of
the micromagnetics theory that the magnetization
direction and its first derivatives with respect to (x,y, s)
changes continuously in the ferromagnetic specimen.
The additional conditions imposed on the functions o.;,
P;, and. U; at the boundary between the two regions are

ni n2 Pl P2 Ui U2 (2d)

Bni/Bm Bn,/B=m, BPi/Bm= BP2/Bm,

BUi/Bm= BU2/Bm. (2e)

Here m is a unit vector normal on the boundary between
the bulk and surface layer.

(1 h)'~'=—ph'" tan(pTh'i') . (6b)

The least negative values of h which satisfy (6a) are
plotted in I'ig. 1 as functions of the parameter p for two
values of T.

IV. INFINITE CYLINDER

A ferromagnetic material in the form of an infinite
cylinder with the axis in the s direction of radius
R= (p+1)d is assumed. The bulk region is the inner
cylinder of radius pd; the surface layer is the outer shell
of width d. The problem has a cylindrical symmetry,
and it is easier to deal with the equivalent differential
equations (2a), (2b) and Poisson's equation written for
the cylindrical components (n„,n, ) of the magnetization
vector in the cylindrical coordinates r, p, and s. This
transformation has already been done. ' We shall solve
the equations only for the curling' mode which is ob-
tained by assuming: n„=0,U—=0, n„=n„(r)$0, since
this mode of nucleation' ' is the easiest for cylindrical
radii larger than 1.08 A'i'J, ' (which is about 60 A for
iron and about 300 A for BaFei20ig).

The differential equations for the two regions are

tP—+t-'—t—'—T'(1—h) n, =0 0&t&p pa)
dP df

d
+t ' t '+T—'ph n„,—=0, p&~t&~ p+1, (7b)

where t=r/d and (p, T,h) are defined as in (3c). The
general solutions for (7) are

n„,(t)=aJ, (Qt), 0&t&p; (8a)

n„2(t)=b{BJi(qt)+Yi(qt)), P&t(P+1. (8b)

Here a, b, and 8 are integration constants, Q= T(1.—h)'I',
q=pTh I, Jp and I y are Bessel functions of first and
second kind, respectively. The boundary condition

9 A. Aharoni and S. Shtrikman, Phys. Rev. 109, 1522 I'1958).

The general even solut;ion of (3) which satisfies the
boundary condition (4a) is

Pi ——ai(exp{ T(1—h)'t't)

+exp{—T (1—h) "2t)) t(p, (5a)

p2 ——a~ cos{pTh't'(p+1 —t) }, p& t&p+1. (5b)

From (4b) and (5) we get the transcendental equation
(6a), which gives the eigenvalues h,

(1—h)' ' tanh{ pT(1—h)' '}= ph t tan(pTh'~') . (6a)

For p&100, h&0.99, and T)0.1 one gets

tanh{ pT(1—h)'"}= 1;
then for these indicated values of p, h and T, the trans-
cendental equation (6a) reduces to
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(~mrs/&~) & n=-+&=0~ g&ves

p&(P+ l)h'"Ys(pTh'"(p+1) } Y—r{pTh'"(p+1)}8=-
pT (P+1)h'"Js(p Th'" (p+ 1)} Jr—(p Th'" (p+1)}

where I is the modified Sessel function.
The least values of h(h ) which satisfy the equation

(9) are plotted in Fig. 1 under the name "Cylinder
Curling Mode" as a function of the parameter p for
p=50 and two values of T. For large values of p (this
means large cylindrical radii) the transcendental equa-
tion (9), transforms to the equation (6b). The nucle-
ation field is the same for a cylinder of a large radius or
a thick slab.

V. DISCUSSION

It has been shown that for large values of p the
nucleation Geld of the infinite cylinder equals that of the
infinite slab. The nucleation field is reduced by in-
creasing the width d of the assumed surface layer, and
by increasing the value of the parameter p.

For hard ferromagnetic materials (E))J,.s) like MnBi
and BaFe~~&)~9, T= 0.2 corresponds to a width d of about

I,O

h„
0.5

The conditions (2e) give the transcendental equation

IefPT(l —h)'"}
(1—t)»'

Ir(PT(1—h)'~'}

Vs(pPTh, 'ts)+BJa(pPTh'Is)—
pal

/2
, (9)

yr(ppTh»s)+B J (ppThr&s)

6 and 11 A, respectively. For sof t ferromagnetic
materials (E«J,s) the same value of T corresponds to
much larger values of d. This means that the present
model gives a negligible reduction to the nucleation
field for soft ferromagnetic crystals when reasonable
width is assumed for the surface layer. That fact is not
in contradiction with the observed values for the nucle-
ation field of iron whiskers. De Blois and Bean" meas-
ured nucleation fields approaching the theoretical value
in certain parts of most perfect iron whiskers. For hard
ferromagnetic crystals, a big discrepancy still exists
between the calculated and observed values of the
nucleation Geld. But for hard ferromagnetic crystals,
the present model gives a significant reduction in
nucleation Geld by assuming only a relatively small
width for the surface layer, and an arbitrary, but
reasonable, value for the parameter p. The observed
coercive force' of MnBi (which should certainly be more
negative than the nucleation Geld) ranges from —12
kOe for 5-p particles to —0.6 kOe for 100-p, particles.
The theoretical nucleation Geld for an elongated particle
of MnBi is about —26 kOe. For large particles the
discrepancy might arise from the fact that the particles
are not single crystals, but, for small particles, it is most
probable that they are single crystals and the dis-

crepancy arises from the Gniteness of the specimen. The
present model is able to fit the observed nucleation field
for small particles of MnBi if one assumes a surface
layer of 6-A width (where for the bulk, Eis" 8.9X10''
erg/cm', ~J, is" 2200 G, and the exchange constant is

taken as 10 ' erg/cm'). The micromagnetics theory is a
continuum model and it breaks down at such a small

scale (6 A), but in this work the surface layer region has
a meaning of a boundary condition and not of a real
region.

A series of papers ' used Aharoni's imperfection
model (which assumes only that the value of the anisot-

ropy constant is lower at the crystal imperfection
region) in order to show the influence of assumed inner
crystal imperfection on the nucleation Geld. It is shown'
that Aharoni's model for inner crystal imperfection can
resolve Brown's paradox for hard ferromagnetic mate-
rial. Also, the present model can show that for hard
ferromagnetic materials, Brown's paradox is influenced

by the finiteness of the sample. No one of the two models

I l

5 6
I

9 EO

l'IG. 1. The reduced nucleation 6eld h„for an infinite slab and
an infinite cylinder as a function of the parameter p for two values
of T.
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excludes the other, and they may be taken together in
order to reduce the calculated nucleation field.

In Sec. I, it was assumed that p;(1 (for i = 1, 2), but
from the equations (6) and (9) we can see that, if it is
assumed p;&1, the calculated nucleation field remains
the same as plotted in Fig. 1 for the same value of p.
This means that the exchange energy and the magnitude
of the magnetization vector can be assumed to be larger

in the surface layer than in the bulk and still the calcu-
lated nucleation field is lower.
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We show how the partition functions for finite clusters with spin--, Heisenberg interactions may be com-
puted efhciently and generally to any desired number of powers in reciprocal temperature. As an example, we
have expanded the zero-magnetic-field free energy to the twenty-Grst power for the linear Heisenberg model
and for nonzero magnetic field give an expression good through the tenth power. We introduce the concept of
the two-point Pads approximant and use it to analyze the energy for the linear Heisenberg model.

1. INTRODUCTION AND GENERAL THEORY

ECEXT advances in the ability of experimental
physicists to measure the nature of the singularity

in various thermodynamics functions near the critical
point have raised anew the question of the adequacy of
the Heisenberg model of magnetism to describe real
substances in the critical region. ' Studies by various
authors' have shown that in the analogous Ising model,
the most precise method now known of determining the
predictions of models of this sort is the analysis of the
exact power-series expansions (in reciprocal tempera-
ture, etc.) of the various thermodynamic functions.
The major problem involved in extending the power
series for the Heisenberg model has been the calculation
of the traces of the spin operators involved. In this
section of our paper we show how that step can be

*Work supported in part by the U. S. Atomic Energy Com-
mission.' J. L. Gammel, W. Marshall, and L. Morgan, Proc. Roy. Soc.
(London) A275, 257 (1963).' See, e.g., G. A. Baker, Jr., Phys. Rev. 124, 768 (1961) 129,
99 (1963);J. W. Essam and M. E. Fisher, J. Chem. Phys. 313, 802
(1963); M. F. Sykes and M. E. Fisher, Physica 28, 919, 939
(1962); M. F. Sykes and C. Domb, J. Math. Phys. 2, 52, 63
(1961).

greatly simplified and easily adapted for a computer.
In the last section of our paper we will apply our
method, as an example, to the linear Heisenberg model,
and analyze, by means of the Pade approximant
method, the energy and magnetic susceptibility. We
digress in the second section to introduce the concept
of the 2-point Pade approximant, which turns out to be
extremely useful in discussing the linear ferromagnetic
Heisenberg model.

Bomb' has pointed out that the partition function of
an in6nite lattice can be simply expressed in terms of
the partition functions for finite clusters. That this
procedure is possible follows from the fact that the
logarithm of the partition function for a general lattice
can be written in the form

in Z(i) = P p it) ~,
where ot denotes a connected graph, p &t) is the number
of distinct ways it occurs on lattice (j), and p is a
unique function associated with graph n. By applying
(1.1) successively to various finite clusters we may solve
for the y 's, and then, knowing the lattice constants

3 C. Domb, Phil. Mag. Suppl. 9, 1.49 (1960), p. 330.


