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Eigenvectors and eigenvalues for vibrations of the rocksalt lattice were computed in the harmonic approxi-
mation on the rigid-ion model and on a deformation-dipole model. The eigenvectors are useful in visualizing
the actual motion of the ions in the normal modes, and thence for classifying the modes. The eigenvectors,
furthermore, provide a basis for perturbation treatment. With them we have computed the frequencies of the
local modes, and the corresponding amplitudes of impurity-atom vibrations, that result from point mass de-
fects in NaCl and KCl.

INTRODUCTION
' 'N the harmonic approximation, the theory of lattice
& - vibrations as set forth by Born and others' has been
well worked out for some simple ionic crystals. Keller-
mann' used a rigid-ion model, and later workers' pro-
posed more realistic models. Frequency calculations for
perfect lattices on the basis of these later models
satisfactorily describe the thermodynamic properties,
and the dispersion curves from neutron scattering. Per-
turbation calculations, however, require knowledge of
eigenvectors as well as eigenfrequencies. The New York
Vniversity group, for example, has recently calculated
the eigenvectors on the basis of the rigid-ion model for
NaCl at room temperature, 4 and used them to determine
the eigenfrequencies at low temperature' and the
damping factor for infrared absorption. ' In the present
paper, we treat both NaCl and KC1 on two models, the
traditional rigid-ion (RI) model and the deformation-
dipole (DD) model due to Hardy. s We give typical
NaCl eigenvectors for the RI model, and show how the
complete set of vectors serves for the classification of
normal modes. On both RI and DD models we calculate
the eigenfrequencies and the vibration amplitudes of the
impurity atoms for the local modes due to point mass
defects in the KCl and NaCl. The results are compared

with theoretical calculations by others on diGerent
models, and with experimental findings for U centers.

THEORY

The equation of motion for small vibrations of par
ticles in a periodic lattice may be written as

l l lr l'
M„u (.)= p p .(.„)I,.(„.),

where 3f„ is the mass of the ~th particle in the unit cell
(x= 1, , s, where. s is the number of particles in the

l
unit cell); I (,) is the crth component of the displace-
ment from equilibrium of the I(:th particle in the 7th cell
(cr = 1, 2, 3; /= 1, , JV', where Jff is the total number of
cells in the crystal); and where

with g being the potential energy of the system.
Vhth solutions of the form

tt. (.) =&, '"tt.(x) expL —i~t+2srik. x(„)j, (2)

we get

co'tt (tc) = Q D .(„„,)tt, (a'), (3)
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where the modified dynamical matrix D, („,,) is given
k

by

XexpL —2srik {x(„)—x(„,)}j. (4)

In general, D is Hermitian, and by virtue of the
geometric symmetry of the rock-salt structure it is rea
as well, and hence is symmetric.

For nontrivial solutions of Eq (3) to ex.ist, we must
have

J
D—co'1/ =0.

For the rocksalt structure, this equation is of sixth
degree in ~'. Its roots give the eigenfrequencies of
normal vibrational modes for a given wave vector g.
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These modes correspond to six branches of dispersion
curves, which are labeled by j=1,6.

With D evaluated under the assumption of the rigid-
ion model, and nearest-neighbor short-range inter-
actions, Kellermann' solved Eq. (5) for NaCl. Other
authors' apped the same method to some other ionic
crystals having the NaCl structure. Later workers'
made similar calculations with models more realistic
than the rigid-ion one.

For a given wave vector, corresponding to each
branch we can find a vector w whose components satisfy
the equation

o&,'(k)w. (aI,) = Q D ., („„,)w. (a'I,).
a'a'

(6)

These equations determine w within a constant factor.
The arbitrariness in w can be removed by orthonor-
mality conditions:

07

STDS= oi'

where the columns of S are the eigenvectors, and oi' is a
diagonal matrix with the eigenvalues as the diagonal
elements. Since D is real and symmetric, it can be
diagonalized by an orthogonal matrix S.

The general motion of the lattice is given by a
superposition of the elementary solutions (2):

kj
l

XexpL —ice, (k)i+2~ik x(„)j. (8)

RESULTS: PERFECT LATTICE

A modified Jacobi method was used to diagonalize D
and thereby to obtain both the diagonalizing matrix S
and the eigenvalues co'. The computations were made on
the CDC-3600 computer at Michigan State University,
with an adaptation of 704—709 roRTRAN program No.
664, co—op ID: F4 UcsD 1 EzGKN. The Coulomb terms
in the modi6ed dynamical matrix were taken from
Kellermann for his division of k space (k,=- p,/10, etc.).

' K. V. Sayre and J. J. Beaver, J. Chem. Phys. 18, 584 (1950);
A. M. Karo, ibid 51, 1489 {1959.l; 35, 7 (1960}.

This orthonormal set of w's is the set of eigenvectors
with which we are concerned here.

In matrix form, Eq. (6) can be written as

DS= Sos'

In this treatment, calculations are made for 48 points in
the erst Brillouin zone, from which 1000 points are
generated by symmetry operations. To see the effect of
finer subdivision of k space on local-mode results, which
are to be considered in the next section, we have carried
out calculations also for k,=p,/20, etc. , after summing
Kellermann's series for the Coulomb terms. This
subdivision gives 262 wave vectors, which generate 8000
points in the first zone by symmetry operations. The
results in the present section, however, are based on
Kellermann s subdivision, with the aim of facilitating
comparison with his work.

To see what typical eigenvectors look like, we have
chosen two wave vectors for NaC1, one in a direction of
symmetry and the other in a general direction, and have
presented the corresponding eigenvectors in Table I and
Table II, respectively. These eigenvectors, when nor-
malized through division by (XM„)'i', give the ampli-
tudes of vibration for the two kinds of ions in a given
mode. Each column gives the eigenvectors for a given
mode (whose frequency is indicated at the top), the first
three elements corresponding to the Cartesian com-
ponents of displacement of one kind of ion, and the last
three to those of the other.

For all the NaCl eigenvectors we have computed the
ratio of the amplitudes of vibration for the two kinds
of ions. We have calculated also the angle (Na, Cl) be-
tween the directions of motion for the two kinds of ions,
and the angles (Na, k) and (Cl,k) between the directions
of motion for each kind of ion and the direction of
propagation of the wave. '

For k=0, the ratio of the amplitudes of lighter to
heavier atom is inversely proportional to their masses,
in the optical branch; in general it increases with in-
creasing k. The corresponding ratio in the acoustical
branch is equal to unity; it decreases with increasing k.
Then, by continuity, we can classify the normal modes
into various branches, and state their character as to
longitudinality, transversality, or neither. For k along
L100$, [110), and L111$, the waves are purely trans-
verse or longitudinal, and the direction of vibration of
both kinds of ions is the same, as is apparent from the
symmetry of the crystal structure. Also, in certain
directions of somewhat lower symmetry, viz. , either
when one of the components of wave vector is zero, or
when two components are equal, there exists a pair of
transverse waves, one optical and one acoustic. In all
other cases, the waves are neither transverse nor
longitudinal, and the directions of vibrations of two ions
are diQerent.

Space limitations make it inadvisable to include the list here.
It has been deposited as Document No. 7978 with the ADI
Auxiliary Publications Project, Photoduplication Service, Library
of Congress, Washington 25, D. C. A copy may be secured by
citing the document number and by remitting $2.50 for photo-
prints, or $1.75 for 35-mm micro6lm. Advance payment is re-
quired. Make checks or money orders payable to Chief, Photo-
duplication Service, Library of Congress.
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TAnz, z I. NaCl lattice-vibration eigenvectors for wave propagation along the symmetry direction L10,0,0j/10.
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RESULTS: IMPURITY MODES theoretical calculations by others" treating U centers as
isotopic impurities. Rosenstock treated KCl as a linear
monatomic chain, with nearest-neighbor short-range
interactions only. Wallis and Maradudin chose a three-
dimensional monatomic model for KC1 and a diatomic

In diatomic cubic crystals the eigenfrequencies ce'(f)
for the modes due to a single mass defect' are given by

(9)

IS
20 XIO SECwhere e„—= (M„—M„')/M„, with M„' as the mass of the

isotopic impurity. The cess(k) refer to the modes of the
unperturbed lattice, and the m's are the corresponding
eigenvectors of the ion that has been replaced by the
impurity. The corresponding amplitudes of vibration
for the impurity atom

I y(f,0) I' are given by

Na Cl
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FIG. 1. Frequency
of local modes in
NaCl as a function of
~oi, on the basis of
RI and DD models.

We have used Eqs. (9) and (10), respectively, to
compute the frequencies of infrared-active local modes
lying above the optical branches, and the corresponding
amplitudes of vibrations of impurity atom, as function
of &~i for both KCl and NaCl. We have made calcula-
tions with both Kellermann's subdivision of k space
(k,=p,/10, etc.) and our finer subdivision (k,=p,/20,
etc.). The two treatments give the same results, which
are shown in Figs. 1—4. On the graphs are also shown the
experimental findings for U centers, ' and results of

THEOR'

EXPTL:
10—
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6.

(~).4.69XId—4--=—
DO

A. A. Maradudin, 1962 Brerideis Urliversity Summer Iestitlte
Lectures zrt Theoretccat Physics (W. A. Benjamin, Inc. , New York,
1962), Vol. II; P. G. Dawber and R. J. Elliott, Proc. Roy. Soc.
(I ondon) A273, 222 (1963).I G. Schaefer, Phys. Chem. Solids 12, 233 (1960);A. Mitsuishi
and H. Yoshinaga, progr. Theoret. Phys. (Kyoto) Suppl. No. 23
241 (1962).
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"H. B. Rosenstock, Phys. Rev. 119, 1198 (1960); R. F. Wallis
and A. A. Maradudin, Progr. Theoret. Phys. (Kyoto) 24, 1055
(1960).

TABLE II. NaCl lattice-vibration eigenvectors for wave propagation along the nonsymmetry direction $9,5,11/10.
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TAnLz III. Angular frequencies (in 10"rad/sec) for impurity vibrations in NaC1 and KC1.

Impurity
mass &Cl

Calculated eigenfrequencies,

NaCl KCl
DD
~(f)

Impurity
ion

U center absorption

NaCl

G)p Calp

1.009
2.015

0.972
0.943

15.9
11.2

15.1
10.6

14.2
10.1

13.5
9.4

H
D

10.52 9.36
6.73

Ratio 1.42 1.42 1.41 1.43 1.39

model for NaC1, with nearest-neighbor short-range
interactions in each case.

With respect to our own results, we note first from
Figs. 1 and 2 that the RI model gives somewhat higher
frequencies for the local modes than the DD model, as
would be expected. Next we see that there are critical
values of eqj for local modes to occur above the optical
branches in both crystals. Table III gives the results
from our calculations for the frequencies of local modes,
and their ratio, corresponding to ~cq equal to 0.972 and
0.943, the values for H—and D—,respectively. It con-
tains as well the experimental results for the absorption
frequencies observed for H and D in NaCl and KCl.
The ratio given by our calculations is about the same as
that of Wallis and Maradudin, " i.e., K2. It is seen
that experimental values are far lower than the calcu-
lated values on both models and for both crystals. On
the other hand, the experimental ratio, available only
for KCl, does agree quite well with the theory.

Amplitude of vibration of impurity atom, given by

Na Cl
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Figs. 3 and 4, increases with the decrease of mass of the
impurity as expected.

Since the DD model gives good results for the perfect
lattice, the poor agreement between our results and the
experimental endings for U centers indicates that the
U center cannot be treated as a simple isotopic impurity.

K CI
FIG. 3. Amplitude of vibration of impurity atom in NaCl, in

terms of Mci (x(f0) I', as a function of act, on the basis of RI and
DD models.
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FIG. 2. Frequencies of local modes in KCl as a function of 6Q],
on the basis of RI and DD models.

FIG. 4. Amplitude of vibration of impurity atom in KCl, in
terms of ilf c & I z(f 0) ( ~, as a function of Sot on the basis of RI and
DD models.
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The changes in force constants, polarization, and effec-
tive charge are large enough to have signiicant effect on
the frequencies of defect modes. Unfortunately it would
be extremely complicated to take these changes into
account.

CONCLUSIONS

For wave vectors directed along axes of symmetry in
the perfect rock-salt structure, the lattice-vibration
waves are either purely transverse or purely longi-
tudinal. For directions of somewhat lower symmetry,
viz. , when either one component of the wavevector is
zero or two of them. are equal, there is a pair of trans-
verse waves. But for all other wave vectors, the waves
are neither transverse nor longitudinal.

When isotopic impurities are introduced in the rock-
salt lattice, local modes will appear above the optical
branches for mass diBerence beyond a certain critical
value.

Evidently it is inadequate to treat U centers in KC1
and NaC1 as simple isotopic impurities harmonically
coupled to the lattice, without considering changes in
force constants, polarization, and eGective charge.
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Pressure Deyendence of the Electric Field Gradient in Metallic Indium*
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The shift of the "'In~vis~~~9is~ nuclear quadrupole resonance (NQR) in indium metal has been measured
at 25.5'C as a function of hydrostatic pressure to 8 kbar. In addition, the linear compressibilities at 25.5'C
and the linear thermal-expansion coe%cients and resonance-frequency temperature dependence in the room-
temperature region were measured. Since the electric Geld gradient is a function of three variables, these
measurements are insufIj. cient to separate the explicit dependences. The obvious third experiment, the eGect
of uniaxial stress on the NQR, is not feasible, as it would require detection of the broad NQR of indium in the
skin depth of a single crystal. We can therefore only infer that the major contribution to the change in'Geld
gradient is due to the change in distortion parameter (c/e) —1. A possible solution to this problem at one
temperature is discussed.

I. INTRODUCTION

HE conduction-band contribution should be the
major source of the nuclear-site electric field

gradient (EFG) in metals which have noncubic struc-
tures and whose conduction bands evidence an ap-
preciable degree of p-electron character. To date,
nuclear quadrupole resonance NQR techniques have
been applied to gallium' ' and indium ' ' (two s- and
one p-valence electron/atom) and antimonyr s (Ss' Sp')

*This work was performed under the auspices of the U. S.
Atomic Energy Commission. Reproduction in whole or in part is
permitted for any purpose of the V. S. Government.
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in an effort to assess the importance of the conduction
electrons as a source of the EFG in metals.

In principle, information relating to the conduction-
electron distribution could be extracted from a model
which satisfactorily represents the EFG at the nuclear
site in a metal. However, it is necessary that the criteria
used to assess the merit of a model be detailed enough
to be signi6cant. A comparison between a theoretical
value for the EFG and the experimental value at a
single temperature and pressure is insufFicient. We
have therefore measured the eBect of pressure on the
NQR, the linear compressibilities, and the linear
thermal expansivities in metallic indium, in order to
enlarge the set of available criteria which may be used
to check theoretical models of the electron-charge
distribution in indium. Indium was chosen for this in-
vestigation because of its relatively simple structure
and because there has been considerable interest in the
fact that its quadrupole coupling parameter is extremely
sensitive to temperature change. '

The indium lattice is most simply viewed as a fcc

9 W. J. O' Sullivan and J. K. Schirber, Bull. Am. Phys. Soc. 9,
25 (1964).


