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the presently investigated multiplets, the results of this
experiment should be regarded as superseding his and
Foster's values.

For all multiplets except the one at 4368 A the spread
between the most recent theoretical and experimental
results, namely those of Bates and Damgaard, Kelly,
Vainshtein, Buttrey and Gibson, Doherty and this
experiment, does not exceed 26+~. One of the rare
cases is encountered, where the agreement between
several independent methods is so good that one may
consider the mean values from the above mentioned
methods reliable to within 10/o. These mean values are

recommended for future applications and are assembled
in Table II.

The comparison indicates, furthermore, that for the
lighter elements the advanced theoretical methods
give results as reliable as experiments. Since the former
involve less time and effort (the Coulomb approxima-
tion by Bates and Darngaard is generally available),
they should be extensively applied. On the other hand,
experimental determination of transition probabilities
should be concentrated on transitions where interfer-
ences in the transition integrals or deviations from
I.S coupling occur.
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The kinetic model of Bhatnagar, Gross, and Krook is used to study the double Fourier transform of the
time-dependent density correlation function G(r, t). The results are appropriate to a dilute fluid for arbitrary
ratio of wavelength to mean free path. The results of the model calculations are compared to those derived
from the linearized hydrodynamic equations. Since neutron and light-scattering experiments can be analyzed
in terms of G(r, t), this comparison indicates that the hydrodynamic description should be applicable for mo-
mentum transfers less than (h/2X), where) is the collision mean free path in the fiuid.

I. INTRODUCTION

t
'HE theory of nonequilibrium phenomena has been

significantly extended by the development of
relationships between the linear response of a system to
an external disturbance and the time-dependent correla-
tion functions expressing the propagation of equilibrium
Quctuations in the system. These developments have
been primarily used to give exact expressions for
transport coeKcients in terms of time-dependent corre-
lation functions. ' It is, however, sometimes profitable
to use our knowledge of the linear response to determine
certain properties of those correlation functions that are
directly measurable.

In recent years inelastic scattering of slow neutrons
has become an important process for the study of
molecular dynamics in condensed states of matter. '
In a well-known work Van Hove' showed that the en-

ergy and angle differential cross section is proportional
to the double Fourier transform of a time-dpendent
correlation function G(r, t). By de6nition, G(r, t) is the
equilibrium ensemble average of a product of two
time-dependent density operators and is therefore

*Work supported in part by the U. S. Atomic Energy
Commission.

'R. Kubo, Lectzzres in Theoretical Physzcs (Interscience Pub-
lishers, Inc. , New York, 1959), Vol. I, Chap. 4.

'Inelastic Scattering of Xeutrons in Solids and Liquids (Inter-
national Atomic Energy Agency, Vienna, 1961);also Vol. I, 1963.' L. Van Hove, Phys. Rev. 95, 249 (1954).

closely related to the linear response of the system to an
externally induced density disturbance. As recently
emphasized by KadanoG an.d Martin, 4 connections of
this type can be usefuOy exploited, particularly in the
hmit of slow space and time variation. In the present
work we consider arbitrarily fast space and time varia-
tion, but are restricted to the limit of low density.

Since G(r, t) is in general complex its interpretation
as a time-displaced, density-density correlation function
has no simple physical meaning. ' On the other hand, the
physical content of this function is simply revealed
when it. is considered in classical terms. For then G(r, t)
gives the probability per unit volume of ending an atom
at (r,t) given an atom at the origin at t=0 and clearly
describes the space-time evolution of density correla-
tions in the system. In the following sections we make
explicit use of this physical interpretation; consequently,
the calculation concerns only classical systems. '

When a system initially in equilibrium is perturbed
very slightly, its behavior, except for short-time transi-
ents, can be described in terms of the variations of a
small number of macroscopic quantities. Moreover,

z L. Kadanoff and P. C. Martin, Ann. Phys. (N. Y.) 24, 419
(1963).' For an interpretation of the imaginary part of G(r, t), see L.
Van Hove, Physics 24, 404 (1958).

'The relation between neutron scattering and the classical
correlation function has been studied by R. Aamodt, K. M. Case,
M. Rosenbaum, and P. F. Zweifel, Phys. Rev. 126, 1165 (1962).
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with the system in local thermodynamic equilibrium,
the ensuing changes will occur only gradually. Since the
linear response of the system in these situations can be
calculated on the basis of linearized hydrodynamic
equations, the same equations can therefore be used to
determine the long-wavelength components of the cor-
responding time-dependent correlation functions. It is
widely recognized that the density correlation function
G(r, t) has a hydrodynamic limit for slowly varying dis-
turbances. ' ' This limit exists for any Quid, and in
neutron scattering it is a general result to be expected
at su%ciently small momentum transfer.

The two processes which characterize hydrodynamical
behavior of a classical one-component Quid are sound
propagation and heat conduction. The importance of
the latter in connection with scattering near the critical
temperature has been examined by Van Hove. ' The
presence of sound-wave propagation gives rise to a peak
in the inelastic portion of the scattered neutron spec-
trum. This sound-wave peak is a quite general feature
of an interacting many-body system. For liquid helium
II near absolute zero, ' or for a harmonically vibrating
crystal lattice, it can be described as the emission and
absorption of single, freely propagating phonons. For
helium at higher temperature or for a classical fluid,
it can be described in terms of a more conventional
local thermodynamic equilibrium disturbance which is
propagated by frequent collisions. Recently, EgelstaG'
and Ruijgrok" have considered the excitation of sound
waves as a basic process in coherent neutron scattering
by simple classical liquids. It is interesting that they
reached similar conclusions, although Ruijgrok started
from approximate hydrodynamic equations while Egel-
staff started by analogy to a polycrystalline solid. Per-
haps the most interesting application of the linearized
hydrodynamic equations is to liquid helium II, where
heat conduction is replaced by second-sound propaga-
tion. The possibility of seeing a second-sound peak in
neutron scattering has been recently discussed by
Hohenberg and Martin. "

The hydrodynamic limit is not sufhcient to determine
the behavior of G(r, 1) in the space-time region of interest
for neutron-scattering experiments. A theory at the
molecular level is needed, but a calculation from first
principles for a liquid is not feasible. There have been
several attempts to develop a theory of neutron scat-
tering in liquids in terms of specific dynamical
models. ""These theories have been primarily focused
on the self-correlation function G, (r,t), which gives the
probability per unit volume of finding an atom at

r P. G. deGennes, Physica 25, 825 (1959).' Michael Cohen and Richard P. Feynman, Phys. Rev. 107, 13
(1957).' See P. Egelsta8 in Ref. 2 (1963), Vol, I, p. 203.

"Th. W. Rnijgrok, Physics 29, 617 (1963)."P. C. Hohenberg and P. C. Martin, Phys. Rev. Letters 12,
69 (1964)."G. H. Vineyard, Phys. Rev. 110, 999 (1958)."K.S. Singwi and A. Sjolander, Phys. Rev. 119, 863 (1960);
A. Rahman, K. S. Singwi, and A. Sjolander, ibid. 126, 997 (1962).

position r and time t knowing that the same atom was at
the origin at time zero. The motion of a single atom
described by G, (r,t) is then related to G(r, t) through
Vineyard's" convolution approximation. This approxi-
mation is known to fail in the hydrodynamic limit"
appropriate to small-momentum transfer, but its ap-
plicability in the range of momentum transfer currently
accessible to experiment is an unresolved question.

We would like to have a molecular theory which
demonstrably has the correct hydrodynamic limit.
Even if this can be done only for a highly idealized
system, we will then have some idea as to the range of
applicability of the hydrodynamic equations in calcu-
lating the density correlation function. Since the linear-
ized hydrodynamic equations give explicit expressions
for the scattered neutron. energy distribution in terms
of thermodynamic derivatives and transport coef-
ficients, 4 an indication of their range of applicability
would be quite useful. The only system for which we
have such a theory is the dilute gas. As long as we re-
strict our attention to a time scale long compared to
the duration of a collision, the response to a small
density disturbance in a gas can be calculated from the
Boltzrnann equation. " In particular, the linearized
Boltzmann equation provides an appropriate descrip-
tion of sound propagation in gases" for arbitrary
frequency.

In this paper we consider a description of G(r, t)
based on the linearized Boltzmann equation. By speci-
fying an appropriate initial condition the integral of the
phase-space distribution over velocity can be identified
with G(r, t). Actually, the description can be made ap-
propriate for either G(r, t) or G, (r,t), depending on the
particular form of the equation employed. This was
recently pointed out by Nelkin and Ghatak'~ in using
the linearized Boltzmann equation of neutron transport
theory (in which the collisions do not conserve energy
and momentum) to calculate G, (r, t). In order to simplify
the computation these authors introduced an approxi-
mate transition probability. A similar approach is
followed here, but since G(r, t) corresponds to the evolu-
tion of a density disturbance it is essential that our ap-
proximation does not distort the basic propagation
mechanisms by violating the kinematical laws of con-
servation. In fact, the conservation of energy and mo-
menturn constitutes the only difference between our
description of G(r, t) and that of G, (r,t) in Ref. 17, but
this diGerence makes the calculations considerably
more complicated.

The kinetic model which we employ is already in use
in other contexts related to rarefied gas dynamics. In
the next section we discuss briefly the model and pro-

~4 P. G. deGennes in Ref. 2 (1961),p. 239.
r~ H. Grad, Zandblck der Physik, edkted by S. Flagge (Springer-

Verlag, Berlin, 1958), Vol. 12, p. 205.
"G. E. Uhlenbeck and G. %. Ford, Jectures il Statistical

3Eechunics (American Mathematical Society, Providence, Rhode
Island, 1963).

Mark Nelkin and Ajoy Ghatak, Phys. Rev. 135, A4 (1964).
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ceed to identify G(r, t) with the solution of the transport
equation. In our context the model enables us to evalu-
ate the Fourier transform of G(r, t) exactly in terms of
analytic functions. This evaluation is somewhat simpler
if we relax the requirement of energy conservation. The
calculation is applicable to arbitrary ratio of wavelength
of the disturbance to mean free path; in particular, the
correct hydrodynamic limit is obtained. In Sec. III we
discuss the comparison of our results with those based on
the linearized hydrodynamic equations and examine the
applicability of the latter in the region where the
wavelength is comparable to the mean free path.

II. DESCRIPTION OF G(r, tl

In formulating a description of G(r, t) we are interested
in the response of a molecular system to a microscopic
density disturbance. It is clear from the physical in-
terpretation of the correlation function that this dis-
turbance arises as a result of the localization of a par-
ticle. Because the system deviates from equilibrium
very slightly the space-time evolution of the disturbance
can be appropriately described by the linearized Boltz-
mann equation with proper initial condition. The prob-
lem is well defined once the connection between G(r, t)
and the solution of the linear transport equation is
established. The task of actually solving the Boltzmann
equation for a particular two-body interaction is suf-
ficiently involved that, in an initial attempt, we con-
sider the alternative approach of using a kinetic model
as an approximate description.

In simplifying the transport equation, we replace the
detailed description of the interatomic collisions by a
single parameter model. As long as this model is con-
structed to maintain the conservation of particle
number, momentum, and energy, the essential features
of the propagation of a density disturbance will be cor-
rectly described. The kinetic equation that we use is

ter
I
—+v.& If(r», t) =~ F(&)Z(r, t) f(r,v,t)—
Bt

2 trv' 3 r(r, t)
+pF(~) —v a(r, t)+I —,—,(1)

'vp k'vp 2 Tp

where f is the deviation from equilibrium of the one-
particle distribution function, n (r,v, t) =pF (v)+f(r,v, t),
and p is the constant density. Other symbols are defined
as follows:

F(p) = (~pp') '" exp( —"/»')
2kTp

$) 2
p.

q(r, t) = (1/p) d'pvf(r, v, t),

Z(r, t) = d'v f(r,v, t),

pTp 'r(r, t) = (1/3ppp) d'pp'f(r, v, t) Z(r, t), —

where M is the atomic mass, Tp is the equilibrium tem-
perature of the Quid, and v. is the deviation in the local
temperature, T= Tp+r. The quantity n is a constant
and is the parameter of this model. Equation (1) is the
linearized form of a model 6rst proposed by Bhatnagar,
Gross, and Krook' (BGK); subsequently it has been
used in a variety of applications. ""One can readily
verify that all the collisional invariants are preserved
and that an B theorem exists. The connection between
this equation and the linearized Boltzmann equation
has been demonstrated by Gross and jacksonPP" They
showed that (1) follows immediately from the Boltz-
mann equation if all the nonzero eigenvalues of the col-
lision operator are approximated by a single constant
n. This parameter has the interpretation of a relaxation
frequency so the BGK model is often called the single-
relaxation-time model. Since the zero eigenvalues are a
consequence of conservation laws one can expect the
kinetic model to give reasonable results for macroscopic
quantities, particularly in the hydrodynamic region.
Considerations of the stress tensor and heat Qux as far
as the second (Burnett) approximation indicate that this
is indeed the case."In the same spirit one can employ
more elaborate models characterized by a number of
relaxation times. "A description with more adjustable
parameters allows more latitude in the scope of applica-
tion, but it also loses much of the simplicity which is the
essential advantage of a kinetic model.

To study G(r, t) we consider the initial value problem
with

f(r,v,o) =F(p)5(r). (3)

' P. F. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94,
511 (1954).' For example, E. P. Gross and M. Krook, Phys. Rev. 102,
593 (1956);E. P. Gross, E. A. Jackson, and S. Ziering, Ann. Phys.
(N. Y.), 1, 141 (1957)."E.P. Gross and E. A. Jackson, Phys. Fluids 2, 432 (1959)."E. P, Gross, in Rare/ed Gus Dynamics, edited by F. M.
Devienne (Pergamon Press, Ltd. , London, 1960), p. 139.

~ H. T. Yang, Phys. Fluids 2, 237 (1959).
~L. Sirovich and J. K. Thurber, in Rarefied Gas Dynamics,

edited by J. A. Laurman (Academic Press Inc. , New York, 1963),
Vol. I, p. 159.

It is necessary that the particle initially localized at
the origin have a Maxwellian distribution in velocity
because inherent in the de6nition of the correlation
function is an ensemble average. %e now make the
identification

G(r, t) =Z(r, t)+ p

since the two quantities have the same physical in-
terpretations. Equations (1) through (4) therefore
constitute our description of G(r, t).

In their original application of. the kinetic model
BGK considered the problem of small-amplitude oscil-
lations in gases. This is the same problem envisaged
here. Their calculations, however, need to be extended
for our purposes since they studied in detail only the
dispersion relation and we require explicitly the velocity
integral of the distribution function. Actually, the corre-
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FIG. 1. System response to a microscopic density disturbance
for various ratios (ratio = 24r&2y) of wavelength to mean free path
as calculated from Eqs. (6) and (7), R= (Itep/rr)S(x, y).

5(K,io) = dprG(r t)ei(K r—cubi)

lation function G(r, t) is not a quantity of direct experi-
mental interest. What is measured in neutron scattering
is its Fourier transform

and the p„are dered by|1 asff1 a3~2+y(a3C1 a4C2)

Y2 ae~l+a&2+y(a4C1+a3C2)
'rp ali-fl a2~2+y(a3A1 a4A2) )|4 a2~1+a1~2+y(a4A1+a3A2)

with

Gl= 1—yU —2$yel a2 ———y(V+2xe, ),
as= ep —U/2, a4 ——e4 —V/2,

as ——U/2+yes, as= V/2 —yel,

el=aU —yV, e2
——xV+yU —1,

e3= (x' —y') U —2xyV+y, e4 ——(x' —y') V+2xyU —x,
A 1——1—

—,'y(33+ xpl+ U+ 2xel),

A 2 ———-', y (e4+xP2+ V+ 2xe2),

&1=1
s, y(es—+—xpl+U yp2), —

82= —-', y(e4+xP2+ V+yP1),
Cl = —', (e3+yp2+ U+ 2ye2),

C2= (e4 yP1+ & 2yel)

P 1
——2 (x' —y') (xU —y V)+ 4xy (1—y U—xV),

P,= 2(x' —y') (xV+yU —1)+4xy(xU —yV) —1,
U= (m.)'"U'(x,y), V= (lr)'"V'(x, y).

The functions U' and V' are, respectively, the real and
imaginary parts of the probability integral of complex
argument,

W(x+iy) = U'(x, y)+iV'(x, y)

= 2 Re dt d'rG(r, t) e'&x'~~'& z 00 e
—f2

dt
x t+iy—

The second relation holds because G(r, t) is even in t. For
isotropic systems G(r, t) is a function only of the magni-
tude of r, so S which is even in or depends only on the
magnitude of K.

In scattering problems the variables AE and Ace

represent momentum and energy transfers, but with
regard to the kinetic equation K and co are more ap-
propriately interpreted as the wave number and angular
frequency of the density disturbance. This is an explicit
manifestation of the relation between equilibrium den-
sity fluctuations and the neutron-scattering properties
of the system.

The calculation of 5(K,co) is a straightforward matter
and the reader is referred to BGK for details of the solu-
tion of Eq. (1). After a number of algebraic manipula-
tions we obtain

Using tabulated values of U' and t/'" we have com-
puted S as a function of x for different values of y.
Some typical results are plotted in Fig. 1 in terms of the
dimensionless quantity R= (Esp/7r)5. For comparison
we show in Fig. 2 corresponding results calculated in
the isothermal approximation'3 (r =0) This approxi. ma-
tion simplihes the algebra considerably, and we 6nd
that S in this case is also given by (6) but (7) is replaced
by

& = U(y'+-')+*yV —y

y2 ——V(y'+-,')—xyU,

&3
——1—y U(1+2x')+ 2xy' V,

y4= 2xy —yV(1+2x') —2xy'U.

2 Pl+3 7274
5(x,y) =

&&P V3'+V4'

As we examine the results in Figs. 1 and 2, we see

(6) that all the gerieral features of density correlation are
displayed in the Fourier components of G(r, t). In these

where we have introduced the dimensionless variables

x= ~/rsvp and y=n/Xv„—
24 V. N. Faddeyeva and N. M. Yerent'ev, Tables of the Proba-

bility Integral for Complex Argiements (Pergamon Press, Ltd. ,
London, 1961).
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calculations the dimensionless parameter y is a measure
of the wavelength of the disturbance as compared to
the collision mean free path. Thus, the Knudsen region
is characterized by y(&1, whereas the hydrodynamic
region corresponds to y))1. When collisions are rare
(small y) all disturbances dissipate by, free particle flow,
and since these motions are uncorrelated the higher
frequency components are more strongly attenuated.
In the collisionless limit we have

0,8

0.6

lim5(x, y) = P(sr)' sEvo] ' exp( —x).
y—+0

(10)
0.4

This is a general result independent of models. It is easily
checked analytically that the isothermal calculation
gives this limit correctly, and the numerical results
using (7) also satisfy (10). As the wavelength becomes
comparable to the mean free path, correlation effects
from successive collisions become appreciable and
thereby cause the attenuation at certain frequencies
to be markedly reduced. For very long wavelength dis-
turbances the response varies sharply with frequency.
This is the region where transport processes are domi-
nated. by collisions so it is not surprising that the iso-
thermal approximation gives significantly different
results.

The present calculations for large y are particularly
simple to interpret in terms of equilibrium density
Quctuations. The processes involved arise as a conse-
quence of fluctuations in pressure and temperature (or
entropy). The mechanical and thermal eRects are
generally coupled, but at low temperatures or long
wavelengths they manifest in diferent ways. It is well
known that the pressure waves propagate adiabatically
while the thermal waves diffuse. 25 This phenomenon,
long familiar in the theory of Rayleigh scattering, "
gives rise to a spectrum consisting of two equally dis-
placed components (the Brillouin doublet) due to sound
propagation and a central component due to heat con-
duction. The curve for y= 2 in Fig. 1 exhibits just this
behavior, while the corresponding curve in Fig. 2 shows
only the sound peak, since temperature variations are
ignored. It is interesting to note that the sound peak
occurs in these two calculations at values of x predicted
by the adiabatic and isothermal sound speeds, (-', )'"vo
and ts/VZ, respectively. There appears to be little dis-
persion effect at this value of y.

Finally, it should be emphasized that by virtue of its
relation to the Boltzmann equation, the kinetic model
is constrained to give results appropriate to dilute Quids.
This can be seen from the prediction that in the long-
wavelength limit the sound-speed. values are those ap-
propriate to monatomic gases. Also, we can obtain an
estimate of the ratio of specific heats as implied by the
present description. It is known that the intensity ratio

"See, for example, J. Frenkel, Kiaetio Theory of Liquids,
(Oxford University Press, London, 1946)."L.D. Landau and E. M. Lifshitz, Jilectrodynansics of Continl-
ous Media (Pergamon Press, Ltd. , London, 1960).
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FIG. 2. Same as Fig. 1 except that the response is calculated in the
isothermal approximation where S is given by Eqs. (6) and (9).

of the central peak to displaced peaks is given by
(Co—C„)/C, .s' For y=5 we find a ratio of 0.69 as
compared to —', for ideal gases.

III. DISCUSSION

Qn the basis of a kinetic model in which collisions
are replaced by a simple relaxation process, the energy
distribution of neutrons coherently scattered by a Quid
has been expressed in terms of a dimensionless parameter
y. This parameter is inversely proportional to the
momentum transfer and directly proportional to the
relaxation frequency n, which represents the average
rate at which the molecules approach local equilibrium.
For large y the correct hydrodynamic limit for the
density correlation function is obtained. This limit is
characterized by a central peak whose width is deter-
mined by the rate of heat diffusion, and side peaks
whose location and width are determined by the fre-
quency and attenuation of sound at a given wave
number K (SE is the momentum transfer in a scattering
event). The intensity and location of the peaks are
determined by thermodynamic quantities characteristic
of a dilute gas, and are a consequence of the Boltzmann-
like description. The widths of the peaks are determined
by transport coeKcients which depend on the particular
kinetic model used.

The most striking qualitative feature of the present
results is the presence of a sound-wave peak and its
persistence in Fourier components of the density correla-
tion function for wavelengths comparable to a mean free
path. Similar structure in the inelastically scattered
neutron energy distribution has often been discussed
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FIG. 3. Comparison of kinetic and hydrodynamic descriptions
as the ratio of wavelength to mean free path decreases; R is
calculated as in Fig. 1 and RHy is calculated from Eq. {14).
Abscissa is in units oi co/Evo. Also shown are the isothermal results
from Fig. 2 (dashed curves).

as an indication of solid-like behavior. The presence of
such structure for a gas makes it clear that the identi-
fication of quasicrystalline atomic motions in liquids
must be made with some care.

Recently, KadanoG and Martin' derived an expres-
sion for S(Z,co) from a set of linearized hydrodynamic
equations appropriate to a one-component Quid. With
appropriate modifications of the notation, their Eq.
(87a) becomes

C,~ DrE'
S(k,ro)=i 1—

i

C,IoP+ (DrK')'

C'E4F

are quite clearly displayed in (11).The central peak is
seen to be a Lorentizan. If the diffusivity coefhcient Dz
is replaced by the self-diffusion coefficient D, the central
peak appropriately describes the long wavelength
behavior of the self-correlation function G„(r,t). This
replacement is appropriate for a gas where heat is car-
ried entirely by particle motion but is not appropriate
for a liquid. The BGK model does not allow an un-
ambiguous calculation of the self-di6usion coeKcient or
of G, (r,t). Thus, even for a gas, a quantitative study
of the accuracy of the convolution approximation
relating G(r, t) to G, (r,t) must await more accurate
solutions of the appropriate linearized Boltzmann
equations.

The second term in (11) describes the response to
pressure disturbances and is associated with the propa-
gation of a damped sound wave. The absorption is seen
to be inversely proportional to the square of the
wavelength. We expect (11)to be valid when the system
is effectively in local thermodynamic equilibrium. For
more rapid disturbances we expect dispersion and modi-
fied absorption. For a gas where local thermodynamic
equilibrium is maintained by collisions, and structural
relaxation phenomena can be ignored, we expect the
BGK model to give a reasonable estimate of the range
of lr for which (11) applies.

In order to compare (11)with (6), we must specialize
the prediction of (11)to the BGK model. Since we start
from the linearized Boltzmann equation, we are con-
strained to the dilute gas results

C./C, = s, c= (os)'Is&o, and $= 0. (12)

lr = sp (keo'/n) and ti= pMvoP/2rr. (13)

The same results are obtained from the nonlinear BGK
model. "

With these substitutions, and returning to the dimen-
sionless variables x and y, (11)becomes

2 5
S(x,y) = +

10n x'+ (1/2y)' (x'——,')'+ (x/y)'

The transport coeScients are dependent on the
model. Applying the Chapman-Enskog method, " the
first approximation (Navier-Stokes) gives

D +2 (ios co+2)
X (11)

(ops cols)s+. (oigsl')s

2(x' —-')

(x'—l)'+ (x/y)'-
(14)

where c is the sound speed, Dr lr/MpC„, ——

a is the thermal conductivity, p is the shear viscosity,
and P is the second or bulk viscosity.

The eGects of heat conduction and sound propagation

In Fig. 3 we compare the results obtained from the
hydrodynamic description of Eq. (14) with those ob-
tained from the kinetic description of Eq. (6). For y= 5
(not shown) the curves are practically indistinguishable.
For y=3 they are quite similar, but for y&1 they be-
come quite different. The greater persistence of the dis-

"J.L. Lebowitz, H. L. Frisch, and E. Helfand, Phys. Fluids
3, 325 (&Wo).
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placed peak evident in the kinetic results is to be ex-
pected since the BGK model is known to predict" a
sound attenuation which increases less rapidly than the
square of the frequency.

We thus find that the hydrodynamic description gives
comparable results to our kinetic model for y) 2. This
indicates that the hydrodynamic description is reason-
able for values of tt less than (n/2vo) = (2X) ', where X

is an eRective mean free path for collision.
There is no sound theoretical basis for extrapolating

to moderately dense systems. In fact, it is clear that the
results obtained here are not even qualitatively correct
for a strongly interacting medium where appreciable
local correlations exist. However, in the region where
these correlation eRects do not predominate, one might
expect a description based upon the linearized hydro-
dynamic equations to be appropriate. For example,
such a description should be applicable to liquids for
very long wavelength disturbances. In neutron scatter-

ing, or light scattering where the process can similarly
be described in terms of density correlations, this ap-
proach will break down for those momentum transfers
where explicit eRects of atomic structure appear in the
angular distribution of the scattering. Since structure
eRects do not manifest in general for ~&10' cm ', Eq.
(11) should provide a reasonable calculation of the
scattered energy distribution at these low values of
momentum transfer. This is given further plausibility

by the agreement' obtained with experiments on in-

coherent neutron scattering on the basis of a simple
diRusion model in this range of momentum transfer.
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A simple source for the production of continuous cold plasmas and intense line spectra associated with a
particular gas is described in its application to helium. Plasma densities and temperatures have been meas-
ured spectroscopically. When using helium or neon gas the device becomes an intense source of ionizing radia-
tion for studies of the chemical reactions induced by the ionizing ultraviolet. The intensity of this radiation
has been measured with reasonable accuracy by very simple photocells which are easily constructed in the
laboratory and are only sensitive to vacuum-ultraviolet radiator; more than 10 ' 584-A photons per second
are emitted by a 30-W source. The mechanism is via ion-electron recombination from a 1660'K plasma of
~10"ions/'cm density.

I. INTRODUCTION

HE importance of ionizing radiation in inducing
chemical reactions is widely recognized. For this

reason we have prepared a simple intense source of
ionizing ultraviolet light, monochromatic at 584 A, to
study the chemical effects of the solar ionizing ultra-
violet on planetary atmospheres and surfaces in order
to contribute to the scienti6c base of the space program.

II. METHOD

The Sherwood project —the attempt to control
thermonuclear energy —has taught us a great deal
about the properties of plasmas, and in particular that
for helium gas. One of the principal results is that in a
moderately dense helium plasma the rate of neutraliza-

*This research was supported by the Directorate of Chemical
Sciences, U. S. Air Force Of5ce of Scientific Research, Grant No.
AF-AFOSR 245—64.

tion of He+ by
2e +He+= He+e

is very rapid. ' In addition good methods are available
for the measurement of plasma temperatures and
densities. ' With the temperatures and densities known
the rate of the three-body ion-electron recombination
can be calculated. "and compared with the observed
intensity of the 584-A 2 'I' —1 'S line.

Our source is a very simple and low-power device for
producing plasmas of 1660'K and number densities
of 1013 cm ' over a volume of several cubic centimeters.
We find an intensity of 4&1015 584-A photons per
second cubic centimeter.

' E. Hinnov and J. G. Hirschberg, Phys. Rev. 125, 795 (1962).
'F. Robben, W. B. Kunkel, and L. Talbot, Phys. Rev. 132,

2363 (1963).' D. R. Bates, A. E. Kingston, and R. W. P. McWhirter, Proc.
Roy Soc. (London) A267, 297 (1962); A270, 155 (1962).


