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Electronic States of a Kronig-Penney Crystal with Random Atomic Positions
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The density of states for a one-dimensional system of r identical 8-function atoms randomly distributed
on X lattice sites (lattice spacing d) is derived in the limit as r and X approach infinity by a nonperturba-
tional method. The case for which only one atom is allowed on a lattice site (F-D) and the case for which
this restriction is dropped (8-E) are both treated. In the limit as r/X and d approach zero, keeping the
average number of atoms per unit length fixed, a common limit for the density-of-states function is ap-
proached in the F-D and B-E cases. This limiting function is identical with the one found by Klauder using
a Brueckner-like approximation.

I. INTRODUCTION

S TUDIES of the behavior of an electron in a field of
randomly distributed scattering centers are relevant

to the understanding of solids with defects, disordered
alloys, liquid metals, and the like. Since the application
« finite-order perturbation theory to this problem leads
«misleading results, it has been necessary to devise
other techniques and to concentrate on rather simple
models.

A one-dimensional model that has been the focus of
considerable interest assumes that identical scattering
centers are positioned along the x axis according to a
Poisson distribution and that the potential function
describing the interaction between the electron and
each scatterer is a 8 function. Lax and Phillips' adapted
the node-counting method of James and Ginzbarg' to
find the integrated density of states for this problem
numerically. Frisch and Lloyd' treated it analytically
using methods from probability theory. Klauder4 used
the Green's function method of many-body theory to
investigate several models. He calculated the density
of states for the one-dimensional 8-function model in
detail using five different types of restricted diagram
summations. Methods similar to Klauder's have been
applied to the problem of electrical conductivity and
to density-of-states calculations. '

Throughout this paper we will use a saddle-point
method originally put forward by Korringa and the
present author' to treat one-dimensional models of
random binary alloys. The starting point for this
method is the matrix formulation introduced by
Kramers7 and developed to a high degree of generality

by James' which has been used for several treatments' "
of the electronic and vibrational states of one-dimen-
sional lattices. We consider arrays of r identical 8-

function atoms randomly distributed on X lattice sites
as r and E approach in6nity. The case where only one
atom is allowed on a lattice site (F-D) and where this
restriction is dropped (B-K) is treated.

In Sec. II we briefly discuss the assumptions behind
the saddle-point method and review the equations for
the integrated density of states obtained from it with
particular reference to the problems under considera-
tion here. An extension of the method whereby the
density of states can be worked out directly from a
knowledge of the saddle points is shown. The results
of some calculations are given in Sec. III, and certain
disagreements with the exact results of Refs. 1 and 3
are pointed out. In Sec. IV we prove analytically that
our results, for both cases, become identical with
Klauder's Brueckner approximation in the limit as r/I
and the lattice spacing approach zero in such a way
as to keep the number of atoms per unit length fixed,
and we discuss possible interpretations of our results.

II. THE SADDLE-POINT APPROACH

We will consider a one-dimensional lattice made up
of X cells each having the same length d. We wish to
find eigenvalues of the system,

+V(x) P=EP,
25$ ds

0(o) =09'~), 4'(o) =-O'Pd),

where the potential, V(x), is defined by specifying its
form in each cell. This problem can be treated' ' by
investigating the trace of the product matrix P
=XsXtXs Xiv i, where X„ is a 2X2 matrix that de-
pends on the potential in the eth cell and on the energy,
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where

A, =Ap+qD, (2)

and

( cosnd,
p=i

E (1/n) sinnd,

—n Slllnd

7

cosnd

—sinnd, —n(cosnd+1) ~D= (&/~d)l
k (cosnd —1)/n, —sinnd

with n= (2mE)'~'/h.
Let us first consider a system in which r atoms are

distributed over the E cells with the restriction that
no more than one atom can be in a given cell. Thy
product matrix for such a system is of the form
P'(h', r)=ApAAi . AiApAi where the order in which
the Ap and Ai matrices appear in this product is the
same as the order in which the empty and filled cells
appear in the crystal. The superscript i indicates which

of the
~ ~

distinct crystals that can be formed in this«r
way is meant. We know that the eigenvalues for a
particular crystal are those energies for which f'(E)
=trace P'=2. Although each crystal will have a dif-
ferent set of eigenvalues, we feel sure that in the limit
as X and r approach infinity, the distribution of eigen-
values (as described by a density of states or integrated
density of states function) will approach a limiting
distribution for all but a fraction of the crystals which
goes to zero in the limit. We make the statistical as-
sumption that this limiting distribution can be found
from the asymptotic form of the ensemble average of
the trace functions,

(f)F-n=
~

Z f'
rr

and is in fact the distribution of the energy values for
which limN, „„(f)En ——2. We will sometimes loosely
refer to these energy values as the eigenvalues of the
random system. This assumption is also discussed in
Sec. I, and possible difficulties with it are given in
Sec. IV. The coe%cient of s" in the expansion of
(Ap+sAi) N is the sum of all possible products of (Xr)—
matrices Ap with r matrices Ai. Also, the sum of the
traces of a set of matrices is the trace of the sum of the

E. The eigenvalues of the system defined in Eq. (1)
are those energies for which f(E)= trace P=2.

For the models that we are interested in, the poten-
tial is defined by giving the number of identical 5-
function atoms in each cell. If the eth cell contains q
atoms, then in the interval ed~x~ (m+1)d,

V(x) = —q(FEE/md) 5 (x—(I+-,')d),

where I' is a positive quantity. The exact form of the
matrix X„will depend on the method used to construct
it. Using the method of James, ' we obtain for a cell
containing q atoms

matrices. Thus, the average trace can be found from

where
(f)F D= trace(P)F o,

(N '1
(P)p r =

i (Ap+Ais) "s-"—'ds,
k r 2m-i

(3)

the contour of integration enclosing the origin. The
subscript F-D is used for this case because the scatter-
ing atoms are distributed as noninteracting particles
obeying Fermi-Dirac statistics.

The r atoms can also be distributed over E cells in
such a way that any number of atoms (up to r) can
appear in a cell. To describe such distributions by the
matrix method it is necessary to use the matrices A,
of Eq. (2) with q=0, 1, 2 . , r. The sum of all possible
products of X matrices such that P, q&&(number of
times A, appears) =r is given by the coefficient of s'
in the expansion of (Ap+Ais+Aps'+A, s'+ . )N, and
the number of such products that can be formed is
&iy r—1&

~. Thus, the average trace for this case can

be found from

(f)]3 E trace(P)E E,

where

(E+r 1q '1—-
(P)a E=

I p ]S 2S
r r 2~i

&&s- 'ds. (6)

The atoms in this case are distributed as noninter-
acting Bose-Einstein particles, which accounts for the
subscript. It must be admitted that the 3-E case has
no physical meaning because of the superposition of
atomic potentials, but it is useful for discussing some
formal questions that have been raised by other treat-
ments of this problem.

The integrals shown in Eqs. (4) and (6) could be
used to find (P) for any kind of atomic potential. They
simplify considerably for b functions, however, because
of the particularly simple form that the matrices A,
take for this case. Using Eq. (2) and the Taylor's
expansion for 1/(1 —s) we can rewrite (P)&F Q'I and

(P)E E in the form

t
1Vy-' 1

(P)F n ——.
i i

(1+s)NMiNs " 'ds,
&rr 2.i
pÃ+r 1-'1—

(1 s) NM Ns r ids- ——

r 2~i

where
Mi ——Ap+sD/(1+s),

Mp ——Ap+sD/(1 —s) .

There are a number of ways to evaluate the Xth power
of the matrices Mi and Mp, but we will use a method
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adapted from the work of I.uttinger. tt The matrices
Gt and 6& are defined by

Gi ——(Mi —cospI)/i sinp,

6& ——(Ms —cosqI)/i sinq,

which we will call t T. he Riemann sheets that make

g+ single valued can be chosen such that g (z*)=g~*(z).
The saddle point for E turns out to be t* and E
= (E+) '. The average trace can now be evaluated for
this case:

where
cosp = —,

' traceMt cosq= -', traceMs, (10) where
(f)p D= Qr cos(1VOi+Ot) expNyr, (16)

with

and

(f), =E++E-,
(f)s p L++L——

Ni-' 1
E~=

~
explVg~dz,

r I 2~i

N+r+1~-' 1
L&=

~

expNh~dz,
r ) 2~i

(12)

(13)

g~= aip+ln(1+z) —((+1/1V) lnz,
(14)

h~= aiq —ln(1 —z) —((+1/N) lnz,

where $=r/N.
Since our primary interest is in infinite crystals, it is

natural to use the saddle-point method to evaluate the
integrals in Eqs. (13) asymptotically in the limit as
E and r approach in6nity.

For the F-D case the equations for the saddle points
of E+ and E, dg~/dz=0, lead to the same quartic
equation. After factoring out 1+z, the following cubic
equation is obtained:

S

Q F„z"=0,
0

and I is the unit matrix. From Eq. (9) and the fact
that Grs= Gee=I it can be shown that Mt= exp(iPGt)
and Ms= exp(iqGs); hence,

Mp=cosNpI+i sinNpGt,

MP = cosNqI+i sinlVqG&.

These expressions can be inserted in Eqs. (7), and the
trace taken to find (f)p n and (f)s p. Since trace
Gt=trace Gs=0 for all z, the second terms in Eqs.
(11) do not contribute. We obtain, then,

Oi
——

Img+ (t),
Q =2CS(1—l)jt" lg+"(t)

I
'",

»= «g+(t) —»,
8 = —-,'argg "(t).

(17)

The quantity p, & and other factors in these equations
E

were taken from an asymptotic expression for r
which can be found from Stirling's approximation or
the saddle-point method

~

= $2p1V& (1—$)] 't' expNtjt,&ri
p, = —(1—$) ln(1 —t) —$ lng.

From the fact that the saddle-point method gives the
leading term in an asymptotic expansion, it follows
that p~ must be positive. Also, although it has no
effect on the value of the integral in Eq. (16), it is
convenient to choose our Riemann sheets in such a
way that oj is a nondecreasing function of the energy.

If the energy is such that Eq. (15) has three real
roots, it can be shown that

~ (f)p n
~

is greater than 2.
We will call such energies forbidden. Energies for which
Eq. (15) has one real and two complex roots will be
called allowed.

In accordance with our statistical assumption, we
take the eigenvalues of the random system to be those
energies for which (f)p D

——2. From the form of Eq.
(16) it can. be seen that if Ot is a nondecreasing function
of the energy then the number of eigenvalues of the
system having energies less than some allowed energy
8 is NOt(B)/p. In order to compare with other work,
we will be interested in the number of states per atorrI,

having an energy less than 8, i.e., the integrated density
of states

Fs= —2R+P(1—28), Fp= 2PX'8, —

Fs= —P(1+28)+2Xt 2R—P(1—2h)$, t15)

Fi 4XP 8 2X'(R+P8)——, —

where X= t/(1 —t), R= nd cotad, and 8= (md'/fPP')F.
In terms of the dimensionless energy 8 introduced above,
R can be rewritten in the form R= (28)'t' cotP(28)'~'

If the energy is such that Eq. (15) has one real and
two complex-conjugate roots, and investigation of the
function Reg+ shows that the saddle point which must
be used to evaluate K+ is one of the complex roots

"J.M. Luttinger, Phillips Res. Rept. 6, 303 (1951).

Since there are no eigenvalues in the forbidden energy
regions, the above de6nition can be extended if we
define 0I in such a region to be a constant equal to the
maximum value that it took on in the preceding
allowed region. Thus, by solving Eq. (15) for a large
number of energies and using the saddle points to
evaluate 0&, we can plot the integrated density of
states as a function of the energy. The energy depend-
ence of other functions in Eqs. (17), such as yt, can
also be investigated, but we will not make use of them
in this paper.

It is useful to notice that the density of states
pr(B)=dNt/d8 can be found from the saddle points
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without going through the process of numerically dif-
ferentiating Ni(E). Using Eq. (17), we have

(dg+l &~a+ « ~g+l
=Im/ /=Im( +

dh kdhI 5 r)t dh r)8)

),0

0.8

LAX AND P

~ FRI SGH AND

but r)g+/Bt=0 because this is just the equation that
dednes the saddle-point t. The only explicit energy
dependence of the function g+ comes from the function

p defined in Eq. (10). Carrying through the differentia-
tion, we have

t i(h) = (P/~k)
XRe{L1+ (R—1)t/2P h(1+t)]f,—'t'} (19)

0.6

0.4

e=O. I

where

fi——2 h+ 2Rt/P (1+t) —ts/(1+ t)', 0.2
B-E, /=0. 2
B-E, /=0. )

and R was defined following Eq. (15).
An analysis similar to the above can be carried out

for the B-E case. The equations for the saddle points
of L+ and L, dh~/ds=0, again lead to the same
quartic equation. After factoring out 1—s, the follow-

ing cubic equation is obtained:

3

P B„s-=o,

0 Q

-2.0 -).5 —).0
g

—0.5

F&G. 1. Integrated density of states for negative energies,
e=0.1. The solid curve is calculated from Eqs. (25) and (26)
and represents the continuum case.

Bs= —2R—P(1—2h), Bp 2PYs8,———

Bs———P(1+2h) j2YL2R+P(1—2h)],

Bi 4YP 8 2Y——'(R Ph—), — I'
dp, (h) =—Re{$1+(R 1)u/2Ph(1 ——u)]fs '~'}, (24)

where Y=$/(1+$) and the other quantities were de-
fined for Eq. (15).The energies for which this equation
has one real and two complex-conjugate roots are
called allowed, while those for which it has three real
roots are called forbidden. For all forbidden energies,

~ (f)s E~ )2. The saddle point that is used to evaluate
1.+ for allowed energies is one of the complex roots of
Eq. (20) which we will call u. The corresponding saddle
point of L is u*, and L = (L+)*. The average trace
for this case is

where

f,=2h+2Ru/P (1—u) —u'/(1 —u)'

III. RESULTS OF CALCULATIONS

We will describe our calculations in terms of the
dimensionless variables, e and 8, used in Refs. 1, 3,
and 4. It is easy to show that the average number of
atoms per unit length in the models we are consider-

ing is given by rt= $/d. The wave function and energy
of the bound state of an isolated 6-function atom as is
used in Sec. II are given, by Pp~ exp( (&p~x~) and Ep
= —(t't'/2ns)imps, where trp=P/d. The dimensionless den-

sity e is defined by e=n/Kp=(/P. We have already
used the dimensionless energy h= ', P/Ep in Sec. II. —-

Inserting P=)/s into the expressions of Sec. II we
have calculated the integrated density of states as a
function of 8 for F-D and 8-E models using various
values of $ and e. Some of these calculations, for e=0.1,
are shown in Fig. 1. It can be seen that the curves for
the F-D and 8-E cases approach the same limiting
curve as P approaches zero. This approach is even
more rapid in the positive energy region which is not
shown in the 6gure. From the construction of our
models it is clear that the distribution of scattering

(f)B E= Q2 cos(N02+~2) exp&72 (21)
where

es ——Imh+(u) )

Q, =2L$(1+/)]ii'[h~" (u) [

—'I'

ys =Reh~(u) —ti„
5,= ——,

' argh~" (u).
(22)

We have used the asymptotic expression

)N+r 1q-
~= L2sN&(1+$)] '~' expNti,

r i
where

t,= (1+g) ln(1+g) —
p in~.

The integrated density of states for this case is given by

Ns(h) = (1/x&)os(h), (23)

(20) and the density of states can be calculated from



A128 J. S. FAULKNER

TABLE I. Integrated density of states for
positive energies &=0.1.

0.05 7t.

0.10 7l-

0.15 7l-

0.20 7l-

Lax and
Phillips

1.044
1.442
1.882
2.342

Continuum
case

1.0607
1.4428
1.8767
2.3283

atoms approaches a continuous distribution if & and d
approach zero in such a way as to keep e fixed. We will
call this the continuum case.

Under the assumption that f is very small the ex-
pressions of Sec. II simplify. The quantity R can be
expanded in a Taylor's series, E= 1—-', PB/e'+ . . The
saddle points for the F-D and 8-E cases become equal
and proportional to $. Thus, t=u=(v, where v is a
complex root of

2&v'+ (1+28—4c)v'+ 2 (e—28)v+2 8=0. (25)

The density of states and integrated density of states
are given by

p(g) =1/vg Ref—it2

(26)
1V(8)=1/v. e Ref"'+1/7r Im(v —lnv),

where iV(0) = (f+si fn)/ ,v (27)

the values of X(8) given in Table I. For negative
energies, however, there are serious discrepancies. To
illustrate this we plot the data points from Refs. 1

and 3 for &=0.1 in Fig. 1. The disagreement between
these curves can be discussed in terms of three main
features: (1) The exact results predict an infinity in

the density-of-states function for h= ——', (the energy
of the bound state of the 5-function atoms in dimen-

sionless units). This agrees with a formula first derived

by Schmidt' and improved by Lax and Phillips. The
Schmidt formula was also derived from Frisch and
Lloyd's expressions by Morrison. " According to our
calculations the density of states for the continuum
case has a maximum in the negative energy region for
6(8. For e =0.1, the maximum value p, = 1.35259
occurs at an energy 8= —0.124; for &=0.01, p,
=3.25318 at 8= —0.456; and for c=0.001, p
=10.08699 at b= —0.496. From the trend shown by
these numbers, it can be seen that our results agree
with the exact ones only in the limit as e —+0. (2)
Klauder has already pointed out that the integrated
density of states for the continuum case at 8=0, E(0),
becomes equal to 1 for all &~8. Since we have an ex-
pression for E(B) t Eq. (26)j we can go even further
to show that for any ~

f=2(8+&v). where

cosf= 1—~re.
We have no doubt that this limiting process is con-
vergent because the integrated density-of-states curve
calculated from Eqs. (18) and (23) for a=0.1 and $
=0.01 is so close to the one calculated from Eq. (26)
that it could not be displayed in Fig. 1. In the next
section we will show that this expression for the den-
sity of states for the continuum case is identical
with one obtained by Klauder using the Brueckner

approximation.
Klauder has already compared his results with the

exact results of Refs. 1 and 3 so only a few points will

be touched on here. It seems certain that the dis-
tribution of scattering atoms is the same for our con-
tinuum model as in the Poisson model.

For e&1 our X(8) curves for the continuum case
agree very well with the exact results for both positive
and negative energies except that their curves show a
small tail extending down to arbitrarily low energies.
The occurrence of very low energy eigenvalues that
would cause such a tail has been attributed to the
superposition of atomic potentials. For finite $ we do
get a tail extending toward low energies for our 8-E
model, but this disappears as $ approaches zero. Since
the results for the 8-E and F-D models become
identical as g ~ 0, it can be seen that the superposition
of atoms has no effect on the integrated density of
states per atom for the continuum case in our results.

For && 1 our continuum results agree with the exact
results for positive energies as is shown for ~=0.1 by

TABLE II. Integrated density of states for 8, =0 and various 6.

0.01
0.10
0.25
0.50
1.00
2.00
5.00

10.00

Lax and
Phillips

0.986
0.892
0.768
0.607
0.456
0.320
0.200
0.141

Continuum
case

1.0000
1.0000
0.8183
0.6090
0.4406
0.3150
0.2005
0.1421

Schmidt

0.9901
0.9112
0.8107
0.6982
0.5774
0.4874
0.4465
0.4445

Optical
model

4.5016
1.4235
0.9003
0.6366
0.4502
0.3183
0.2013
0.1424

"J.A. Morrison, J. Math. Phys. 3, 1 (1962}.

In Table II we compare the exact values for E(0) with
those obtained from Eq. (27). We also show calcula-
tions of this quantity based on the Schmidt approxi-
mation mentioned above and the optical model pro-
posed by Lax and Phillips and rederived from their
respective points of view by Frisch and Lloyd, and
Klauder. Our expression for X(0) becomes identical
with the optical model for large e. It can be seen from
this table that the results of Eq. (27) agree better with
the exact results over the whole range of e than those
of either of the approximation methods, but the agree-
ment is still not good. Our results also show a band of
forbidden energies in the neighborhood of E=O for
e(isthat is not found in the exact results. (3) The
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tail on the integrated density-of-states curve extending
into negative energies becomes more pronounced for
smaller e. A similar effect occurs for our 3-E case for
finite $, but it vanishes as ( approaches zero.

p(h) = ImZg/(ire),

where Z5 is a root of the cubic equation

(28)

2 BZg' —2 (h+ e)252+Kg —1=0. (29)

Comparing Eqs. (26) and (28) it can be seen that the
results for our limiting case are the same as Klauder's
if the identification

can be made. Substituting this expression for Z5 into
Eq. (29) leads to an equation for m that is identical
with Eq. (25).

It is interesting to note that the expression for the
density of states obtained from Eqs. (30) and (28)
has the same form as that of the optical model of Lax
and Phillips except that the quantity ev in Z5 is replaced
in their expression with e. Their optical model de-
scribes the motion of an electron in a constant average
potential which, in dimensionless units, is just e. Re-
placing e with e~ is equivalent to using an average
potential that is both complex and energy-dependent.
We are thus led in a natural way to a formulation of
our results and Klauder's that is like the optical model
used in scattering theory.

For the problems that we have been considering
here, the primary difference between the Green's func-
tion method and the matrix method is that the two-
point boundary conditions for the eigenvalue problem

IV. DISCUSSION

An alternate approach to this problem is provided
by the fact that the density of states for an electron
moving in an array of scattering centers is propor-
tional to the trace of the Green's function for the
system. Klauder used this approach, making the sta-
tistical assumption that the density of states for a
random system can be obtained from the ensemble
average Green's function. He was then able to recast
the problem into the form of a Fermi field (the electron)
interacting with a Bose field (the scattering atoms).
Diagrammatic methods can be used to analyze the
calculation by perturbation theory of the Green's func-
tion for such a system. This problem is simpler than
the ones that normally occur in solid-state theory be-
cause the bosons do not interact with each other and
there is only one fermion.

For the one-dimensional problem with 8-function
potentials Klauder was able to calculate the density
of states for five different types of restricted diagram
summations. He called his highest order approxima-
tion the Brueckner approximation because of the struc-
ture of the terms included. In this approximation he
obtained

are incorporated into the Green's function at the
outset, whereas boundary conditions at only one point
(e.g. , defining the solution and its derivative at one
point) are used in the matrix method. Since the
Krarners' matrix gives the solution and its derivative
at one end of the crystal in terms of the values at the
other end, the two-point boundary conditions that
serve to de6ne the eigenvalues can be invoked at a
later stage of the calculation.

At the present time, we do not know why the results
that we get by treating an average trace function in a
manner that appears to be exact in the asymptotic
limit are identical with the results Klauder obtained
by leaving out certain terms in the evaluation of an
average Green's function. This Brueckner approxima-
tion seems to occupy a special position in the hierarchy
of approximations to the Green's function in that the
technical diS.culties encountered in trying to go beyond
it appear rather fundamental. From the comparison of
our results with the exact calculations, it appears that
averaging the trace functions performs a smoothing
process on the density-of-states function. If one as-
sumes that the average Green's function will give the
exact density of states if it can be completely evaluated,
it follows that the omission of diagrams which lead to
the Brueckner approximation performs exactly the
same smoothing process as averaging the trace func-
tion. Such a relationship is surprising, and an investi-
gation of it might lead to a better understanding of the
meaning of the Brueckner approximation for this
problem. There is also the question as to whether the
saddle-point approach will give the same results for
other one-dimensional problems as the Green's func-
tion method when the latter is evaluated to the level
of approximation discussed here. An afhrmative answer
to this question will mean that we have a simple
method to investigate the gross features of the density
of states and integrated density of states for a large
variety of one-dimensional problems as described in
I. On the other hand, the possibility cannot be ruled
out that averaging the Green's function performs the
same smoothing process on the density of states as
averaging the trace function. This would provide the
simplest explanation for the identity of the results,
but it would mean that the ensemble average Green's
function could not be used even in principle to find the
exact density of states for a random system. It is
harder to see how this smoothing would arise in the
manipulation of Green's function than with trace
functions.

Since the results of Frisch and Lloyd for infinite
systems agree almost exactly with those of Lax and
Phillips for systems made up of only 500 atoms, it is
clear that the density of states per atom for most
random chains having a given density e must converge
very rapidly to the asymptotic function for chains
with that density. Since our results do not agree with
theirs, it follows that the trace functions do not con-
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where

f'= 2C~ cos($0+5)+ v, ,

lim (v,)=0,

and C is larger than 1. There is nothing in the restric-
tion of Eq. (32) that requires lim~ „„v,=0 or that

verge. From general theorems' about the trace func-
tions, we know that they must oscillate rapidly as the
energy traverses an allowed region with periods of the
order of 1/X, maxima greater than 2, and minima
less than —2. From our calculations on specific sys-
tems, we know that the trace functions for the individual
chains f' are given by

prevents the p; from making a systematic contribution
to the density of states. The only conclusion that can
be drawn is that the v; must be of the same order of
magnitude and must oscillate as rapidly as the cosine
term in Eq. (31). Although it is fairly simple to devise
a general argument that explains why our procedure
does not give exact results, it is more dificult to devise
one that also explains why it gives as good an approxi-
mation as it does.
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A theory of the electronic structure of alloys is presented which takes proper account of the symmetries
present or absent in the alloy and does not rely on using Bloch's theorem either for the alloy or for the host
metal. The band structure is worked out in an approximation which is exact for an ordered alloy and which
gives a simple picture for a disordered substitutional alloy. Using this theory the band structure for the
d electrons of the transition metal alloys is qualitatively discussed. The rigid band model is shown to fail
for alloy constituents having a large valency difference and it is shown that the theory of this paper agrees
with the experimental results both for magnetic moments and specific heats in such cases. A simple physical
interpretation of these results is given using arguments similar to those of the conventional tight binding
approximation. It is suggested that the difference between NiA1 and FeAl alloys might be due to the alumi-
num conduction band lying above the nickel d band so that the latter fills, whereas the iron d band does
not lie below the aluminum conduction band. No reference is made to theories of ferromagnetism, though
it is possible that the methods used in this paper could be used to obtain a great deal more information from
alloys of the transition metals than is available at the moment.

I. INTRODUCTION

'~ 'HE purpose of this paper is to propose a theory of
the electronic structure of alloys which is based

on earlier work of Edwards and the author. ' ' In this
earlier work, the electronic structures of various dis-
ordered systems were discussed using a model of inde-
pendent electrons moving in a total potential formed
from individual ionic potentials which do not overlap
each other. The positions of the ions are supposed to
be given by some probability distribution. For example,
in the case of a liquid the probability distribution can
be taken as the distribution of given ionic positions as

*Research partially supported by the U. S. Advanced Research
Projects Agency, Contract SD—131—B.' S. F. Edwards, Phil. Mag. 6, 617 (1961).

2 S. F. Edwards, Proc. Roy. Soc. (I ondon) A267, 518 (1962).' J. L. Beeby and S. F. Edwards, Proc. Roy. Soc. (London)
A274, 395 (1962).

4 J. L. Beeby, Proc. Roy. Soc. (London) A279, 82 (1964). (To
be referred to as I.)

the liquid changes in time. The density of states can
then be written down in terms of an average of the
independent electron propagator over the distribution
of systems. The averaging process can only be done
approximately, but the approximation used is actually
exactly true for a perfectly ordered system. The results
obtained, therefore, give the correct limit in the case
when the substance being considered has the form of a
perfect crystal. The formalism is discussed in more
detail later ig. this section. In the case of a perfect
lattice this formalism is identical with that of Kohn
and Rostoker, ' which in the manner it will be applied
in this paper avoids some of the difhculties usually
associated with d electron band structure calculations.
In such a formalism it is not necessary to distinguish
whether the electrons are localized or free, though it is
always helpful if they do belong to one of the limiting

& ~. Kohn and N, Rostoker, Phys. Rev. 94, 1111 (19&4).


