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THE RELATIONSHIP BETWEEN THE FORCE
CONSTANT AND THE ELECTRIC

FIELD GRADIENTS

It has been shown" that the Hellman-Feynman
theorem leads to the following relationship

Ag ——ft/Zg —qg
——(4sr/3) p (A) — ctp/ct X~ cos8~/r'A dr

Here k is the force constant, g~ is the electric fie1d

~ L. Salem, J. Chem. Phys. 38, 1227 (1963).

gradient at nucleus A, p(A) is the electron density at
nucleus A and X~ is the nuclear position coordinate.
We 6nd from our computed values of q~ and p(A) at
2=3.0ao that t) L;——+0.063av ' and AH ——+0.0043ao '.

It can be shown" that A~ =0 if the charge distribution
around A is spherical and if it follows the motion of A.
Inspection of the I.iH wave function shows that these
conditions are not met and that small value of AH is due
to a fortuitous cancellation of p(A) and J'(r)p/BX~)
X (cose~/r')dr. When ttg is negative as for lithium, the
cancellation clearly cannot occur.
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Calculations of the cross section for single-quantum annihilation of positrons by E-shell electrons in the
Coulomb field of a nucleus are presented. Numerical results are given for nuclear charges Z= 73, 74, 78, 79,
82, and 90 and for energies from threshold to 1.75 MeV. For Z =82 the numerical results agree well but not in
detail with previous results of Jaeger and Hulme, and show that the Born approximation is too large by a
factor of nearly 2.

I. INTRODUCTION

HERE has been some recent experimental interest
in the process of single-quantum annihilation of

positrons. ' In a one-photon process recoil momentum

must be taken up by a nucleus, so that annihilation is
more probable in the E shell than in outer atomic shells.

The K-shell annihilation cross section is known numeri-

cally for lead, Z=82, from the computation of Jaeger
and Hulme'; and analytically for arbitrary Z from the
Born approximation. 3

The Born-approximation formula, Eq. (20), shows

that the cross section is proportional to Z'; annihilation

is therefore more probable for heavy elements than for

light. For elements with Z greater than 70 the Born
parameter nZ is greater than & and the Born approxima-
tion is certainly not reliable.

Because of the need for accurate cross sections for
elements other than lead it was decided to formulate

the problem in such a way that a detailed numerical

analysis would be simple.
In Sec. II we explain how the single-photon cross sec-

tion is reduced to a sum of partial-wave cross sections
corresponding to an angular momentum decomposition

*This work was supported in part by the U. S. Atomic Energy
Commission.

'L. Sodickson, %. Bowman, J. Stephenson, and R. Weinstein,
Phys. Rev. 124, 1851 (1961).' J. C. Jaeger and H. R. Hulme, Proc. Cambridge Phil. Soc. 32,
158 (1936).

3 H. J. Bhabha and H. R. Hulme, Proc. Roy. Soc. (London)
A146, 723 (1934).

of the incident positron wave function. The radial inte-
grals occurring in the partial-wave cross sections are
reduced to sums of hypergeometric functions in Sec. III.
The results of the numerical analysis, together v ith a
discussion of various limiting cases, are presented in
Sec. IV.

The numerical results are in precise agreement with
the Born approximation as Z —+ 0, and agree approxi-
mately, but not in detail, with the results of Jaeger
and Hulme for Z=82.

II. REDUCTION OF THE CROSS SECTION

The cross section for single-quantum annihilation is
given by

o. 8'co
o=— — dna P ~cV(', (1)

4sr P r.. o

where the matrix element M is

M= i dr( v(rrt)n eu„(r))e —'"' (2)

In the above we denote the energy-momentum vectors
of the positron and photon by (p, iW) and (k,iM); and
the photon polarization vector by e. The electron bind-
ing energy is given by nzyl, where nz is the electron mass
and yr=(1 —n'Z')'". We use vr(r) and u„(r) for the
Coulomb field Dirac wave functions of a positron with
spin t, and a E shell electron with magnetic quantum
number p, , respectively.
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The K-shell Coulomb wave function is given by4

ig, (xr)Q i„(t")
u„(r) =

~

~

f i(xr)Q, „(r)
(3)

with

]~——(7 iv)—F(y+1 iv;—2y+1; 2ipr)

+(x iv—')F(y iv—; 2y+1; 2ipr), (8)
7=(k' —n'Z')'/2 k= i~i, v=nZW/p, v'=n Zm/p.

The radial functions g i and f, are

g i(Xr)=N[(1+pi)/2]'"(2Xr)"' 'e "', (4)

f iver) =N[(1—yi)/2J '(2Xr)~' 'e iv

where X=mnZv and N= [(2X)'/P(2yi+1) j' ' The
angular dependence in Fq. (3) is expressed by spherical
spinors'

0„„(r)=P& C(l;,',j; /i —X, X)x&P'i,„ i,(r),
in which Xq are Pauli spinors, C(li, l2l; mi, m2) are
Clebsch-Gordan coefficients, I'i„(r) are spherical har-
monics, and in which ~=.W(j+i~) for j=l+i~.

The positron Coulomb wave function, which is chosen
to represent asymptotically a distorted plane wave with
an outgoing spherical wave, is

"(r)=4 2 F.,-,*(P f)(f.,(pr)fl '..."('),
gI, mI

I&pl dr r'f i(Xr)f„,(pr) ji(kr),

(10)

With the aid of the above representations for the
electron and positron wave functions one is able to
reduce the matrix element in Eq. (2) to products of
radial integrals and angular coefFicients obtained by
integrating products of three spherical harmonics. One
obtains

m= —(4~) i P F„...'(P,k)I',.(k).„, , „*

X [ 4~imiimvI~ii Kimiimv Jvii} ~ (9)

The summation indices l and m are associated with the
angular decomposition of the photon wave function.
The radial integrals I and J occurring in Eq. (9) are
given by

ig (Pv)II -'(r)), (6) J„)—z
—l dr r'g i(Xr)g„,(pr) ji(kr).

I'..(P,i)=(~-'(P) x ~).

In Eq. (6) the radial functions f„and g„are

fW+m)'"
g.(pr) = esTv/2 vv. /2

2W )
(7)

I"(y —iv)
X (2pv)' 'I ]-e '""

P(2y+ 1)

t/W —mq '"
f (py) = i(

2W j
P (V—iv)

X (2p.) -'[ },.-'"
r(2&y1)

The angular coupling coeffj[cients are

A.. .i „——(3/4n. ) '"(2[1][l])C(l, i,li', 0,0)
XP/ [f]W(l,1,j,; l 'f) W(1,—'..,f,1; —',,—',)

X(—1)"C(l,f,ji,. —m, mi+m)
XC(&,1,f; /i, mi+m —p), (11)

A,m, im„= (3/4x)"%, i(—1)"C(l,-'„ji, —m, mi+m)
XC(g,1,g, p, mi+m —p).

In Eqs. (11) [j]=(2j+1)'",li'=2ji —li, and W(e,b,c,d;
e,f) is a Racah coeKcient.

Squaring the matrix element M, summing over p, (, e,
and integrating over photon angles one obtains with
some algebra a remark. ably simple expression for the
cross section:

H/ M

~=16~& P k[~ J, ,,)'y~ J .,. .~'

+[1/(2k —1)j[(kI/„/+(k —1)I/, , /, 2)J/, , /, *+c.c.j+[1/(2k+1)j[(kI g /, i+(k+1)I /„/+, )J /, , /, i +c.c.]
+[1/(2k —1)'][(2k'—1) ~I/, k~ '+2k(k —1) ~I/, , /, ~~

'—(k —1)(I/, ,iI/, , /. m+c c)g

+[1/(2k+1)'j[2k(k+1) ~I p, /+i~'+(2k' —1))I /„g i~'+(k+1)(I i, /, iI /, ,/qi*+c. c.)j}. (12)

The summation index k in Eq. (12) is related to the positron angular momentum by k= ji+2. As the positron
energy increases one thus expects more and more terms in the sum to contribute. This decomposition is therefore
most suitable for studying low-energy annihilation processes.

M. E. Rose, Relativistic Electron Theory {John Wiley R Sons, Inc, , New York, 1961), p. 177.
5 M. E. Rose, Elementary Theory of Angzllar Momentum {John Wiley 0 Sons, Inc. , New York, 1957), Chap. III.
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III. ANALYSIS OF THE RADIAL INTEGRALS

The evaluation of the radial integrals occurring in Eq. (11) requires the integral

dr r2(2Xr)» '(2pr) ~'a "~*'&"j~(kr)F(a; b; 2ipr) . (13)

A technique similar to that used by Jaeger and Hulme' in the study of internal conversion coeflicients is used here.
We introduce an integral representation for the conQuent hypergeometric function and use the asymptotic series
for the spherical Bessel function to find

r(b)

I'(b —a) I'(a)

~ ( l, m)(t—+1, m)
duu~ ~(1 u)—~N ' i' Q i~+'

(1,m)
dr r'(2Xr)" '(2pr) &—'(2kr)

Xexp( —Xr—ipr —ikr+2ipru)+i '(k —& —k) . (14)

The r integral is written as a gamma function and the remaining parametric integral is expressed as a hypergeo-
metric function. The radial integrals I.~ then reduce to

I (r—1 )F(r+y, ) & ( i, m)(l+1,—m) 1
Igg —Fg x& P

I'(2y+1) ~=0 (1,m)(1 —y~ —y, m) y

P(y iv)F(y—&+y m, p+—1 ip; 2—&+1;x)+(~ i~')—F(p&+p m, p—&; 2&+1;x)]—

p+k iX~ —~+»-"
+g"' &»+&—'—'&

~ $(y iv)F*(pg+y —m, y iv; 2—y—+1;x)
p+k+iX)

+(~—iv')F*(yg+y —m, y+1 iv, 2y+—1; x)] . (15)

The integrals J'„& are obtained from Eq. (15) by replacing Fr by iF+ and changing (Ic i v') to —(~——ip'). In Eq. (15)

and

Fr = —EL(1—yg)/2]'"f(W —m)/2W]'"e-' ""-""z» 'y/Spk',

F& +L(1+7&)/2]1/zL(W+m)/2W]1 l2g i~vll2 vwl2s'Yy 1y/gpk2— —

*=2p/(p+k —A), y= 2k/(p+k —iX), s= 2X/(p+k —ZX) .

(16)

To avoid repetitive evaluation of the hypergeometric functions we have generated only F(y&+y k 1, y iv;—— —
2y+1; x) and F(yq+y k 1, y+1 i—v; 2—y—+1;x) from the series, and determined the other F's relevant to a
given value of k by use of the contiguous relations

dF(d+1, a; b; x)=(d a)F(d, a; b; x)+aF(d—, a+1; b; x),
d (1 x)F(d+. 1—, a+1; b; x) = (b—a—1)F(d,a; b; x)+(d+1+a b)F(d, a+1; b;—x).

This procedure materially reduces the computing time necessary.

(17)

IV. NUMERICAL RESULTS AND CONCLUSIONS

The sum in Eq. (12) was evaluated on the Univac
1107 computer at Notre Dame for various values of
charge, and as a function of energy from threshold to
1.75 MeV. The accuracy of the computation was main-
tained at better than 0.1%%uo throughout the range of
charge and energy. Results of the calculation are shown
in Iig. 1 and in Table I.'

e J. C. Jaeger and H. R. Hulme, Proc. Roy. Soc. (London) A138,
708 I,'1935).

~ A FoRT+AN Iv program to compute the cross section for arbi-
trary Z and W is available upon request from the Notre Dame
Computing Center.

An interesting check on the formalism occurs for the
fictitious case of a plane-wave positron incident on a
Sommerfeld-Maue bound-state electron. The radial
integrals for this case are

+&(2m/p)Q& (1/0)

l~ i=Ii+2, i=lVg(lQ((1/P) —(m/p)Q('(1/P)), (18)

I-E+~,~= 1-~--,~=&~(—(i+1)Q~(1/P)+(m/p)Q~'(1/0)),

X& ——i(X'"/2mp'k) I (W—m)/2W]'".
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