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We propose for quantum-mechanical calculations on diatomic molecules the use of mixed orbital sets com-
posed of both Slater-type orbitals and elliptic orbitals. The Slater-type orbitals provide a good representation
of the essentially spherical charge distributions near atoms in molecules and the elliptic orbitals provide good
electronic distributions for the delocalized valence electrons. We have carried out calculations with up to 28
terms of the mixed orbital set on the lithium hydride molecule and obtained the most accurate wave function
yet published. Our values for the several molecular parameters are as follows: (the experimental values are
given in parenthesis)

—R =8.0561 a.u. (8 0703);R,=3.046 a.u. (3.013);
ca, = 1438 cm '(1406); s&,x.=86 cm '(23);

/Io
——5 93 (5.88); /s~

——6 00 (5 99);its= 6 05 (6.10);Lp./(R. c//s/BR ( s,)j=1.74 (1.8+03).
As is usually the case, our results are superior to self-consistent Geld calculations. We have calculated the

electric Geld gradients at both nuclei. The quadrupole coupling for D in LiD was obtained using qH and
yielding eqoQn/h=34. 2 kc/sec (33&1 kc/sec). When gn; is combined with the experimental quadrupole
coupling constant we estimate Qz;= —4.3)&10 "cm'. This is considerably larger than the shell-model esti-
mate and supports the proposal that for odd-proton nuclei nucleons external to a shell deform it.

INTRODUCTION

HERE are in use at present two general methods'
for obtaining accurate wave functions for small

diatomic molecules. The SCF-MO-CI method employs
the self-consistent 6eld orbitals to construct the con-
6gurations for many configuration wavefunction. The
VB-CI method employs valence bond structures
(configurations) as configurations in a many-configura-
tion wave function. The relative merits of the two
formulations have been discussed recently by the
authors. ' The second method is used in this paper.

Most previous calculations done heretofore by either
method have been carried out using Slater-type
orbitals. ' Slater-type orbitals provide a good representa-
tion for the essentially spherical charge distributions
near atoms in molecules but are not particularly suited
for describing valence electrons. Another basis which
has been less used' s is the elliptic orbital basis [see
Eq. (2)j. These functions are particularly well suited
for describing the axially symmetric charge distributions
associated with "bonding" or "valence" electrons
while representation of the spherical atomic distribu-
tions in this basis is rather cumbersome. It occurred to

*Work supported by the Robert A. Welch Foundation,
Houston, Texas, and the National Aeronautical and Space
Administration.' For a recent summary, see J. C. Slater, Qna/ttam Theory of
Molecales arid Solids (McGraw-Hill Book Company, Inc. , New
York, 1963), Vol. I.' J. C. Browne and F. A. Matsen, J. Phys. Chem. 66, 2332
(1962).

'H. M. James and A. S. Coolidge, J. Chem. Phys. I, 825 (1933).
'Many authors since James and Coolidge have used elliptic

orbitals for H2 calculations.' J. K. Knipp, J. Chem. Phys. 4, 300 (1936).'F. T. Ormand and F. A. Matsen, J. Chem. Phys. 29, 100
(1958).' F. E. Harris, J. Chem. Phys. 32, 3 (1960).' H. M. James, J. Chem. Phys. 2, 794 (1934).
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us that a wave function basis chosen appropriately from
both Slater-type and elliptic orbitals would provide a
more rapidly converging and conceptually satisfying
description of a molecule than either taken separately. '

In this paper we present calculations on the lithium
hydride molecule using wave functions of up to twenty-
eight generalized valence bond con6gurations con-
structed from a mixed orbital set. On comparison of our
computed molecular parameters with the observed
ones (see Table I) we conclude that our wave function
is considerably better than any heretofore published.

THE WAVE FUNCTION

The specification of an electronic wave function
requires the specihcation of orbitals, orbital exponents,
and electronic con6gurations. In our mixed basis set
the Slater-type orbitals are de6ned by

X(rt,l,m)=E(rt, l)r 'e &"Ft (8y)

where a=s, p, d, for l=o, 1, 2,
The elliptic" orbitals are of the form

y(rt g 2/2) ( I) ([ mf —m)/2gn+/f(h2 $) (I +2)]f m[/2

)(&—yk—po&tme (2)

J. C. Browne and F. A. Matsen, Bull. Am. Phys. Soc. 8, 123
(1963). Since the publication of this abstract we have learned
that F. E. Harris and H. H. Michaels have planned similar
calculations. References 5, 6, and 8 used 1s functions for core
orbitals and a restricted class of elliptic orbitals for the valence
electrons. None of them used configuration interaction for the
core. It should be noted that the 1s orbital is a special case of the
simplest elliptic orbital Lace Eq. (2)j.These calculations can, in a
strict sense, be considered as using a purely elliptic basis."See J.M. Miller, J.M. Gerhauser, and F.A. Matsen, Quantum
Chemistry Integrals arid Tables (University of Texas Press, Austin,
1959), p. 11, for dehnition of the elliptic coordinates. See also
M. Kotani, A. Amemiya, E. Ishiguiro, and T. Kimura, Tables of
Molecular Iategrats (Maruzen Company, Ltd. , Tokyo, 1955).
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TABLE I. Summary of significant LiH calculations.

This
calc.

Kxperi-
menta " ' lshiguro Hurst' Karo' Harris~ Ebbing" Kahalas' Browne j

DI
DR
Rs

~sxa
—pp(Ep =3.069)
—pg(Rg=3. 11)
—pp (Rp =3.16)
~./L~. (s~/s~ I a.)7
L(4/2p) L'7
[(q/2e) n]

(a.u.)

(« ')
(ao-')

8.0561
E.=3.046"

(eV) 2.12'

(eV) 2.34m

(op) 3.046
(cm ') 1438
(cm ') 86
(D) 5.93
(D) 6.00
(D) 6.05

1.74
—0.0173
—0.0258

8.0703

2.516
2.516 1.97
3.015 =3.3

1406 1130
23
5.88

1.8&3

0.249

7.9761
R =3.013

8.0397
R=3.2

1.404
1.67 2.21
3.25

1212

4.5

8.04127
R =3.0

1.725

1.53

8.0171 8.04379
R =3.02 R =3.075

1.067 1.793
2.04
3.075

1602
28

5.89 5.57

—0.0166
0.0274

a G. Herzberg, Speclra of Diatomic Molecules (D. Van Nostrand Company, Inc. , Princeton, New Jersey, 1950) 2nd ed. Table 39
~ R. Velasco, Can. J. Phys. 35, 1024 (1957).
o See Ref. 14.
d E, Ishiguro, Proceedings of Symposium on Molecular Physics (Maruzen Company, Ltd. , Tokyo, 1954), p. 10.
e R, P. Hurst, J. Miller, and F. A. Matsen, J. Chem. Phys. 26, 1092 (1957).
f A. M. Karo and A. R. Olson, J. Chem. Phys. 30, 1232 (1959).
I F. E. Harris and H. Taylor (unpublished).
h See Ref. 12.
i See Ref. 19.

& J. C. Browne and F, A. Matsen, J. Phys. Chem. 66, 2332 (1962).
& R value in a0 at which —P was evaluated.
& D,&& =E(exp atoms) —E(calc, molecule), gives an absolute lower bound for D&.
m D,& =B(calc, atoms) —R(calc, molecule).

Our largest wave function can be written

28

4'= g c,%;,

where

or

e;=%,(X.Xp. x,xb)

and each +; has 'Z symmetry with orbital pairs sep-
arated by a colon. The twenty-eight coeKcients together
with the c; for R=3.0 a.u. are listed in Table II. In
each term the Li core electrons are represented by
Slater-type orbitals and the valence electrons by
elliptic orbitals. The terms numbered 16 and 23 jn
Tabl. e II couple core and valence electrons. The terms
numbered 9, 11, and 28 allow for core polarization. The
orbital exponents for the Slater-type orbitals making

up the core con6gurations were taken from an eight-
term calculation on the Li atom" which yielded an
energy of —7.470 a.u. (&, n

=- —7.479 a.u.). The orbital
exponents for the elliptic orbitals were determined
from a twelve-term (see Table III) calculation on the
LiH molecule which employed only a 1s' configuration
for the Li core electrons. Each orbital exponent for the
e&]iptic orbitals was separately optimized and then
rescaled together at each of the seven internuclear
distances considered. The core orbitals were rescaled in

» P single Slater-type 2s orbital was used for the outer electron.

the molecular wave function at R=3.0ao. The final
orbital exponents for R=3.0ao are listed in Table IV.
The initial separation of the wave function into two
parts greatly reduced the computer time necessary to
select good exponents. The orbital exponents thus
selected should be reasonably close to optimal. In fact,
at R= 3.0ao the virial theorem is satis6ed to within less
than 0.5%. For the computation of qz„we found it
expedient to use a twenty-four term wave function in
which the 1S Li core orbitals are allowed to become
elliptical orbitals. See Table V for this wave function.

Some caution must be observed in the selection of
exponents in the elliptic orbitals with respect to possible
occurrence of 1inear dependency and the positioning of
nodes along the internuclear axis. Linear dependence
among the prolate spheroidal (elliptic) basis, proved,
in fact, to be somewhat of a problem during the calcula-
tions. "Several terms which were considered had to be
rejected because of linear dependence. The spread of
the eigenvalues of the nonorthogonality matrix for the
Anal twenty-eight term wave function was or order 10'.
The Control Data 1604 upon which these calculations
were carried out carries roughly eleven decimal digits in
Qoating point arithmetic and the energies proved to
be quite stable under minor perturbations such as
rearrangement of wave function terms and variation
of the quadrature formulas for the two-electron
two-center integrals.

n See D. D. Ebbing, J. Chem. Phys. 36, 1361 (1963);and p. O.
Lowdin, Advan. Phys. 5, 46 (1956) fox discussion of the ]inear
dependence problem
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28
TABLE II. Wave function, 4 = Z cj+j.

TABLE IV. Orbital exponents at 8=3.0ao for twenty-eight
term wave function.

1
2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

[lsls: @(0,0,0)p(1,0,0)j
[isis: y(0,0,0)@(0,2,0)j
[isis: @(0,0, —1)oo(0,0,1)j
[isis: p(1,1,0)p(1,1,0)j
[is'ls': p(0,0,0)p(1,0,0)j
fls'2s: 4 (0,0,0)oo(1,0,0)j
[2s2s: p(0,0,0)p(1,0,0)j
[2p&2p-g: y(0 0 0)y(1 0 0)j
[2Pp2Pp. y(0,0,0)y(1,0,0)j
[3pg3p |.y(0,0,0)y(1,0,0)j
[3Po3Po: P(0 0 0)P(0 0,0)j
L(3d)': 4 (0,0,0)4 (0,0,0)j
fls'ls': @(0,0,0)oo(0,2,0)j
[is'2s: p(0,0,0)p(0,2,0)j
[2s2s: oo(0,0,0)p(0,2,0)j
fls'y(1, 0,0):2sy (1,0,0)j
[isis: @'(0,0,0)y(0,0,0)j
[lsls: p(0, 1,0)p(0,0,0)j
[lsls: p(0,0,0)@(2,0,0)j
[lsls: g(2,0,0)p(2,0,0)j
[2pg3p-: y (0 0 0)@(1 0 0)j
[2Pp3Pp.'$(0 0 0)g(1 0 0)j
fis'@'(0,0,0): 2sy(1,0,0)j
[isis: @(1,1,0)p'(0,0,0)j
[isis: oo(1,0,0)oo'(0,0,0)j
[isis: @(0,2,0)po'(0, 0,0)j
[isis: @(0,1,0)p'(0,0,0)j
[is'2pp'. g(0,0,0)@(1,0,0)j

E(R=3.0uo) = —8.05603 a.u.

c;(R=3.0ao)

+0.13273
—0.08363
+0.16351
—0.01487
+0.01489
+0.02546
+0.00592
+0.00346
—0.00346
+0.00488
—0.00483
—0.00060
—0.01149
—0.01509
—0.00947
+0.00045
+0.63647
—0.01078
—0.10785
+0.02191
—0.00227
+0.00226
—3.90687
+0.12787
—0.05389
+0.12667
+0.01019
—0.00104

Orbital

1$
1$'

2$

2p
2P'

3p
3Z

oo(0,0,0)
y'(0, 0,0)
y(1,0,0)
y (0,1,0)
y(0, 0, ~1)
y (1,1,0)
4 (2,0,0)
y (0,2,0)

1.75
2.75
1.28
0.88
1.9
1.38
2.45
1.43

Exponent

2.66
4.13
2.62
5.17
2.62
5.17
5.66

—1.5
—0.92
—0.50
—0.643
—1.15
—1.31
—1.36

1.47

TABLE V. The 24-term wave function with 1$' replaced by
24

qV" (0,0,0) += 2 c;4;..

in column two for comparison. The error in the total
energy of this calculation is less than one half the error
in the best previous calculated energy. %e note that the
use of the mixed "natural" basis set allowed this
improvement with little increase in the size of the basis.
The E, and E, values for this calculation were obtained
by a cubic fit of the computed points at R= 2.6ap 3.0cp,
3.1ap, and 3.4ap. The calculated spectroscopic constants
were obtained by fitting a fourth-order polynomial to five

1

2
3
4
5
6
7

8
9

10
11
12

[lsls: g(0,0,0)p(1,0,0)j
[lsls: y(0,0,0)@(0,2,0)j
[lsls: oo(0,0,0)oo(0,0,1)j
[isis: g(1,1,0)g(1,1,0)j
[lsls: oo(0,0,0)p'(0,0,0)j
[isis: p'(0, 0,0)@'(0,0,0)j
[isis: oo(0,0,0)oo(2,0,0)j
[lsls: p'(0,0,0)oo(2,0,0)j
[isis: y'(0, 0,0)y(1,0,0)j
[isis: p'(0, 0,0)4&(0,2,0)j
[isis: g(0,0,0)g(0, 1,0)j
[lsls: p'(0, 0,0)g(0,1,0)j

c;(R=3.0up)

0.192354
—0.127887

0.171317
—0.015470

0.643884
—3.954195
—0.091389

0.103586
—0.057502

0.134285
—0.016202

0.015349

RESULTS

Energy, Spectroscoyic Constants,
and Dipole Moment

In Table I are gathered together the principle results
obtained in this calculation and from the signi6cant
earlier calculations. The experimental results are given

12

TABLE III. The twelve-term wave function += Z cj@j.
j~l

1
2
3

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24

fy" (0,0,0)y" (0,0,0):y(0,0,0)4 (1,0,0)j
[4 "(o0 0)4 "(o,o,o): 4 (0 0,0)4 (o,2,o)j
[4"(0 0 0)4"(o 0 0):0 (0,0,1}4(o, o, —1)j
[g"(0,0,0)y"(0,0,0):y(1,1,0)0(1,1,0)j
[is'ls'. p(0,0,0)g(1,0,0)j
[is'2s: y (0,0,0)y (1,0,0)j
[2s2s: @(0,0,0)y(1,0,0}j
[2P'('5'0): 4 (0,0,0)4 (1,0,0)j
[3P'('~o): 4 (0,0,0)4 (1,o,o)j
[3d'('5'o): 4 (000)4 (10,0)j
[is'ls': 4 (0,0,0)4 (o,2,o)j
[is'2s: 4 (0 0 0)4 (0,2,o)j
[2s2s: P(0,0,0)g(0,2,0)j
f~"(0,0,0)~"(0,0,0):s(0,0,0)~'(0,o,0)j
[4"(00 0)4 "(00 0):0 (0,0,0)4 (0,1,0)j
[y"(0,0,0)y" (0,0,0):y (0,0,0)y (2,0,0)j
fop" (0,0,0)oo"(0,0,0):p (2,0,0)4 (2,0,0)j
[2P+3P :0(0,0,0)4 (1,0,-0)j
[2Po3Po: 4 (0,0,0)oo(1,0,0)j
foo" (000)oo"(000):oo'(000)4 (1,10)j
[~"(0,0,o)~"(o,o,o):~'(0,0,0)~(1,0,0)j
fg"(0,0,0)p"(0,0,0):y'(0, 0,0)y(0,2,0}j
f4 "(0o 0)4 "(oo,0):4 '(0,0 0)0 (o,1,o)j
[is'oo'(0, 0,0}: 2sp(0,0,0)j
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computed points. co, is given quite accurately but the
higher members of the vibration series are given very
poorly. The dipole moment in the lowest vibrational
state and the dipole moment derivative at our equili-
brium separation of R,=3.046ap were obtained from a
quadratic fit of the calculated dipole moment values at
R= 2.9up 3.0ap, and 3.1ap. These values are in excellent
agreement with the experimental values as can be seen
from Table I.

%'e calculated the dipole moments for the higher
vibrational states by evaluating the quadratic in the
dipole moment mentioned previously at R„where

R,= L (R.)'(B./(B.—rr. (v+ 1/2)) $'I' —R,+R,(calc.).

Here experimental values were used for the spectro-
scopic constants except for R, (calc). This adjustment
was necessary since R, (calc) WR, (exp).

THE QUADRUPOLE MOMENT OF Li' AND THE
QUADRUPOLE COUPLING CONSTANT OF LiD

The most significant observable quantity resulting
from the derivation of a nucleus in an atom or molecule
from spherical symmetry is the quadrupole coupling
constant, "eqQ/h. Now Q is the quadrupole moment of
the nucleus and q is the electric field gradient due to the
electronic environment of the nucleus. For atom 3 of
a diatomic molecule

q~= 2e(q' iI &s(cosfl~)/r~'I q i)+ 2eZ~&q. ;,IR-s
I
q.;,)

= (q.i)~+ (q. .)~. (4)

The quadrupole coupling constants for LiH and Lio
were 6rst measured in 1961 by Klemperer, Wharton,
and Gold. '4 For LiH much interest is attached to
obtaining Qz,

r via qL; obtained through an electronic
wave function since QL has not been otherwise meas-

ured. Since Qz& is fairly well established qD obtained from

an electronic wave function can be used to obtain an
eqQ/Jr to compare with the experimental value, thus

providing a useful comparison of the wave function to
experiment.

In order to compute qo from Kq. (4) we obtained a
numerical 4';b by numerically integrating the one-
dimensional radial Schrodinger s equation using as a
potential function a Hurlburt-Hirschfelder" potential
function determined by our computed spectroscopic
constants (for LiD). Using this 4';b we find (q„„,)o
=0.0350as '. On combining this with (q, i)o ———0.0776
ap

—' obtained from the twenty-eight wave functions of

'3 See C. H. Townes, Hurldbnch der Physik, edited by S. Fliigge
(Springer-Verlag, Berlin, 1958), Vol. 38, for a review of experi-
mental and theoretical results relating to nuclear quadrupole
effects.

'4 L. Wharton, L. P. Gold, and W. Klemperer, J. Chem. Phys.
37, 2149 (1962). Some of the results were first reported at the
June 1961 Ohio State Symposium on Molecular Spectroscopy.

"H. M. Hurlburt and J, O. Hirschfelder, J. Chem. Phys. 9, 6
(1941);35, 1901 (1961),

Table II and the QD value given by Auffray" we find
(eqQ/h)z&=34 kc/sec, which is in very good agreement'r
with the experimental value of (eqQ/h) o——33+1
kc/sec. Earlier theoretical estimates of (eqQ/h)o have
been made by Kolker and Karplus, " (eqQ/h)n=35. 5
kc/sec using a relatively crude SCF-MO wave function
and by Nesbet and Kahalas"" (eqQ/h)o ——36.7 kc/sec
using a better SCF-MO wave function.

Historically, the first attempt to determine Qz, r via a
quadrupole coupling constant and Eq. (4) was by Harris
and Melkanoff" in 1953 using the eqQ/Js data of Kusch"
for Lie and the James" Lis wave function. Unfor-
tunately, for Lis (q, i) z„=—(q»,)z„so that in this case
several signi6cant 6gures in both quantities are needed
to obtain meaningful results for qL;. Several authors" '4

later tried to improve upon the inconclusive results
obtained by Harris and Melkanoff for qz, ; from Li2.
Nesbet and Kahalas" recognized, when eqQ/h for LiH
became available' in 1961, that this molecule oRered a
better circumstance for obtaining an accurate qL; since

(q.t) L; and (q~«)L; are substantially different for LiH.
In a later paper, "Kahalas and Nesbet report qL; and
Qz, ; values obtained from SCF-MO wave functions
using several different basis sets. They found that the
addition of 3d(TL; orbitals to the atomic orbital basis set
for the SCF-MO calculations caused substantial changes
ln gLI.

In the remainder of the section we discuss calculations
leading to what we believe is the most accurate value
yet found for Qz, ;r. It has been suggested"" that the
quadrupolar deviations from spherical symmetry of
atomic cores in molecules can substantially inhuence

(q,z)~ values. This distortion can result from two
sources the polarization of the electronic charge
distribution by the nuclear quadrupole, " and the
distorting eRect of the remainder of molecular charge
distribution. Provision for the latter eRect can readily be
put in a molecular wave function by including terms
which add quadrupolar character to the polarization
of the atomic-like core. A careful scrutiny of Table II

"J. P. Auffray, Phys. Rev. Letters 6, 120 (1961). AuKray
obtains QD by evaluating (q,i)D from the Kolos-Roothaan D2
wave function.

"Note that we have not considered the polarization of the
electronic charge distribution by the nuclear quadrupole. See, for
example, R. M. Sternheimer, Phys. Rev. 84, 244 (1951);86, 316
(1952); or Ref. 23. Neither, however, was this effect considered by
AuGray, Ref. 16 in his evaluation of QD.' H. J. Kolker and M. Karplus, J. Chem. Phys. 36, 960 (1962)."S.L. Kahalas and R. K. Nesbet, J. Chem. Phys. 39, 529
(1963).

~Kahalas and Nesbet used QD ———2.73)&10 " cm'. We have
converted their egQ/h to Qn= —2.82X10 r cm to facilitate
comparison.

2' E. G. Harris and M. A. Melkanoff, Phys. Rev. 90, 585 (1953).
~ R. H. Logan, R. E. Cote, and P. Kusch, Phys. Rev. 86, 280

(1952)."R. M. Sternheimer and H. M. Foley, Phys. Rev. 92, 1460
(1953).~ I. Mannari and T. Arai, J. Chem. Phys. 28, 28 (1958).

2' S. L. Kahalas and R. K. Nesbet, Phys. Rev. Letters 6, 549
(1961)."See Ref. 17 for references on these matters. Also Ref. 13.
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TABLE VI. Comparison of some expectation values. 8=3.046ao.

I-"' (a.u.}
i o(D)
(q.,/2e) a,-o

(g.i/2o)L ao '

12-term function
of Table III

—8.0051
—5.84
—0.0754
—0.0550

28-term function
of Table II

—8.0561
—5.911
—0.0776
—0.0555

12-term function
of Table III

with 1s' replaced
by p"o (0,0,0)

—8.0060
—5.83
—0.0752
—0.0500

14-term function.
See text

for description

—8.0051
—5.85
—0.0754
—0.0534

24-term function
of Table V

—8.0565
—5.92
—0.0777
—0.0521

reveals, however, that while there are a number of
terms in the twenty-eight term wave function which
allow for core polarization, none of them can add
appreciable qua drupolar character to the Li core.
Therefore, we constructed wave functions which give
"core polarization" directly rather than in multipole
components by replacing the 1s' Li core by p'"(0,0,0)
/see Eq. (2)) and selecting optimum values for p and
P. LNote that if p=P, $(0,0,0) differs from 1sz„only
by normalization. f Calculations of this type were
carried out with the 12-term function of Table III and
with a twenty-four term function obtained by deleting
from the twenty-eight term function most other provi-
sion for "core polarization" (see Table V). In each
case optimization of y and P yielded a ratio y/P= 0.976
indicating a slight shift of charge density out of the
internuclear region. Then in order to provide a compar-
ison of this means of adding quadrupolar core polariza-
tion to the direct multipole expansion we constructed a
14-term function by adding two terms involving 3dgL;
orbitals in the Li core to the 12-term function and
optimized the orbital exponent of the 3drL; orbitat. In
Table VI we list the energies, po, (qoi)z, i, and (q,i)H
from these and certain other computations. These
results can be summarized in a few sentences. The
twenty-eight term and twenty-four term functions yield
virtually identical values for energy, (q,i)H, and po
but different (q,i)z„values. These results imply (a)
that both functions have closely similar charge distribu-
tions and almost the same allowance for the energy due
to "core polarization"; (b) that they differ in the amount
of quadrupolar character in the distortion of the core.
We further note that the twenty-eight term function
gives virtually the same (q.i) z„. as the 12-term function
which has a totally spherically symmetrical core. The
12-term function with the elliptic core gives a larger
change in (q, i)z„. than the 14-term function with the
3do. terms in the Li core but in the same direction. This
indicates that the use of elliptic core orbitals is an
effective way of introducing the quadrupolar core
distortion into the wave function. Furthermore,
obtaining similar values by different means adds sub-
stance to the values. We have, therefore, used the

(q.i) z, from the twenty-four term function in computing
(qo.ooi) z„. Computing a%';b as previously described and

using the numerical 4';b in Eq. (4) we find (q„„,)z„.
=0.034gao s. This gives (q„oo,i/2e)=0. 0173ao '. Since
eqQ/h=346 kc/sec, we find (QLi/e) = —4.3X10—"cm'.
This is in agreement with those results of Kahalas and
Nesbet" which they regard as most reliable, (q„„o,i/2e)
= —0.0166ao ' and (QLi/e) = —4.44X 10 " cm' It
should be noted, however, that Kahalas and Nesbet
set q „,=2ZE, ' rather than computing the expectation
value. Including this factor in their calculations would
make their value for Qz„/e less negative, probably
bringing it closer to the results reported here. Our
discussion also explains the change in (q,i)z„. found by
Kahalas and Nesbet upon the addition of 3do.L; orbitals
to their SCF-MO basis.

There are no direct experimental determinations of
(Q/e) for Li'. The only alternate values are those
obtained from (1p)' configurations of the shell model
nucleus'z From Q/(e(r'))= (2J—2Z+1)/2(J+1) and
J=ss one obtains Q/(e(r'))= —0.20. A more recent
estimate' gives Q/(e(r'))= —0.25. If one takes (r')'i'
= 1.5X10 ' 2'I' cm there is obtained (r') = 8.24X 10 "
cm' which gives Q/e= —2.06X10 " cm' Van d"r
Merwe' prefers for 1P nucleons (r')&10 " so that
~Q/e~ &2.5X10 "cm. Thus the shell model value is
considerably smaller than that obtained from the
experimentally obtained coupling constant and the
theoretical electronic q. This is not unusual for nuclei
of odd Z." It has been postulated that the nucleons
outside a closed shell deform the surface of a shell.

A recent estimate" of the quadrupole moment taking
these deformations into account yields Q/2 (e(r'))
= —3/5 or

~
Q/e ~

& —6.0X 10 "cm'. It is seen that the
quadrupole moment obtained from the experimentally
determined quadrupole coupling constant and the
theoretically determined electric field gradient is
bracketed by the values obtained from the simple
nuclear shell model and the simple nuclear shell model
with surface coupling and is presumably more accurate
than either.

"R. G. Sachs, XNcleur Theory (Addison-Wesley Publishing
Company, Reading Massachusetts, 1953},p. 259.

oo J. H. van der Merwe, Phys. Rev. 131, 2181 (1963).
~ J. Rainwater, Phys. Rev. 79, 432 (1950};A. Bohr and B. R.

Mottelson, Kgl. Danske Videnskab, Selskab, Mat, -pys. Medd.
28 (1959).
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THE RELATIONSHIP BETWEEN THE FORCE
CONSTANT AND THE ELECTRIC

FIELD GRADIENTS

It has been shown" that the Hellman-Feynman
theorem leads to the following relationship

Ag ——ft/Zg —qg
——(4sr/3) p (A) — ctp/ct X~ cos8~/r'A dr

Here k is the force constant, g~ is the electric fie1d

~ L. Salem, J. Chem. Phys. 38, 1227 (1963).

gradient at nucleus A, p(A) is the electron density at
nucleus A and X~ is the nuclear position coordinate.
We 6nd from our computed values of q~ and p(A) at
2=3.0ao that t) L;——+0.063av ' and AH ——+0.0043ao '.

It can be shown" that A~ =0 if the charge distribution
around A is spherical and if it follows the motion of A.
Inspection of the I.iH wave function shows that these
conditions are not met and that small value of AH is due
to a fortuitous cancellation of p(A) and J'(r)p/BX~)
X (cose~/r')dr. When ttg is negative as for lithium, the
cancellation clearly cannot occur.
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Single-Quantum Annihilation of Positrons*
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Calculations of the cross section for single-quantum annihilation of positrons by E-shell electrons in the
Coulomb field of a nucleus are presented. Numerical results are given for nuclear charges Z= 73, 74, 78, 79,
82, and 90 and for energies from threshold to 1.75 MeV. For Z =82 the numerical results agree well but not in
detail with previous results of Jaeger and Hulme, and show that the Born approximation is too large by a
factor of nearly 2.

I. INTRODUCTION

HERE has been some recent experimental interest
in the process of single-quantum annihilation of

positrons. ' In a one-photon process recoil momentum

must be taken up by a nucleus, so that annihilation is
more probable in the E shell than in outer atomic shells.

The K-shell annihilation cross section is known numeri-

cally for lead, Z=82, from the computation of Jaeger
and Hulme'; and analytically for arbitrary Z from the
Born approximation. 3

The Born-approximation formula, Eq. (20), shows

that the cross section is proportional to Z'; annihilation

is therefore more probable for heavy elements than for

light. For elements with Z greater than 70 the Born
parameter nZ is greater than & and the Born approxima-
tion is certainly not reliable.

Because of the need for accurate cross sections for
elements other than lead it was decided to formulate

the problem in such a way that a detailed numerical

analysis would be simple.
In Sec. II we explain how the single-photon cross sec-

tion is reduced to a sum of partial-wave cross sections
corresponding to an angular momentum decomposition

*This work was supported in part by the U. S. Atomic Energy
Commission.

'L. Sodickson, %. Bowman, J. Stephenson, and R. Weinstein,
Phys. Rev. 124, 1851 (1961).' J. C. Jaeger and H. R. Hulme, Proc. Cambridge Phil. Soc. 32,
158 (1936).

3 H. J. Bhabha and H. R. Hulme, Proc. Roy. Soc. (London)
A146, 723 (1934).

of the incident positron wave function. The radial inte-
grals occurring in the partial-wave cross sections are
reduced to sums of hypergeometric functions in Sec. III.
The results of the numerical analysis, together v ith a
discussion of various limiting cases, are presented in
Sec. IV.

The numerical results are in precise agreement with
the Born approximation as Z —+ 0, and agree approxi-
mately, but not in detail, with the results of Jaeger
and Hulme for Z=82.

II. REDUCTION OF THE CROSS SECTION

The cross section for single-quantum annihilation is
given by

o. 8'co
o=— — dna P ~cV(', (1)

4sr P r.. o

where the matrix element M is

M= i dr( v(rrt)n eu„(r))e —'"' (2)

In the above we denote the energy-momentum vectors
of the positron and photon by (p, iW) and (k,iM); and
the photon polarization vector by e. The electron bind-
ing energy is given by nzyl, where nz is the electron mass
and yr=(1 —n'Z')'". We use vr(r) and u„(r) for the
Coulomb field Dirac wave functions of a positron with
spin t, and a E shell electron with magnetic quantum
number p, , respectively.


