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A lower bound procedure for energy eigenvalues based on the method of intermediate problems is given. A
projection technique is used to construct a family of operators smaller than a given Hamiltonian whose eigen-
values are lower bounds to those of the given Hamiltonian. By a particular choice of subspaces associated
with the projections it is possible to construct the family in such a way that certain members may have an
eigenvalue coinciding with one of the real eigenvalues of a nonlinear but Qnite matrix eigenvalue problem.
Application to the helium atom ground state indicates that the procedure may be more efficient than the pro-
cedures customarily used.

I. INTRODUCTION

" 'N this paper we give a lower bound procedure for
- ~ energy eigenvalues based on the method of inter-
mediate problems originated by Weinstein. The pro-
cedure uses a projection technique of Aronszajn for
the construction of intermediate operators and is closely
related to the procedures of Bazley and Fox.' '

The procedure is developed in Secs. II and III.
Section IV is devoted to test calculations on the ground
state of the helium atom. The results of these calcula-
tions indicate that the procedure may prove to be more
efFicient than the procedures which have previously been
used in obtaining accurate lower bounds to the helium
ground state.

where V is positive definite, and where H' is bounded
from below and has bound states beneath its 6rst limit

point. Although the procedure does not use the solutions
to the eigenvalue equation for H',

H0$0 —E0$0 ~ (24)

directly, the energies of the lowest bound states are
needed. We therefore assume that the energies

(2.5)

belonging to the ordered states of H' lying below its
first limit point are known.

Since H —H' is the positive definite operator V, we

have that

II. INTERMEDIATE HAMILTONIANS (Hs) & (H) (2.6)

We outline here the technique of Aronszajn for con-
structing intermediate operators. Our discussion follows
that of Bazley and Fox' with modifications pertinent
to the new procedure.

We consider a time-dependent Schrodinger equation,

(2.1)

for which the Hamiltonian H is bounded from below
and possesses a sequence of bound states lying below

any continuous spectrum. We confine our attention to
these states lying below the first limit point and regard
them as ordered according to energy,

for all f in the domain of II, and by a theorem of

Weyl, ' this inequality is sufFicient to guarantee the in-

equalities

E'&E (i=1 2 (2.7)

among the ordered eigenvalues of H and H. The initial

eigenvalues of H' are thus lower bounds to those of H.
To improve these bounds, we construct a sequence of

intermediate Hamiltonians H" satisfying the inequalities

(H') & (H")& (H"+') & (H) (2.8)

so that their ordered eigenvalues satisfy

Eq(g2& . (2.2) E, &E,"&E,"+'&E, (i =1, 2, . ), (2.9)

We further suppose that H can be written as the sum

H=Hs+V, (2.3)
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and thus give lower bounds increasing toward. the eigen-

values of H. The construction requires the introduction
of projection operators in a vector space 'U character-
ized by the metric operator U. The inner product in 'U

is therefore (p I
V

I P). However, for convenience, we

adopt the normalization convention

(2.10)

for elements of 'U.

The projection operator 0" projecting on the linear
manifold 'U" spanned by the elements Pt, Ps, , P
of a set {p,} linearly independent in U is conveniently

e H, Weyl, Bull, Am. Math, Soc. 56, 115 (1950),
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represented by

(2.11)

where A." is the inverse of the nth-order matrix with
elements (P, l

V
I P,). It is readily verified that

(On)2 On

Qnt V 0nt V0n Vgn
(2.12)

so that the operator VO" is self-adjoint. Further, from
the properties of projection operators and the fact that

~n( ~n+1(

we have, with the convention (2.10),

(2.13)

Hop VOn (2.15)

the inequalities (2.8) are ensured by (2.14). Thus,
provided the eigenvalue equation for the operators
(2.15) can be solved, we have a means of obtaining
sequences of lower bounds improving toward the eigen-
values of H. A formal solution has been given by Bazley
and Fox' which we repeat in part here.

We consider the eigenvalue equation for the II",

0& (VO")& (VO"+')& (V). (2.14)

This relation forms the basis for the construction of
the H" for, if they are dehned by

Pn $ 0n
7

and having the properties

(Pn)2 —Pn.

P tV=-PntVPn= VP",

(2.20)

(2.21)

linear combination of known terms, and as a conse-
quence, the eigenvalue problem for the H" does not
reduce to a 6nite algebraic problem. 4

Bazley and Fox have devised several procedures for
avoiding this difficulty with the resolvent involving
either special choices of the elements p; or modi6cation
of the H' operator. ' ' Our procedure eliminates the
resolvent entirely from the expression (2.19) for one of
the p" by a different special choice of the p;.

Prior to developing this procedure in Sec. III, we
wish to comment on the convergence of the eigenvalues
of the II" to those of II. It has been shown' that, pro-
vided B' and H have completely continuous inverses,
V is bounded relative to II0, and the set (p;) is complete
in 'U, the eigenvalues and eigenfunctions of the H" con-
verge to those of B. Of equal interest in applications,
where only a finite number of elements p; are used, is
the rapidity of convergence. In this connection, we
demonstrate that the error in a lower bound 8" is of
second order in the error in the eigenfunction 1p" and
in an error arising from the error in the operator H".
We introduce the orthogonal complement P" to 0"
defined by

Hgn gQn (2.16) Qng VPn pnt V0n O

H =H'+ V (0"+P")
Hn+ VPn

where gn lies below the first limit point of H'. (The Hn We may now write H as

and H0 have common limit points. ') With the aid of
(2.11), (2.16) may be written as (2.22)

where

(IIO g&n)1' — VOnipn

n
= —v»' "(p I vl&"&p'

n

=V+ C;p;,

and one of its eigenfunctions as the sum

1Pn+J (2.23)

(2 1)) where

g I1t)=1 (y" l~&=0 (2 24)

The energy E corresponding to P is then7

~=(~IHI~& (2.25)
=~"8"I 4

"&+(~ IH"
I »+ (0 I

vP" 14&.

If we denote P"1Pby 6', we find for the error in the lower~2.&a~

bound
If E"is not an eigenvalue of H', (2.15) may be multiplied
by the resolvent operator (H' —L~'") ' to give an ex-
pression for the eigenfunction

0&6—=E—En
= &~IH" I» —&"&~l»+&~'I vl~'&

(2.26)

Pn (H0 Pn) 1V P C p-
i=1

(2.19)

Unfortunately, (2.19) is usually not an acceptable
form for the eigenfunction since the resolvent is seldom
known in closed form, being generally expressible only
as a spectral resolution involving infinite sums and
integrals. The result is that P" cannot be reduced to a

observing that the first two terms arise from the error
in 1P" while the last arises from the error in H".

Ke give for comparison the well-known equivalent
relation for the error in an upper bound obtained with
the variation principle. We take y to be a normalized
trial function orthogonal to all eigenfunctions of H with

7 We point out that I'"p" does not, in general, vanish.
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energies less than E. %e write q as

v =4+v, (2.27)

According to (2.19), their eigenvalue equations,

H"( V"( &=Ex"(), (3.5)

are satisfied, for eigenvalues different from the E,s by
eigenfunctions of the form

If 8' is the upper bound obtained with y, i.e.,

Jv= &.IHI.)
=EH

I it)+ 6 I

HI�

»,
4'"( ) = (H' —E") 'V 2 (."p'( )

(2.29)
with the C, given by

(3 6)

we find for the error in the upper bound

0&6+= O' —I
= &. I Hl 7&- E&.l»

(2.30)

~--~'=&3'I VI3') (2.31)

Upon comparing (2.26) and (2.30), we see that the
first two terms of (2.26) are of the same general form
as the terms of (2.30), and if lt" and qr do not differ
greatly, it is reasonable to suppose that these terms will

be comparable in magnitude. If this is the case, we see
that the error in the lower bound will be greater by
approximately

n

(-'= —2 A' "(e)&Pi(e) I Vill "(e)&.
j=l

(3.7)

Using (3.2) in (3.6) gives an expression for the eigen-
functions in terms of the f;,

n

P.(,) (Hs En) —1 P (" (Hs, )f (3.8)

%e inquire now as to whether there exist specific
operators H" (E") of the family (3.4) having the eigen-
value E" for, in this event, (3.8) reduces to the finite
linear combination of the f;,s

III. ELEMENTS CONTAINING THE INVERSE
OF THE RESOLVENT

n

yn(En) —P Cf. (3 9)

p = V '(H' E")f,,
—

(t', =1—, 2, ). (3 1)

In the development of the procedure, it is convenient
to introduce a family of p; which contains the p, of (3.1)
defined by

p (e) = V '(Ho e)f, , (i=—1, 2, ), (3.2)

where e is regarded initially as an arbitrary scalar
parameter. The f, are restricted only in that they be
linearly independent functions in the domain of H and
such that the p, are square-integrable in 'U, i.e. , such
that &p, (e) I

V
I p;(e)) is finite.

From (2.11) we obtain for the operators 0"(e) pro-
jecting on the subspace '0"(e) spanned by pi(e), ps(e),

n & )

As discussed in Sec. II, the difficulty in solving the
eigenvalue equation for the intermediate Hamiltonians
of (2.15) arises from the appearance of the resolvent
operator (Hs E") ' in (2.19)—. The procedure given in
this section eliminates the resolvent from (2.19) by
defining the elements p; in terms of another set of
elements f, according to the relation'

If such operators exist, they will satisfy eigenvalue
equations of the form

n n

(H0 En) P C f —Von (En) P(f,
i 1 i=1 (3.10)

n—Ont(En) V Q Cf.
i=1

By forming the inner product of (3.10) successively with
pi*(E"), p, *(E"), , p„*(E"),we obtain the set of
equations,

These constitute a nonlinear matrix eigenvalue equation
of order n,

I
M+M'E-+M (E-) ]C=o (3.12)

n

2 L&(H' —E")j I

V-'I (H' E")f'&-
i=1

+&j;IH —E-I j,gc, =o, (3.»)
(j=1, 2, e).

o"( &= 2 Ip'(~)&A'"()&P ()I v.
i,j=-1

(3 3)
where the matrices M', M', and M' are Herrnitian and
have the elements

Using these, we construct a family of intermediate
Hamiltonians parameterized by e,

H" (e) =H'+ VO" (e) . (3 4)

The author is indebted to Professor P. Q. Lowdin for suggest-
ing this choice of the p;.

~"=&H'j'I v 'IH'f &+&f'I H'I f )-,

&H'f'Iv 'If» —&f'IV 'IH'f) &—f'If & (313)—
Jif'i'= &f'I v 'Ifi&

' Since the resolvent has been eliminated in going from (3.8)
to (3.9), (3.9) is not restricted to eigenvalnes different from the
jP.O
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we have~0
Ho)& (Hn(E.~))

E,o&E,,-, (z=1 2 )

(3.15)

(31.6)

from which the theorem stated below follows.
THEoREM: If the known eigenvalue Ep of H"(E,")

satisfies
E 0&E;"&E+3', (3.17)

and if upper bounds to n 1eigenvalues of H —Lor of
H" (Ep)j lie below Ep, then Ep is a lower bound to
E . For the ground state, the requirement reduces
simply to

E.n& E 0 (3.18)

In connection with the convergence of this procedure,
we 6rst consider the entire family of operators (3.4)
without regard to whether they have solutions deter-
mined by (3.12). Since they are just special cases of the
intermediate Hamiltonians of Sec. II, the conditions
stated there are sufhcient for the convergence of the
operators (3.4) to H."'However, the completeness of the
elements (3.2) requires, in addition to the completeness

"The subscript j on E;;"enumerates the ordered eigenvalues of
~a (+.n)

Equation (3.12) differs from the usual linear matrix
eigenvalue equation involving Hermitian matrices in
that it may or may not have real eigenvalues. An
examination of the associated secular equation,

detLM'+M'E"+M'(E")')=0, (3 14)

shows that it is a polynomial equation of degree 2e in
E"with real coe@.cients and may therefore have complex
roots occuring in conjugate pairs. Consequently the
number of real eigenvalues of (3.12) is even and may
range from zero to 2e. The existence of such real eigen-
values is the criterion for the existence of operators
H" (E") having the eigenvalue E". The eigenfunction
P"(E") of H" (E") associated with a real eigenvalue E"
of (3.12) is obtained from the corresponding eigenvector
C whose elements are the coeKcients C; in (3.9).

We wish to emphasize that (3.12) determines only
one eigenvalue for a given operator, for if (3.12) has k
distinct real eigenvalues, each of these belongs to a dif-
ferent one of the k intermediate Harniltonians H (Eq"),
H"(E2"), . H"(EI,"). Thus, only if an eigenvalue is
multiple, is more than one state of an intermediate
Hamiltonian determined. This property of supplying
only one eigenvalue for a given operator is a serious
disadvantage of the procedure, for, without the other
eigenvalues, we cannot, in general, locate the known
eigenvalue Ep in the spectrum of H"(Ep), and are
consequently unable to determine to which eigenvalue
of H it is a lower bound.

However, if the spacing of the initial levels of II' is
su@ciently wide we can locate E;" in the spectrum of
H"(Ep) in the following way. From the inequality

of the f;, that the transformation de6ned by (3.2) be
nonsingular. It is easily shown that the transformation
will be singular if and only if some eigenfunction PP of
H' is included in the span of f~, f~, , f„and, at the
same time, e=E;0. Therefore, if we separate the oper-
ators (3.4) into those for which eWE, O (i=1, 2, ),
and those for which e=E,O (i=1, 2, ), the former
will converge to H as the f, become complete while the
latter will not. In fact, H"(EP) will agree with H on
1tp, i.e. ,

H"(E )P =-E $.0 (3.19)

n

i, j=l

XA;,"(E")V '(Ho E")f, . (3 22)-—

This follows from the easily deduced result that if f&,
f~, , f" contains fP,

(2.20)

Returning now to the members of (3.4) which have an
eigenvalue and eigenfunction determined by (3.12),
we point out that it is entirely possible that a given
equation will have no solutions at all corresponding to
a situation in which (3.14) has no real roots. I'urther,
there is no guarantee that the subspace '0"(Ep) will be
contained in U"+'(E,"+') since, in general, E,"WE,,"+'.
We therefore have no assurance that the sequence E,",
E,"+', . is monotonic increasing. Because of these
complicating features, w'e consider only a special case
which, however, is the one of interest in applications.
We suppose that, by a judicious choice of the f,, we
have succeeded in obtaining a set of equations (3.12) of
orders q, q+1, , whose secular equations have at
least one pair of real roots. In addition, we suppose that
each member of the sequence E,~, E +', formed
from the jth roots of the secular equations satis6es the
theorem previously proved for some value of o.. We then
have

E '&EP&E (n=q q+1 ). (3.21)

We now make use of the convergence properties estab-
lished above to state that if e increases without limit
and the f, become complete, one or the other of the
inequalities in (3.19) will hold so that the sequence will
(on the average) either decrease toward E ' or increase
toward E . We are, of course, interested only in lower
bounds belonging to sequences exhibiting the latter
behavior.

As discussed in Sec. II, the procedure is a second-
order process and can be expected to be rapidly con-
vergent provided the quantities 8 and 8' of (2.26) can
be made small. Since the choice of the elements f; is
essentially unrestricted in this procedure, we can, in
principle, select them so as to make both quantities
small. However, it is not clear how to choose the f; so
as to minimize the quantity
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On the other hand, it is relatively easy to select the f,
so as to make 6 small. By choosing elements which are
known to serve as a good basis for a variational upper-
bound calculation, we may expect that the quantity
(8jH"—E"~&) will be small, i.e., of the sameorderas the
error (y III E~y)—in the upper bound, so that the ap-
proximate relation (2.31) will hold. We can make no
estimate of the relative magnitude of the remaining
term (5'~ V~8') in (2.26), but it is reasonable to suppose
that it will be dominant. We And con6rmation in the
results of the calculations on the helium ground state
in the next section. The elements used in these calcula-
tions were chosen by the method just described. The
lower bounds are found to have errors which are, on the
average, about an order of magnitude larger than the
errors in comparable upper bounds, indicating that the
term in 8' is larger than the term in 5 by about the same
amount.

IV. LOWER BOUNDS TO THE GROUND
STATE OF HELIUM

Considerable interest has been attached to the calcu-
lation of upper and lower bounds to the ground-state
energy of the nonrelativistic helium Hamiltonian which
confine the theoretical energy within the limits of error
of the value provided by correcting the relativistic
experimental energy. ""While it has been possible to
compute upper bounds which lie within the current
experimental error, " equal success has not been ob-
tained with lower-bound calculations" because the lower
bound procedures used, those of Temple" and Stevenson
and Crawford, "are substantially less efIicient than the
variational upper bound procedures. For example,
Pekeris"" has given the bounds

—2.903726615 (au)(Et( —2.903724375 (au), (4.1)

for which Schwartz" estimates that the error in the
lower bound, which was obtained with Temple's formula
using the same 1078 term wave function which gave
the upper bound, is two to three orders of magnitude
greater than the error in the upper bound.

To illustrate the application of the procedure given
in this paper and to compare its eKciency with that of
the previously used procedures, we carry out lower
bound calculations of orders through ten on the ground
state of helium in this section.

"E.A. Hylleraas, Z. Physik 48, 469 (1928).
~A. F. Stevenson and M. F. Crawford, Phys. Rev. 54, 375

(1938).' S. Chandrasekhar and G. Hertzberg, Phys. Rev. 91, 1172
(1953).

'4S. Chandrasekhar and G. Hertzberg, Phys. Rev. 98, 1050
(1955).

r~ L. W. Wilets and I. J. Cherry, Phys. Rev. 103, 112 (1956)."T.Kinoshita, Phys. Rev. 105, 1490 (1957).
'7 T. Kinoshita, Phys. Rev. 115, 366 (1959).
's C. L. Pekeris, Phys. Rev. 115, 1216 (1959).
"C.L. Pekeris, Phys. Rev. 126, 1470 (1962).
w C. Schwartz, Phys. Rev. 128, 1146 (1962).
2~ G. Temple, Proc. Roy. Soc. (London) A119, 276 (1928).

In atomic units, the nonrelativistic helium Hamil-
tonian is

H = —-,'Vrs —-', Vss —2/rt —2/r, +1/r, s.

H can be put into the form (2.3) by taking H' as

(4.2)

EP= —
s VP ——',Vs' —2/rr 2/rs, —

and U as
V= 1/rrs. (4.4)

(4.3)

We estimate only the ground state of II which is
singlet S in character. Consequently, the only knowledge
of the solutions to H' required is the energy of its first
excited singlet 5 state. The solutions to II' are well
known and the ordered energies of its lowest singlet 5
states consist of its ground-state energy and a sequence
of excited-state energies converging toward the 6rst
limit point at —2,

&'= —2(1+1/j') 0=1, 2, ). (4.5)

The 6rst excited singlet 5 state thus has the energy
E2' ———2.5. Since this is greater than the upper bound to
L~r given in (4.1), we will be able to identify lower bounds
to the ground state by (3.18).

We have chosen for the f, terms of the Hylleraas
series" which is defined in terms of the coordinates

as
s =rr+rs, t= rr rs, u=—r» (4.6)

C =e "' Q c„,.sl'ts "u
p, v, o'=0

(4 7)

where r/ is a scaling parameter. This choice of the f;
insures that the lt" will be automatically of singlet S
character. The ten terms of (4.7) used are those found
to be most effective in a tenth-order upper bound
calculation. "They are listed below, normalized to 16m'.

f& p(2')'/2——]e-"',

f = L(2v)'/4(6)'"]u -",
fs= E(2n)'/24]t'e "',
j4= E(2n)'/2(42)'"]se

fs L(2 r/) s/24 (21 )1/—2]sse—ps

f = L(2n)'/40(3)'"]u'e-"'

fr =- L(2n)'/48(3)'/s]sue-~'

j'.=L(2n) /96(5) ]t .-"
fs = f(2r/) '/240(7)'/']u'e —~',

f&0 L(2g)&/432 (3())r/2]—tsuse ne—

(4.8)

The calculations require the evaluation of the matrix
elements (3.13) for i, j= 1, 2, , 10 using the functions
(4.8) for the f; and (4.3) and (4.4) for IP and V. The
methods used to evaluate these are similar to the
methods used by Wilets and Cherry" in evaluating
integrals in their lower bound calculations on helium
using Temple's formula. The elements were used to
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ALE I. Comparison of the lower bound energies and wave functions of this paper with those of upper bounds of the same orders.

Order Calculation'

upper bound
lower bound

upper bound
lower bound

upper bound
lower bound

upper bound
lower bound

upper bound

lower bound

Energy (au)

—2.8477—3.0657
—2.8912—2.9437
—2.9024—2.9208
—2.90324—2.9094
—2.903603

—2.9059

Error"

0.0560
0.1620
0.0125
0.0400
0.0013
0.01/1
0.00048
0.0057
0.00012

0.0022

exp —1.69s)
exp —1.93s)

Wave function

exp (—1.85s) L1+0.364uj
exp (—1.98s)$1+0.290ug
exp (—1.82s) Ll+0.30u+0.13P)
exp (—1."/Ss) $1+0.272u+0.093t'j
exp (—1.82s) L1+0.353u+0.128t' —0.101s+0.033s'—0.032u'j
exp ( 1 7—2s) .$1+0 312u.+0 0958. 0 2—08s.+0 031s.' 0 0—20u. 'g
exp( —1 '/6s.)$1 +0 351. u+0 157P 0 —129.s+0 013.s' 0—068.u'

+0.019su —0.034tsu+ 0.006us+ 0.005tsusi
exp( —1 76s)$.1+0327u.+0 152ts. 0 13—4s+. 0 009ss. 0 06—6u.m

+0.009su —0.010t'u+0.001u'+0.006t'u'j

a The upper bounds of orders one, two, three, and six were taken from L. Pauling and E. B, Wilson, Introduction to Quantum Mechanics (McGraw-Hill
Book Company, Inc. , New York, 1935), p. 224. All but that of first order are due to Hylleraas. The tenth-order upper bound was taken from Ref. &3,

b The errors were computed using the upper bound of (4.&) for the exact energy.

construct eigenvalue equation (3.12) of orders through
ten, which were solved for their real eigenvalues and
associated eigenvectors by an iterative technique of
I owdin. "Our results are given in Figs. l and 2 and in
Table I.

It was stated in Sec. III that the real eigenvalues of
(3.12) are even in number with an equation of order I
having from zero to 2n real eigenvalues. In our calcula-
tions we never find more than two. This is despite the
fact that, e.g., the secular equation corresponding to
the eigenvalue equation of order ten is a polynomial
of degree twenty in the energy. In Fig. 1 we give, as
typical, the behavior of the eigenvalues of an eigenvalue
equation of order two based on the elements J'r and fs.
We see that, in the region centered around g=2, two
eigenvalues are found which merge near q=1.75 and

2.8

q=2.20. Outside this range no real eigenvalues are
found. Both eigenvalues are lower bounds to the ground
state, but we retain as useful lower bounds only those
given by E2'. Although not displayed in the figures, it
is interesting to note that as the order of the calculations
increases, the lower curve E~" Qattens out rapidly so
that at e= 6 it is quite close to the straight line E&'———4.
This supports the discussion in Sec. III regarding con-
vergence to the 8;0. The exact value —4 is attained at
s/= 2 for any order, since, at this point, fq is identical
with mrs.

In Fig. 2 we give the curves E2" obtained from the
calculations of orders one through six and the tenth-
order calculation. " It is gratifying to observe the
monotonic increase of the lower bounds with order,
since we have not proved that this must necessarily
occur. At points where two curves touch as, e.g., the

-3.0
~GROUND STATE OF He

302
"2&5

-3A
CO
IE
lsI

IsI

"3.6

-3.8

2
I

D 300
CO
K
LLI

-3.IO

- 4.0
l.4 ).6 1.8 2.0 2.2

-3.l5—
I.6 l7 l.9 2.0 2,l 2.2

Fro. 1. Eigenvalues of an eigenvalue equation (3.12) of order
two. The curves labeled E12 and Ep give, at any value of p, the
lowest eigenvalues of the ditferent operators H'(EP) and H'(Es').

"P.O. Lowdin, J. Mol. Spectry. 10, 12 (1963).

Fxe. 2. Lower bounds to the ground state of helium
as a function of a scaling parameter.

"A calculation of order n is based on the functions f1, f2, ~

f„ taken in the order that they appear in (4.8).
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TABLE lI. Comparison of eilrciencies of upper and lower bound procedures for the helium ground state. Columns (4), (6l, and (gl indicate
the egjciency of the procedure of this paper relative to the upper bound procedure and the other lower bound procedures.

Functions
used

f1
f1—fa
fl f6
f1—fg
fi—fiO

Lower bounds
of this paper

—3.0657—2.9208—2.9094—2.9068—2.9059

(3)
Upper bounds

of Table I
—2.8477
--2.9024—2.90324

0 ~ ~

—2.903603

2.9
13
12

~ ~ ~

18

Lower boundsb '
of Stevenson

and Crawford

—3.5403—2.9481—2.9215—2.9102

(6)
~sc /~ '

3.9
2.6
3.1
2.1

Lower bounds~
with Temple's

formula

—4.13—2.965—2.9257
~ ~ ~

—2.9136

7.6
3.6
3.8

a The error in the lower bounds of (2) divided by the error in the upper bounds of (3).
b Taken from Ref. 12.
c The error in the lower bounds of (5) divided by the error in the lower bounds of (2).
d Taken from Ref. 15.
e The error in the lower bounds of (7) divided by the error in the lower bounds of (2).
f These bounds could be improved slightly by using a less conservative value of Ot L'see (4,11)j.Using a value of a near the optimum improved the ninth-

order lower bound to —2.9089.

point near &=2.02 for g2' and E&' the higher order
eigenfunction reduces to the lower order eigenfunction.
Thus, at such points, H"(8,") and H"+'(L';"+') have a
common eigenfunction as well as a common eigenvalue.

In Table I we compare energies and wave functions of
our optimized lower bounds of orders one, two, three,
six, and ten with those of upper bounds of the same
orders. We see that, though individual codFicients and
the sca/ing parameter diifer somewhat, corresponding
wave functions have the same general form. It is evident
that the lower bound procedure is much less efFicient
than the upper bound procedure. However, as will be
shown, it appears to o6er an increase in e%ciency over
the procedures of Temple and of Stevenson and
Crawford.

The lower bounds of Temple and of Stevenson and
Crawford are not connected with intermediate problems
and may be derived from easily established inequalities. '4

Temple's lower bound is given in terms of a trial func-
tionP b

(Wl W)-«lHI~)
(4.9)

while the more efficient" result of Stevenson and Craw-
ford is given by the somewhat more involved formula

E„)I.=n —P(HP~HP) —2ng ~H~&)+n'j'~' (4.10)
'4 For such a derivation of Temple's formula see Ref. 15.
"See Table II. The greater eKciency is maintained in higher

order calculations. Kinoshita (Refs. M and 17l, using a 39-term
trail function, improved his lower bound by a factor of two in
going from Temple's formula to the procedure of Stevenson and
Crawford.

where the quantity (HQ~Hip) —2n(Q~H~Q) may be
minimized by variational means, and where o, must
satisfy

n&-', (Et+ Z,}. (4.11)
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"Evaluation of integrals is one of the major difBculties en-
countered in these calculations. The integrals occurring in the
new procedure are actually slightly less involved than those occur-
ring in the other two procedures.

Optimum lower bounds are obtained when there is
equality in (4.11).

In Table II we compare the lower bounds of this paper
with lower bounds computed with the fomulas (4.9)
and (4.10). Comparison is also made with the upper
bounds of Table I. The greater efficiency of the new
procedure shown in Table II, while not outstanding, is
signi6cant if maintained in higher order calculations for
even a small increase in eSciency can drastically reduce
the amount of labor required to achieve a given accuracy
in a lower bound when calculations of high order are
involved. The increase in eS.ciency is especially signifi-
cant since we judge the new procedure to be comparable
in di%culty of application to the other two procedures. "


