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Deformation produces inhomogeneous distribution
of dislocations; therefore, an inhomogeneous mean
free path and an inhomogeneous ~. This can cause
H„/H, s ratios greater than the ideal value 1.69. How-
ever, in an alloy, the mean free path is controlled
primarily by solute concentration and variations in
dislocation density cause much smaller variations in I(:

than in pure material. Therefore, in the Nb-0 solution
one would expect the ratio H„/H, s to be smaller than
that observed in Nb "

In an experiment on varying the degree of segregation
at dislocations by (a) quenching, (b) cold working, and

(c) strain aging (heating 3 h, 170'C), marked changes

"J.D. Livingston (private communication).

have been observed in the resistivity in the mixed
state between H, i and H, s (see Figs. 16 and 17, Ref. 9)
for Nbp. ggsOp, ppr. After quenching, H, s/H, s ——1.7i. Cold
working the quenched sample increased H„ to approxi-
mately 1.83 H, 2, while strain aging may increase II„
slightly (H„~1.8s H, s).

Analysis of I, data above II,2 in terms of J, may help
to elucidate some of the higher values reported for II,3

in type II superconductors (e.g. , see Ref. 7).
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A perturbation method is developed to consider the problem of the diffraction of electromagnetic waves
by an arbitrarily shaped dielectric obstacle whose boundary may be expressed in the general form, in spheri-
cal coordinates, r„=re/1+sf&(e, &)+S'fe(tt&)+ g where ro is the radius of an unperturbed sphere and

f„(e,&) are arbitrary, single-valued and analytic functions. g is chosen such that

P lg"f„(ttAP)
~
&1, 0(//&u, 0&4 &2v..

n=1

Detailed analysis is carried out to the first order in B. Procedures to obtain higher order terms are also indi-
cated. The perturbation solutions are valid for the near zone region of the obstacle as well as for the far zone
region and they are applicable for all frequencies. Possible applications of this perturbation technique to
elementary-particle scattering problems and other electromagnetic scattering problems are noted.

I. INTRODUCTION

'HE exact solution of the problem of the diffraction
of electromagnetic waves by an obstacle of given

shape and electromagnetic properties can be found only
in a few cases. ' ' For example, the diffraction of waves

by a conducting or dielectric sphere, by dielectric
coated spheres and by a perfectly conducting disk are
the few three-dimensional problems that have been
solved rigorously. The need for approximate methods to
treat the more general cases of diffraction from arbitrar-

ily sphaped obstacles is quite apparent. The variational
principles'' provide a very powerful tool in obtaining

*This work was supported by the Air Force Cambridge
Research Laboratories.' R. King and T.T. Wu, The Scattervng and Digractvon of Waves
(Harvard University Press, Cambridge, Massachusetts, 1959).

' C. J. Bouwkamp, Rept. Progr. Phys. 17, 35 (1954).
3 P. M. Morse and H. Feshbach, Methods of Theoretical Physics

(McGraivv-Hill Book Company, Inc., New York, 1953).
4 H. Levine and J. Schwinger, Theory of Electromagnetic lVaves

(Interscience Publications, Inc. , New York, 1951).

an approximate expression for the scattering cross
section; but it is not possible to derive from the varia-
tional principles a description of the electromagnetic
6elds. Furthermore, the success of the variational
approach depends to a great extent on the trial function.
At low frequencies, the Rayleigh method is very use-

ful. ' ' However, the solutions of Laplace's equation are
still required. At very high frequencies, the treatment
of diffraction problems by geometric and physical
optics techniques developed by Fock' and Keller' is

very successful. An approximate or perturbation method
in the medium frequency range still remains to be found.

' Lord Rayleigh, Phil. Mag. 44, 28 (1897).' A. F. Stevenson, J. Appl. Phys. 24, 1134 (1953).' V. A. Fock, J. Phys. (USSR) 10, 130 (1946); 10, 399 (1946);
see also Thirteen Papers by V. A. Foe&, edited by N. A. Logan
(Antenna Laboratory, Air Force Cambridge Research Center,
Bedford, Massachusetts, 1957).

s J. B. Keller, J. Opt. Soc. Am. 52, 102 (1962).
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In this paper, the boundary perturbation technique'
will be extended to consider the problem of diGraction
of waves by a dielectric object with perturbed boundary.
This perturbation method is based on a Taylor expan-
sion of the boundary conditions at the perturbed
boundary. "Since this approach attacks the complete
boundary-value problem, the perturbation solution for
the field components is valid for the near zone (i.e., near
the obstacle) as well as for the far zone and is valid for
all frequencies. Similar procedure has been used recently
by Erma" in his treatment of the electrostatic problem
for irregularly shaped conductors.

II. THE PERTURBATION SOLUTION

It is assumed that an arbitrarily shaped dielectric
body which has a permittivity e~ and a permeability
p~, is embedded in a homogeneous dielectric medium
(ep, )((p). The boundary of the dielectric body (Fig. 1)
takes the shape of a perturbed sphere which may be
expressed by the following equation

r =«o(1+gf (8,4)+8'f (8 4)+ ) (1a)

where ro is the radius of the unperturbed sphere, 5 is a
smallness parameter, and the f„(8,4&) are arbitrary,
single valued, continuous functions satisfying the
conditions

f-(8,o) =f-(8,2 )
' 2 I

8"f-(814)
I
&1,

n=l

The spherical coordinates («,8,4&) are used.
Let the given exciting 6eld (which need not neces-

sarily be a plane wave) be denoted by E('&, H('&, the
scattered 6eld by E('&, H(', and the 6eld inside the
dielectric body by E"&, H'". The zeroth-order solution
will be designated by a subscript 0, the first-order
solution by subscript 1, etc. Hence, the resultant
scattered fields and the resultant transmitted 6elds
inside the body are respectively,

E(~) —Ep(~) y$ Ei(~)+PE (~)+. . . .
(2)H(') =H p(')+bHi(')+PHs(')+

FIG. 1. The arbitrarily
shaped dielectric body.

and
E(i)= Ep(o+8Ei(0+PE (i)+. . .

H(') =Hp")+5Hi(')+i&PHs(o+
(3)

gfi 1 gfi
n e„—8 eg —8 eq,

gg sing 84&
(6)

to the 6rst order in 8 in spherical coordinates. e„, eg,
and ep are respectively the unit vectors in r, 8, and g
directions. fi has been defined in Eq. (1). Carrying
out the vector operations and expressing Eqs. (4) and
(5) to the first order in 8 in component form with the
help of Eqs. (2) and (3), one obtains

The higher order solutions are generated from the
known zeroth-order solution; i.e., E"&, H"), Ep",
Hp' &, Ep "&, and Hp "& are assumed known quantities.
For the sake of clarity and simplicity, only the 6rst-
order sol.ution will be carried out in detail. The higher
order solution can be obtained in a similar fashion.

The boundary conditions require the continuity of
tangential electric and magnetic fields at the boundary
surface r= r„:
nxLE("(r 8,4)+E('(r 84))=nxE('&(«„,8,4), (4)

n x
I
H") («~,8,4)+8(') («„,8,4)j= n x H('& (r 8 4) (5)

where n is a unit vector outward normal to the boundary
surface and can be written as

e„:

ey.

1
8(8fr/gg) $E&")(r»8,4))+Epp(') (r»84)$+8 $Ep(" (r»84&)+Epp( ) (r»84))

sing 84

gfi 1 gfi=6 Epe(i)(«~, 8,4&)+8 Epp('&(r»8, 4)).
gg sing 84

1 gfi
E4")(«,84)+Eop" («.,84)+8 E "(«.,84)—. IE.")(«,84)+E."(«,84)j

sin8 84

1 gfi=E„«)(«„8,4)+8 E»(') («„,8,4)— E,(') («„,8,4)
slllg 84)

P P. M. Morse and H. Feshbach, J. Opt. Soc. Am. 52, 1052 (1962).
"See, for example, P. C. Clemmow and V. H. Weston, Proc. Roy. Soc. (London) A264, 246 (1961); C. J. Marcinkowlri and

L. B. Felsen, J. Res. Natl. Bnr. Std. 66D, 699 (1962); 66D, 707 (1962)."P.A. Erma, J. Math. Phys. 4, 1517 (1963).
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ee'. Es'"'(r„,B&1&)+Eps '(r„,8$)+b{E&s'*'(ry,8$) &&-(8fi/88)[E, "(re,8,$)yEo„"(r„,8,$)1)

A1$95

=F-'. '"( „8,~)+8{E &"(.,8,~)+(Bf /»)E. ,"&(.,8,~)) (9)

]
e, : h(8fi/88) [H@&"(r„,8$)+H pe

&'& (r„,B,&)$+8 [Hs&" (r„,B,&t&)+Hop&'& (r~, B,&t&)]

sinB 8$

Bfi 1 Bfi
H„«&(r„,B,y)+8 H„& &(r„B,@).

88 sinB Bg

8
es. He ' (r„B,y)+ Hoe ' (r„,B,y)+8 H e

' (r„,B,@) —[H„' (r„B,y)+Ho, '(r„,B,y) j
sinB 8$

1. t9 ]= Hpe&" (r„,B,&)+8 Hie "& (r~, B,&)— Hp, " (r~, B,&) . (11)
S&118 8&t&

Hs "&(r.,BA)+Hop&'& (r.,BA)+8{H&s&'&(r.,BA)+ (Bfi/88) [H "'(rn, BA)+Ho "(rn BA)3)

=Hop'"(r. , B,~)+8{Hs&"(r.,B,~)+(Bf/88)Ho. "&(r„B,~)}. (»)

Equations (7) and (10) are satisfied by the zeroth-order solution. We now expand the above functions in Eqs. (8),
(9), (11), and (12) to order 8 in Taylor series about the unperturbed boundary r = r p, obtaining

E ' (",B,e)+Eo "(o,B,e) Eo "-&(o8~)

1 8 ' (ro, B,&I&)+Eo ' (ro, 8,4)g —Eie ' (ro, B,&&'&) rpf1[Ee —(rp 8 f)+Epe '(ro, B,P)g
sinB 8&t&

8
E., ' ( o,8,~) Ee'"(",8,—~) "fE""'(—",8,~), (»)

sinB 8$

Es&'& (ro, B,&t&)+Eos '(r p, B,&t&)
—Eos ' (ro, BA)

8{E,s&'(r—p, B&t&)+ (8f,/88) [E,&" (ro, B,@)+Eo."(ro, B&)j+rofi[Es ' '(ro, B,&t&)+Eoe ' '(ro, B,&t&)jj
+8{E&e"(ro,B,Q)+(@fi/88)Eo "(ro,8,$)+ref&Eoe " (ro, 8,$)), (14)

He"'(ro, 8,4 )+Hoe" (rp, 8,4) Hoe'" (ro, BA)—

1 8
' (ro, B,&t&)+Ho ' (ro, 8,4)g Hie ' (ro, 8,4) rofi[H@ ' '(ro, B,&t&)+Hoe ' '(ro, 8,$)j

sinB 8$

1 c)—8 Hp„&" (rp, B&t&) H&e &"(rp, B,&) —rp fiHoe'"'(re, B—&t&), (15)
sinB 8$

Hs&'& (ro, B,&I&)+Hoe '& (ro, B,&)—Hos "(rp,B,@)

= —8{His&'& (re, B&t&)+ (8fi/88) [H, '(ro&8&t&)+Ho, "(rp, B,&I&)]+ref&[He"'(ro, 8,$)+Hop" '(re, B,P)])
+&{His&"(ro, BQ)+(Bfi/88)Ho &" (ro, 84)+rofiHos&o'(ro, 8&t&)), (16)

where the prime signi6ed the derivative of the function with respect to ro. The left-hand sides of the above equations
are equal to zero by virtue of the zeroth-order solution. Hence, the right-hand sides of the above equations must
vanish identically. Rearranging and combining Eqs. (13) and (14) gives

[Els ' (ro, B&t&) Eie'" (ro,84)]—ee+[Eie" (rp Bg) Eie "(rp,8$)Jee ui(re,—B&)co+No(rp, B&f&)ee,
——

and combining Eqs. (15) and (16) gives

[H,e& & (ro,B,@) Hie &'& (rp, B,&)gee+—[Hi@&'& (ro, B,&) Hie &'&(ro, 8,&)—gee oi(rp, B,&)es+——o, (ro, B,@)ee,

(17)
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where

( o 8A)=(8f /88)L&o'"( os/) P-.—"'(.,8A) —&."(o, 8A)j
+ro fig&pe'"'(ro, 8A) P—e"'(ro, 8A) &—oe '&'(ro, 8A) g,

1 8"(,8A) = . E&."&(",8A)+&""(",8,~)-~.,&'&(",8A)3
sin8 8$

+ of L&o4'"'( o,8A) &4—"'( o, 8A) &oe—"'(.,8,4)j, (19)

i&i(rp, 8A&) = (Bfi/88)LHp i &(rp, 8,$)—H„i'&(rp, 8,&)—Hp i &(rp, 8,&))

+ of EHo '"'( o,8A) H"'—( o, 8A) Ho "—'( o,8A)g,

1 8
vp(rp, 8A)= PH, &'&(rp, 8,$)+Hp & &(erp, 8Ae) —Hp i &(rp 8&)j

sin8 8$
+"fLH" «&'( o,8A) He "&'—( o, 8A) H. "—( o, 8A) j

It is noted that the resultant fields given by Eqs. (2) and (3) must satisfy the wave equation. It is therefore clear
that ea,ch term in Fqs. (2) and (3) must separately satisfy the wave equation. Consequently, the general expressions
for E,&'&, H, «&, E,«&, and Hi&i&, that are appropriate to the present problem, are"

E1 P + e,omnMe, omn ++e, o Nmen, emn (2o)

kp
Hi g (+eomnNe, omn, ++,eomnM, eomn ), y

m + ZGOPp

(21)

Ei g +e,omnMe, omn +De,omnNe, omn (22)

where

~1
(&e,omnNe, omn +I&e,omnMe, omn ) q

~ & ZMP1

Me, omn Isn (kor)me, omn y

(23)

8
h„&'&(kpr)I. .. „+ —Lrh "&(kpr)7(e„xm, ,,„„),

kpr kpr Br

M e, omn = jn(kir)me, omn ~

(24)

with

1 8
N, .„„i'&= j „(kir)1...„„+ —Lrj (kir)$(e„&em„. ),

k1r ar

enP„(cos8) sin
me, ornn= ~ ~ee-

COSSin8

8P (cos8) cos
~e@)

88 Sin
(25)

COS

I, .„„=n(n+1) P„(cos8) en'„.
sin

h„o& (k,r) and j„(kir) are, respectively, spherical Hankel and spherical Bessel functions; P„(cos8) are associated
I.egendre polynomials. kp = pp&p and k1 =co p, 1eq. A...~» B...~» C,,,~„and D, , ,~~ are yet unknown arbitrary
constants that can be determined from Eqs. (17) and (18) using the orthogonality properties of the angular

"J.A. Stratton, Electromagnetic Theory (McGraw-Hill Book Company, Inc. , New York, 1941}.
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functions. Substituting Eqs. (20) through (23) into Eqs. (17) and (18),and making use of the following orthogonal-
ity relations

1eom, n'me, omn= 0
& 1e,omn' (er x meom, n) = 0 e me, omn' (e„xm. ..m„) =0,

0, for mQm', eQm'

0 Q

(l...„„l... ~ .) singdgd@= 2n'(n+1)' (n+m)!
(1+80 )tt for m=m', n=n',

2n+1 (m —m)!

(me, omn ™eo'm, )nsingdgd4 =
0 0

0,

t (e„xm, ,m„) ~ (e„xm, ,m. „.)] singdg@

for m&m', g~z'
(26)

one obtains

=.2n(n+1) (n+m)!
(1+born)tr, for m=m', n=n',

2n+1 (n —m)!

1, m=0

0, m&0,

&e,omnhn (&OrO) &e,omngn(&lro)
mn 0

u m. ..„singdgdp, (27)

8 8 1
Be,omn Pokn (~orO) j De, omn

trojan(piro)

j=
porp gfo kirp grp p

1 8 1 8 1
~ e, overt, n Porn (&Oro)) &e,omn t rpj. (k,«)]=

icuporo gro t~plr0 gro p

kp

u (e, xm, , ) singdgdg, (28)

v. (e, x m. . .) singdgdp, (29)

Be,omn hn (&oro) Deomn ,j.(&1ro)
ZAP, Q CGA y pmn 0 0

v m. .. singdgdg, (3o)

with
u=li(ro, g,p)et+N2(ro, gA)et,

v= vi(ro, g,etc)ee+v2(ro, g,etc)et

2n+1 (n —m)! 1

2n(n+1) (n+m)! (1+80 )tr

31
with a known one. However as a partial check the
problem of the diffraction of a plane wave by a dielectric

(32) sphere of radius ro(1+5) was carried out in detail using
the above derived formulas. Results are found to be in
complete agreement with the solutions obtained by

(33) expanding the exact solutions to the 6rst order in 5.

Ni, N2, v, , and v2 are given by Eq. (19).The coefficients

A, , „,8, , „, C... „, and D... „can be found readily
from the above equations. Substituting these coeKcients
back to Eqs. (20) through (23) gives the 6rst-order
correction to the electromagnetic 6elds due to the
departure of the boundary surface from a perfect
sphere with radius rp. Higher order corrections can be
found successively in the same manner. It is interesting
to note from the above analysis that, in general, the
perturbed wave will have all components of electro-
magnetic fields even if the incident wave is a pure TIi
wave (Z &'&=0) or a pure TM wave (H &'&=0)

Since the exact solution to the problem of the
di6raction of electromagnetic waves by a three-dimen-

sional dielectric obstacle other than a sphere is not
available, it is therefore not possible to compare the
result obtained by the above perturbation approach

where

r„=rog(1 —25 sin'8)'~'j

~=- 51—(«/(ro+~«))'3

(34)

(8(0: prolate spheroid; 5)0: oblate spheroid), and
2ro and 2(ro+Aro) are the lengths of the two axes of the

III. AN EXAMPLE: THE SCATTERING OF PLANE
VfAVES BY A DIELECTRIC SPHEROID

As a less trivial example of the application of the
theory derived in Sec. II, the problem of the scattering
of plane waves by a dielectric spheroid with small
eccentricity will be considered. It is assumed that the
incident plane wave with its electric vector polarized in
the x direction is propagating in the direction of the
negative s axis. The equation of a spheroidal surface is
given by
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The unperturbed solution to the problem of the scatter-
ing of plane waves by a dielectric sphere is well known":

2n+1E"= g (—p)" (Moln"'+pNeln"')
n(n+1)

(38a)

PROLATE 8 &0
SPHERE 8 = 0
OBLATE 8 &0

ko 2n+1
H&') = P (—i)" (N». &')+iM.)„i')), (38b)

~=i io))Lip n(n+1)

00 2n+ 1
Po(~) = P ( i)~ (g„~M»„(~)+ib ~N, )„(~)) (39a)

n(n+1)

FIG. 2. The dielectric spheroid. The arrow indicates the
direction of the incident wave.

spheroid. (See Fig. 2.) For small eccentricity, one has

kp 2n+1
Ho~' ——g (—i)" (a„'N,i„i')

=i io))i p n(n+1)

+ib 'M. i i')), (39b)

2n+1
Eo&') = Q (—i)" (a„'M,i &')+ib„'N„&')) (40a)

n(n+1)

r„roL1+5 sin'8].

Comparing Eqs. (36) and (1a) gives

fi(8,$) = sin.'8. (37)

kp, 2n+1
Ho ~') ——P ——(—i)"

=i iopyp n(n+1)

&((a„'N» io+ib 'M.i.i')), (40b)

with

)ioj (koro)Lkiro j (kirp)]' —pz j„(k&ro)Lkoroj (koro)]'
8

)ilj .(kiro) Pkoroh (koro) ]' @oh (koro) Pkiro j„(klro)]'

(ko/kl) plj (koro)t kiroj.(kiro)]' —poj.(kiro)@proj.(koro)]b'=
)ipj „(kprp)Lkoroh~ "(koro)]' —pi(ko/ki)'h~ ' (koro)Piro j~(kiro)]'

( i)) i/koro—t-
) oh. "(koro) Lkiro j (kiro)]' —) ij„(kiro)Pkoroh " (koro)]'

(—i)pikirp
b. t =

pi(koro) 'h '" (koro) Lkiroj.(kiro)]' —po(kiro)' j (klro) Lkorph (korp)]'

(41a)

(41b)

(42a)

(42b)

M, . „&" and N. .. „")are obtained, respectively, by replacing h„"'(kpr) by j„(kpr) in M, , „i') and N, ,
The prime in the above expressions denotes differentiation with respect to koro or k&ro as appropriate.

To find the first-order perturbation solution, we first substitute Eqs. (38) through (40) into Eq. (19) obtaining

2p+1 8fi
(o,8,~)= Z (—')" P„(L».e,)+Q„f,(m.» ep)+&~f&((e„xmgi)) ep)

p(p+1) . 88

2p+1
n&(rp, 8,p) = p (—i)" [Q„fi(m»„.e&)+R„f&((e,xm, i„) ep)],

n=i p(p+1)

2p+1 kp 8fi
o, (ro, 8,&)=- p (—i) — S„(1,,.)e,)+ Tf ((ie, xm.») ep)+Upi(m. » ep)

p(p+1) uup, p 88

2p+1 kp
i)o(ro 8@)= P ( i)" — $T~f&((e„xm.i„) ep)+&~fi(m, » ep)], .

p(p+1) ioppo

(43)

(44.)

(46)
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where

+p (2/kof0)[b (ko/kl) j (klfo) jp(kofo) bp kp (kof0)]

Q + klfjo(klf0) kot0j (kofo) —
43 kof 0& (kofo)

Rp=ikifobp'[(1/klfo)(klfoj„(klfo))']' —2kofo[(1/kofo)(kofojp(kofo))']' —ikofobp'[(1/kofo)(kofokp"'(kofo)) ]',
Sp= (duo/k0441) (1/klfo)~lp'jp(klfo) —(1/kofo) jp(kofo) —(1/kofo)lip'k "'(kofo),

A1199

(47)

(48)

(49)

(50)

T„=(kiddo/kopi)& '»fo[(1/kifo)(klfo j„(»fo))']'—kofo[(1/kofo)(kofo j (kofo))']'
—up'kof 0[(1/kof 0) (kof okp&' (kof0))']', (51)

p„=2(klI40/k0141)bp'klfoj„'(k, fo) 2kofoj—'(kofo) ib„'—kofok "'(kofo) (52)

The expansion coeKcients for the first-order perturbation fields are then found by putting expressions (43) through
(46) into Eqs. (27) through (30) and carrying out the integration where possible. One has

A, „=8, „=-C, „=D, „=0 for all m and e,
A, „=8, „=C, „=D, „=0 for m/1 and all e,

=[Xol j (klfo) 42o1 (k1440/kohl)(1/klfo)(kifoj (klfo)) ]/&

~ 1 L 7 1 (1/klfo)(»fo j (kifo)) +48 1 (k1440/kohl) j (klfo)](kohl/klI40)/1

Col [Xol k (kof0) 42o1 (1/kot 0) (kof ok (kof 0)) ]/1
D,l =[—p.l & "'( kof)o+y. l (1/kofo)(kofok (kof0)) ](kopje/klPO)/1',

(53)

with

&= (1/kofo)(kof1k ~ ~(kofo))'g (klfo) —(kiddo/k0441) (1/klfo)(klfoj (»fo)) k "'(kofo),

2p+1
42eln Q ( 2) P pf1 in +Qp~2ln +~2J31n ] y

Pl- =' P(P+1)

m 2P+1
Bein 2 ( 3) P pJ4ln +QpJ3ln +~pJ21n ] y

Pl- =' P(P+1)

2l ee 2P+ 1
Yel n P ( 2) Ppjli +Tnp~oln +Upj21n ] p

Pl "=' P(P+1)

(54)

m 2P+1
x.l = 2 (—2)" L&pf41 "+T Ai p+~,~31.p],

pl p=i P(P+1)

where J»„&, J&~ &, J~~„", and J4~„", which are definite integrals involving the associated Legendre functions, are
given in the Appendix. Hence, the scattered 6elds correct to the 6rst order in 8 are

20+1223+1
E =P (—2)- a +&A, M, + 2(—2)- b„+be.,„N„„

22(f4+1) 23(f4+1)
(55)

H(e) = P
~=& 'LMIJ, O

222+1 223+ 1
(—2)" a.'+82.1 N, ~'1&+ 2(—i)" b.e+bB„„M„„&e&I(23+1) 23(23+1)

(56)

4,
'20" I' 1(cos8) 8 P '(cos8)

E&e& Q (—i) "+' V —iW —P„'(cos8) coslteo —V„8„'(cs8) o214 „— sing—e0, (57)
Joy n=l 88 88 sin8sine

Of particular interest is the far zone behavior of the scattered field. The radial component of the scattered fje].d

may be neglected at large f because of its rapid fall o6 compared to the 8 or p component. Cpnsequently, the
scattered 6eld has the form of a spherically outgoing wave, i.e.,
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58)+g)jg ~ 5201»

,)-i-(2m+~)/I("+')~

Rewrltlng Eq 5p) gives

(,) g, ( )eg+&~" e& '

where

(6O)
with

E
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) it()~/p, or) cos4'S&
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(63)I,- is,()i,
or the radar crosscross section orT b scat e g

is also of interest. It is e

64i'/I&" I'I =o0.= lim 4sr'i E-'

0
I

kp rp

cross sectionsalized backscatteringI
for nose-on in

'

or from Eq. (57),

~(~+&)
2 (—~)""

Pp~ n=l

Simplifying gives
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(—~) (~-'+&-')
I
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FIG. 4. The polarization
of light scattered from
dielectric spheroid for nose-
on incidence.
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radially inhomogeneous dielectric body with perturbed
boundary. "

Further applications of this perturbation technique
can be found in the scattering of electromagnetic or
acoustic waves from hard or soft objects, in the scatter-
ing of x ray or of light by interstellar matter, and in
elementary particle scattering theory.
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Jlln
de

p(p+1) P„'P 'd8,
d8

(A1)

-dP 1 dP 1 P»P 1-

f~ + sin8d8, (A2)
do do sin'0

dP ' dP '
f~ P„' + P'd8,

dO d8
(A3)

dfg dP
J„„~= p(p+1) P„' sin8d8,

0 dg de
(A4)

APPENDIX

The definite integrals J»»„&, J21„",J31 &, and J4» &

are defined as follows:

"C.Yeh, Phys. Rev. 131, 2330 (1963). where f~
——sin'8 and df&/d8= sin28.


