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orientation of Ho with respect to the molecular axes
(Ore) can tell us the type of motion involved. This sort
of information is quite analogous to the line-narrowing
studies of molecular rotation done in conventional
resonance.

and r interchange. Then we get

where
A;,= (1/r;, ')(3 cos'0;,—1) .

(92)

(93)
B. Intermolecular Contributions

It is a straightforward matter to generalize Eq. (87)
to take into account the intermolecular contribution.
The labels i and j then refer to atoms not necessarily
in the same molecule. We get a particularly simple
form when the molecules can only jump about a 2-fold
axis perpendicular to the internuclear line within the
molecule, as when the protons of a water molecule ex-
change positions. Let us use the labels i, q, and r to
label the positions of the nuclei which will be involved
in the dipole sum. We let q and r stand for the two sites
within a molecule whose nuclei exchange positions. We
assume the other nuclei i do not move when nuclei at q

It is important to realize that Eq. (92) holds true as
long as the various dipolar and Zeeman terms can ex-
change energy in the rotating reference frame. To the
extent that this holds true, Eq. (92) automatically
takes care of splittings of the resonance into several
components, as when one has a Pake doublet in a
water molecule.
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Pseudopotentials previously calculated for metallic magnesium and semiconductors silicon and germanium
are used to calculate the electronic energy-band spectra of magnesium silicide and. magnesium germa»de.
Results are obtained for the energy gap and the positions of the valence-band maximum and conduction-band
minimum which are in agreement with what is known experimentally about these substances. The use of the
energy levels determined is discussed in interpreting ultraviolet reflectance spectra of these compounds.
Finally, on the basis of the present calculations, some speculations are made about the nature of the electron
and hole energy surfaces in the semimetallic region of the alloy system Mg& (Sn), (Ph) &,.

I. INTRODUCTION

HE series of compounds Mg~Si, Mg2Ge, Mg2Sn,
and Mg2Pb have the interesting property that

while the first three members of the series are semi-
conductors, Mg~Pb has electrical properties which are
definitely of a metallic nature. The transition appears
to be smooth and occurs somewhere in the alloy system
Mgs(Sn), (Pb)r, . The present work reports results of
band-structure calculations on the first two members of
the series. These have been carried out using pseudo-
potentials which were originally evaluated for the
elements separately. Although there has been some
discussion of the usefulness of these pseudopotentials,
the present calculation is, as far as the author knows,
the first one for a compound which takes over the
pseudopotentials determined separately for the various

*Work supported by the National Science Foundation and also
by a general grant to the Institute for the Study of' Metals by the
Advanced Research Projects Agency.

constituent elements, one metallic and one insulating.
The approximations involved in doing this are dis-
cussed in the text.

Experimental measurements of the electrical proper-
ties have been made on polycrystalline samples of all
members of the series by Busch and clinkler' ' and of
the resistivity and Hall effect on single crystals of
magnesium silicide and germanide by Danielson and
co-workers. ' ' Piezoresistance measurements of mag-
nesium silicide' have been made and the position of
the bottom of the conduction band determined from

' G. Busch and U. Winkler, Physica 20, 1067 (1958).
~ U. Winkler, Helv. Phys. Acta 28, 633 (1955).
R. G. Morris, R. D. Redin, and G. C. Danielson, Phys. Rev.

109, 1909 (1958).
4 R. D. Redin, R. G. Morris, and G. C. Danielson, Phys. Rev.

109, 1916 (1958).' M. W. Belier and G. C. Danielson, in Proceedings of the Inter-
national Conference on Semiconductor Physics, (Czechoslovakian
Academy of Sciences, Prague, 1961),p. 881.

W. B.%bitten and G. C. Danielson (to be published).
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these. The agreement between these experimental
results and the present calculations is good enough to
indicate that the calculated band structure can be used
as a basis for interpreting further experimental results
for the two compounds.

II. STRUCTURE

Fro. 2. Brillouin zone
for face-centered cubic
lattice. =k

V

The series of compounds with the chemical formula
Mg2X where X is silicon, germanium, tin or lead, all
crystallize with the calcium Quoride structure. The
positions of the atoms in the unit cell are shown in Fig. 1.
The electropositive magnesium atoms occupy the sites
which electronegative Quorine atoms occupy in calcium
fluoride, while the electronegative group IV metals
occupy the calcium atom sites. The lattice has face-
centered cubic translational symmetry and the appro-
priate Brillouin zone is given for reference purposes in
Fig. 2. The values of the lattice parameters were taken
to be:

Mg2Si: u= 12.077 atomic units,

Mg2Ge: a= 12.053 atomic units,

Mg2Sn: a= 12.783 atomic units,

Mg2Pb: u= 12.918 atomic units.

From the band picture point of view it is most conven-
ient to regard the four s electrons from the magnesium
atoms and the four s and p electrons from the group
IVb metal as making up the eight electrons per unit
cell which go into the valence band. The irreducible
representations which classify the energy levels both
within the Brillouin zone and on the surface faces are
those for the face-centered cubic lattice.

III. THE ENERGY-BAND CALCULATIONS

The method of calculating the energy bands is the
simple one of expanding the wave function in terms of
a finite sum of plane waves and diagonalizing the result-
ing Hamiltonian matrix. The convergence of the eigen-
values is checked directly by introducing extra plane
waves into the expansion and recomputing the eigen-
values. If this expansion is used with a crystal Hamil-
tonian which contains the atomic-like potential around
the atoms, then the convergence of such a series is

FIG. 1.Atomic arrange-
ment in Mg~Si.

JL

known to be poor. However, recent work~ has shown
there is almost complete cancellation of the large
negative potential energy that a valence electron sees in
the core region by its own large positive kinetic energy.
The details of the cancellation are given in the previous
reference. Because of this cancellation, the wave equa-
tion may be written:

(2'+ V+ Va) so= &v

The term (V+ V~) is the net, weak. pseudopotential
and because of the cancellation of V by V&, the pseudo-
wave function p is then well approximated by an
expansion in plane waves.

In the present calculation, convenient pseudopo-
tentials were chosen from the start. For the atoms of
silicon and germanium these were taken from the work
of Brust, ' and for magnesium from the work of Harri-
son. ' From Brust's data, which is a set of Fourier
coefficients of pseudopotential, defined only for the
first few reciprocal lattice vectors in crystalline silicon
and germanium, and chosen to fit the experimentally
determined band structure, a smooth curve was drawn
so that Fourier coefficients for any other values of the
lattice parameters could be obtained. The restriction
imposed by Brust that for the larger reciprocal lattice
vectors the Fourier coefficients should vanish was
retained. From Harrison's work, a graph of a similar
function for magnesium was obtained from

~
ir

~

= 0 out to
~

ir
~

= 2k p, where ks is the Fermi momentum for rnagne-
sium. From this point a smooth exponential tail was fit-
ted onto the graph so that the function went effectively
to zero at about

~

k j
= 2.4 atomic units. Thus both these

curves are determined for the atoms in the form of
crystals of the elements. The present method thus
makes the approximation of assuming that these
atoms give rise to a similar pseudopotential when they
exist in compounds, and therefore the only changes in
the values of the Fourier coeKcients of pseudopotential
are due to changes in the lattice parameter. It is
recognized here that while this may be true for the
contributions to the pseudopotential from the core
states, any part due to self-consistent adjustments of

7 M. H. Cohen and V. Heine, Phys. Rev. 122, 1821 (1961).
s D. Brust (to be published).' W. A. Harrison, General Electric Research Laboratory, Report

No. 63-RL-(3322M), May 1963 (unpublished).
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the valence-band charge density must alter from one
environment to another, the changes being smaller
where the bonding of the valence electrons is similar
from one crystal to another. Several other approxima-
tions are involved in using the above form of the
pseudopotential. It is well known' " that the actual
pseudopotential, written above as (V+ Vg) is a non-
local function, the repulsive term V@ being defined by
a complicated integral. The errors involved in replacing
this complicated function by the simpler and more
manageable one used above have been considered in
some detail by Cohen and Heine. Firstly, it is to be
expected that the pseudopotentials used above, as
originally defined by Brust and Harrison, will only be
good for calculating energies which lie near the free-
electron Fermi energy for the magnesium lattice and
also for energies which are close to the band-edge
energies in silicon and germanium. Strictly speaking,
this puts inconsistent demands on the results for the
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"J.C. Phillips and L. Kleinman, Phys. Rev. 116, 287 (1959)."E.Antoncik, Phys. Chem. Solids 10, 314 (1959).

present problem. However, the Fermi energy for
magnesium is 0.69 Ry, the corresponding figure in
silicon and germanium is about 0.8 Ry, and the inter-
esting levels in the present compounds turn out to be in
the range 0.7—0.8 Ry measured from the bottom of the
valence band. From this point of view, the situation
seems quite favorable. A further limitation is that in
reducing the pseudopotential to a simpler form, it is
implicit that a different function should be used to
calculate levels of different symmetries. In the present
calculation, it turns out that the state at the top of the
valence band in both compounds, has a wave function
whose symmetry is p-like about the origin (a silicon or
germanium atom). There are no other contenders for
this position. The lowest state in the conduction band,
however, has a leading term of s-like symmetry. The
calculations indicate that other states which might be
the bottom of the conduction band also have leading
terms of s-like symmetry. Thus in treating these states
the calculation is consistent, although inconsistency
occurs in using the same pseudopotential for the top of

TABLE I. Comparison of calculated and experimentally
measured properties.

AE.,~, (eV) AEE (mii/mo)0 i, (mt/mo). «

Mg2Si 1.3 0.77' 0.69 0.25
Mg2Ge 1.6 0.74 0.63 0.25

Values for the effective masses of n-type compounds have
been given as:

Mg2Si m„=0.46
Mg2Ge m„=0.18

a See Refs. 1 and 2.
b See Refs. 3 and 4. The values for dRzx. given by these workers differ

somewhat from those given above, but not significantly for the present
comparison.

the valence band and could well lead to large errors in
the value of the energy difference between levels of
different symmetry from which the energy gap arises
in the present problem. Experience has shown that
s-p differences in the pseudopotential are smallest in
the third row of the periodic table, which contains both
magnesium and silicon.

The results obtained for the band structures of
magnesium silicide and magnesium germanide by the
above method are shown in Fig. 3. The particular
results shown were obtained with 51 plane waves in the
expansion of the wave function. Calculations with 89
plane waves have been made for the symmetry points
and these show no major changes in the band structure
from that given in the figures. The energy matrix was
diagonalized directly on the University of Chicago
IBM-7094 computer system. Representations of the
groups of k were used to classify the energy levels from
the coefficients of the plane waves, although in most
cases this could be done by inspection. The results are
very similar for the two compounds. The top of the
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valence band is at the origin and is a I l5 level in each
case. The over-all nature of the valence band is very
similar to other semiconductors which have face-
centered cubic translational symmetry and eight elec-
trons per unit cell to go into this band. This is found
not to change very much both in the group IV semi-
conductors and the III-V compounds. In the present
calculation, the valence band is again found to be very
stable to changes in the pseudopotential. The bottom
of the conduction band is found to be at the zone face in
the L100) direction, and is a level of type X, in both
cases. The presence of the level X3 just above Xl is
somewhat disturbing. The leading term in the expan-
sion of the wave function for level X3 is d-like. Clearly
this level is not treated very accurately by the present
method. The position of this level is therefore not well
known from the present calculation.

Calculated values for the energy gaps and effective
mass components for electrons at the bottom of the
conduction bands are given in Table I along with ex-
perimentally measured values.

TABLE II. Bonding nature of some levels in magnesium silicide.

r15
r,
Xg'
X1
X3
L3
L1
L2

Si-Mg

BOIldlng
Antibonding

Bonding
Bonding
Bonding

Nonbinding
Bonding

Nonbon ding

Si-Si

Antibonding
Antibon ding
Antibon ding
Antibonding

Bonding
Bonding

Antibon ding
Nonbinding

Expansion Expansion
round Si round Mg

Because no new parameters have been added to this
calculation, the values for the energy gap in these
substances may be considered to be in good agreement
with experiment. The position of the bottom of the
conduction band is in agreement with that found' from
measurements of piezoresistance in magnesium silicide.

The bonding or antibonding nature of the wave
functions between a silicon atom and its nearest neigh-
bor magnesium and silicon atoms is of some interst and
this is shown in Table II. Also shown are the leading
terms in a spherical harmonic expansion of the wave
function about a silicon and a magnesium nucleus.
The term "nonbonding" for the functions Ld' and L3 is
used to indicate that the direction lies in a nodal plane
of the wave function. The tendency of bonding orbitals,
with low values of angular momentum, to form the
states in the valence band can be noted from the table.

The complete calculation of course has to include
relativistic corrections to the energies. Since the pseudo-
potentials used for silicon and germanium were empiri-
cally determined, the difhculties associated with in-
cluding these corrections are discussed later.

TABLE III. Calculated optical transitions and Van Hove
singularities in magnesium silicide and magensium germanide.

Transition

r15~ rl
X5'~ X1
I3 ~LI
A3 ~XI

IC4 —+ EI
r15 ~ r2s'

X5'~ X3
Z4 —+ Z1
L3'~ L3
~a~ ~2'
F3~43

Type of singularity
Mg2Si: Mg2Ge

Mp

~p
3f1
3fp
~ ~ ~

MI
Mp

3f2
AI3
M3

Mp
3fp
Mp

Mp
~ ~ ~

iV1
lVp
M1
M2
M3
M3

Energy (eV)
Mg2Si: Mg2Ge

2.84 2,51
3.10 3.26
3.18 3.20
3.28 3.28
3.47 3.68
3.67 4.20
3.75 4.08
3.77 4.04
3.81 3.96
4.10 4.40
4.30 4.27
4.37 4.69

d.'V, , 1

dE
f
V,E„[

where E,, (k) =E,(k) —E;(k) is the difference in energy
between conduction- and valence-band states. The
effect of the singularities in dX, ,/dE due to

~

'7I,E,, ~

=0
has been studied in detail. "' The Van Hove singu-
larities in e&(cu) may be deduced from a knowledge of the
critical points in k space, that is points in k space for
which

~
&qE, , ~

=0. These are obtained from the band-
structure calculations for the allowed transitions. The
different mathematical behavior of dX,,/dE near the
critical points can give rise to four different kinds of
singularities. These are either thresholds or saddle-
points and are shown in Fig. 4. The dipole allowed
transitions at the critical points in magnesium silicide
and magnesium germanide are. listed in Table III for

FxG. 4. Van Hove
singularities in the
density of states of
E(kl ranging over
a three-dimensional
Brillouin zone.

4J

"a

12 J. C. Phillips, Phys. Rev. 125, 1931 (1962); 133, A452 (1964);
Phys. Rev. Letters 12, 142 (1964)."L.Van Hove, Phys. Rev. 89, 1189 (1953)."J.C. Phillips, Phys. Rev. 104, 1263 (1956),

IV. OPTICAL PROPERTIES

Recent work" has shown that many details of the
electronic band structure in different types of solids
may be obtained by critically studying the structure of
the imaginary part of the complex dielectric constant
function e&(co). This is obtained experimentally from
reflectance measurements in the energy range between
about 1 and 10 eV. It can be shown (see for example,
Ref. 12) that the analytic singularities in the expres-
sion for es(&a) arise from those of the joint density-of-
states function:
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transitions to the first two conduction bands. The type
of edge expected (Fig. 4) is denoted as well as the
energy for the transition calculated from the present
band-structure results.

A further factor affecting the interband transitions
is the oscillator strength:

f' (~)-
I (~~ IP I~') I'/(» —~').

The square of the matrix element has been examined
in some detail for the case of silicon by Brust. ' This is
found to be roughly constant throughout the zone,
varying by less than a factor of 2. If it is assumed that
the same 'results apply in the present case, then the
reQectance spectra will be directly interpretable in
terms of singularities shown in Table III. Experi-
mental measurements of the reAectance spectra have
not yet been made and it is interesting to speculate a
little on the basis of the above results. In particular
the transition A3 —& A~, which shows up as the leading
peak in e~(~) for germanium, has the same type of
singularity (M,) in both cases. Further, in both cases
the energy contours for E;—E, around this singularity
indicate a high joint density of states and hence a high
contribution in each case. This feature in e2(cv) in
germanium might thus be expected to be reproduced for
the present compounds. Further comparisons are in-
creasingly difficult due to the different nature of the
singularities for particular transitions. Phillips" has
pointed out the insensitivity of reQectance spectra to
changes in atomic composition in the diamond and
zincblende structures. This suggests a scheme based
on the nearly free-electron approximation, where the
dominant features would be determined by the shape
of the Brillouin zone. Such a scheme cannot be neglected
for the present compounds and a comparison of their
reflectance spectra with those of the diamond and
zincblende structures is an obvious first step in inter-
preting them once they have been measured. It will be
interesting to see if such a scheme is still a good one
for the present case where there are three atoms per
unit cell.

V. CONCLUSION

The calculation reported here shows that a pseudo-
potential determined for an atom in one crystal en-
vironment can be carried over and used to determine
energy levels in another crystal under certain suitable
conditions. These are;

(a) The energy levels to be computed must lie within
the same range on the unperturbed free-electron picture
for each lattice.

(b) The contributions to the pseudopotential from
the self-consistent valence-band charge do not diBer
appreciably from one crystal to the other.

(c) Proper consideration is given to the errors intro-
duced by the more general problem of using a local form
of pseudopotential.

Conditions (a) and (b) are seen to be fairly well

satisfied in the present problem and some indication
has been given as to which energy levels are expected
to be badly described due to errors introduced by (c).

A full band structure calculation should of course
include relativistic effects in the results. Because of the
empirical nature of the silicon and germanium pseudo-
potentials, this has not been done in the present case.
The whole aim of the calculation has been to extract as
much information as possible to form a basis for in-
terpretating such experimental results as ultraviolet
reflectance measurements and studies of transport
properties so that these may be used to set up the correct
energy level scheme. However, work is going ahead to
see if the relativistic shifts in the levels can be re-
sponsible for making the conduction and valence bands
overlap in order to account for the transition from semi-
conductor to semimetal in the alloy series Mg2 (Sn),
(Pb)~, as x decreases.

The present calculations have shown what changes
are necessary in the pseudopotential to produce this
transition. These indicate that overlap will occur to
produce hole surfaces at k= L000$ and electron surfaces
at k=1100). More detailed calculations of the rela-
tivistic effects are being carried out to determine if
these would move the bottom of the conduction band to
another point in the Brillouin zone and thus produce a
different configuration for the electron surfaces.
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