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The system of a tightly bound exciton which is weakly coupled to phonons is treated by means of many-
body Green's functions. Relevance of the formalism for the calculation of absorption and emission spectra,
quasiparticle properties, lattice distortion, and exciton propagation is established. A variational technique
is found useful for deriving formal relationships. Evaluations are carried out for an approximate Hamil-
tonian representing excitons in a one-dimensional lattice; both Einstein-model phonons and one-dimen-
sional acoustic phonons are investigated. Approximations include a one-phonon approximation and, for
many-phonon processes, the replacement of the exciton-phonon vertex function F by unity. The relation
of these approximations to perturbation theory is assessed in specific cases. Finite-temperature calculations
performed apply to excitons whose energies are large compared to aT. Among the results is the conclusion
that the interacting exciton is not merely "renormalized"; instead, as in the case of electron-phonon inter-
actions, the spectrum of excitations includes many diverse quasiparticle modes and other complex structure.

INTRODUCTION

ROUNDWORK for the treatment of exciton-~ phonon interactions was already laid in the
pioneering works of Frenkel' and of Peierls. ' Frenkel
and Peierls recognized the fundamental role played by
the eBects of phonons on excitons in the absorption of
light by solids; they even foresaw the possibility of the
(self-) trapping of excitons as one such effect. With the
advance of experimental techniques since the time of
these papers, the scope of questions pertaining to the
exciton-phonon problem has increased considerably.
One would like to know in detail what phonons do to
the structure of absorption and emission spectra, to the
propagation of energy in a crystal, and to many other
processes in which excitons are involved. Nevertheless,
work in this area has remained relatively scant and a
good understanding of phonon effects has not yet been
reached.

Hope for significant progress in this field is overed by
the development, in recent years, of certain many-body
techniques which have been successfully applied to
other areas of solid-state physics. In the present work,
use is made of one such technique: The exciton-phonon
problem is formulated in terms of many-body Green's
functions. '4 In principle, this method can be used to
calculate all relevant properties; so far, we have found
it mainly convenient for computing spectral shapes and
quasiparticle properties. Calculations of spectral shapes
have been made by a number of authors' —' who em-

ployed a form of perturbation theory which is equiva-
lent to the Green's function method insofar as perturba-
tion converges. Our calculations on simple physical
models indicate that it is not unusual for perturbation
theory to fail in the most interesting regions of the
spectra; one advantage of the Green's function for-
malism is that it is specifically designed to circumvent
such nonconvergence difhculties. In any case, the for-
malism can be regarded as an improved language for
talking about a many-body system; it makes for con-
ceptual simplicity and ease of generalization to calcu-
lations of many diverse properties of the system.

In the first section of the present paper, formal de-
velopments are presented: The Green's functions are
defined and some of their properties reviewed; expres-
sions relating the Green's functions to several topics of
interest in the exciton-phonon problem are given. The
formalism is then applied to specific simple models in
the second part of the paper.

FORMALISM

The Exciton-Phonon System

We describe the exciton-phonon system by the model
Hamiltonian

II=+ or(k)a„*ur,+P r (q)b,*b,

+& '"2 f(I,&)~~+.*&~~. (~)

(2)
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' J. Frenkel, Phys. Rev. 37, 17 and 1276 (1931};Physik. Z. In this expression, a&* is the creation operator for an
Sowjetunion 9, 158 (1936). exciton of wave vector k, while b,* creates a phonon of

s R. Peierls, Ann. Physik 13, 905 (1932).
3y Galitskii and A. Midgal Zh Eksperim. i Teor. Fiz. $4 139 wave vector q. The lattice is thought of as consisting

(1958) LEnglish transl. : Soviet Phys. —JETP 7, 96 (1958)7. of X identical molecules each having a mass M. Units
'P. C. Martin and J. Schwinger, Phys. Rev. 115, 1342 (1959)' are such that Pi=1. A one-dimensional notation is
5 A. S. Davydov and K. I. Rashba, Ukr. Fiz. Zh. 2, 226 (1957).
6 Y. Toyozawa, progr. Theoret. Phys. (Kyoto) 20 53 (1958) employed, although the use of three dimensions at this

Technical Report, Ser. A, No. 79, Institute for Solid State Physics, stage would be an inessential complication; specific cal-

Phys. ).
r J. J. Hopfield, Phys, Chem. Solids 22, 63 (1961). models in any case. With the lattice constant taken as
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the unit of length, the allowed values of the one-
dimensional wave vectors are 2rjr/E, j=0, 1, 2,
X—1. The subscript k+q appearing in the interaction
term must be interpreted modulo 2x. Spin is also
neglected; in effect, we are dealing with singlet excitons.

The tightly bound or Frenkel model of the exciton is
used, so that the operators a~* can be expressed as

age ——S—'~s Q exp( ik—n)a *,

The space-time translational invariance of the
Hamiltonian (1) allows writing the Green's function (4)
in the form

G,„(t,t') =o„G,(t t')—

(provided the chosen p does not destroy this invariance)
and makes it convenient to work with the Fourier
transform of the Green's function, dehned as

where a„*, when acting on the ground state of the
crystal, produces a state in which only the nth molecule
is excited. The assumption of tight binding also allows
us to restrict attention to a single exciton band, assumed
nondegenerate.

In the Hamiltonian (1), terms describing direct con-
version of excitons into phonons (and vice versa) have
been omitted; this omission is justified if the phonon
energies ~(q) are small compared to the exciton energies
to(k) provided, of course, that the coupling f(k,q) is not
excessive. Other terms, of higher order in exciton and/or
phonon operators, have been left out for the sake of
simplicity; no formal justification can be supplied for
this procedure. As a consequence of these omissions, the
Hamiltonian conserves exciton number. The exciton
operators are taken to satisfy Bose commutation rules.
Although this assumption is not clear-cut in a one-
dimensional lattice, ' we shall not be interested in
problems involving more than one exciton, and our
results are independent of the commutation rules
employed.

The Hamiltonian (1) is recognized as having the
same form as the Hamiltonian ordinarily used to de-
scribe electron-phonon interactions, except that elec-
trons are fermions. Thus, our formalism will be sub-
stantially equivalent to the formalism used in Green's
function treatments of the electron-phonon system. ' "

&Q)=—»{pQ},
where p is an appropriate density matrix.

(6)

' D. B. Chesnut and A. Suna, J. Chem. Phys. 39, 146 (1963).' A. B. Migdal, Zh. Eksperim. i Teor. Fiz. 34, 1438 (1958)
LEnglish transl. : Soviet Phys. —JETP 7, 996 (1958).g» S. Engelsberg and J.R. Schrieffer, Phys. Rev. 131,993 (1963)."R. D. Puff an'(I G. D. Whitfield, in Polarons and E'xcitons,
edited by C. G. Kuper and G. D. Whitfield (Oliver and Boyd Ltd. ,
Edinburgh; 1963), pp. 171—190.

Green's Functions Defined

The following de6nitions of the exciton and phonon
Green's functions, respectively, are adopted:

(t t ) = (&( (t) (t ))) (4)

D"(t t)= —(2( .(t) —.(t)}) (5)

The operators appearing in (4) and (5) are expressed
in the Heisenberg picture and are ordered by the
symbol T such that time arguments increase towards
the left. The brackets denote an ensemble average

G(ks, k) = dt exp(ikpt)Gs(t)

(similarly for the phonon Green's function).

co(k)))AT= 1/P (9)

and, consequently, if we perform the ensemble averages
only over no-exciton states. In these states, the exciton-
phonon interaction vanishes, and the grand canonical
density matrix becomes, in effect,

p= exp( —)3&»)/»Lexp( —0&")j,
H, h —=P v(q)b, *b, .

It is true that the density matrix (10) is, in fact, exact
for the exciton-conserving Hamiltonian (1) and for a
no-exciton ensemble. This statement has only formal
significance, however, as for the macroscopic times
necessary to establish thermal equilibrium in a real
crystal, the otherwise negligible exciton-phonon con-
version terms must come into play. None of the 6nite-
temperature results presented below are, in general,
applicable to low-lying excitons where (9) might not
hold.

With the ensemble (10), the Green's function for-
malism will be only slightly modified from the usual
zero-temperature treatment, ' and it will not be neces-
sary to introduce imaginary-time Green's functions. 4

We call this the zero-exciton-temperature approxima-
tion because all the temperature effects originate in the
thermal distribution (10) of phonons alone; the thermal
generation of excitons is neglected, so that the lattice
is at absolute zero so far as excitons are concerned.
Within the zero-exciton-temperature approximation,
the problem is formally essentially identical to the
polaron problem of a single electron, in an otherwise
empty conduction band, interacting with phonons. The
Green's function formalism for this problem has been
discussed by Puff and Whit6eld. "We collect here some
resulting properties of the Green's functions for future
reference.

The phonon Green's function (4) is exactly that of

Zero-Exciton-Temperature Approximation

The formalism is considerably simplified if we make
the assumption
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ni, = 1/Lexp (Pv(k) )—1j . (12)

/The symbol 0+ denotes a positive, real infinitesimal.
We have assumed i (k) = v( —k).)

The exciton Green's function G(ko, k), viewed as a
function of the complex variable k{), is characterized in
this scheme by being analytic in the entire half-plane
above the real axis. We shall also be interested in the
related quantities G'(ko, k) and G~(ko, k), which, for the
full grand canonical ensemble and for a complete,
exciton-monconservieg Hamiltonian are given by

G (ko, k)=z ~.~&~I~k(r)i'2~~(ko —&.+&.) (13)
r, s

and

G'(ko, k) =2 lf'.
I &~l~ lr) I'2~&(ko —&.+&.) (14)

and are related by

G (ko, k)=exp(Pkp)G (ko, k) . (15)

Here, r and s label stationary states of the system and

W,:—exp( —PE,)/P exp( —PE„) . (16)

In the zero exciton temperature limit, G~ vanishes and
G is related to G by

G (kp, k) = —2 ImG(ko, k) . (17)

We shall nevertheless have occasion to calculate G~

in its more physically accurate form (14). This will be
done by using the relation (15), with G' computed in
the zero-exciton-temperature approximation by means
of (17). This procedure should give G to a good ap-
proximation, provided exp(Pko)))1; within the re-
striction (9), this will be the case for values of ko in the
most interesting range of energies, that corresponding
to one or more excitons.

Variational Method

A convenient way of generating arbitrarily compli-
cated Green's functions and the equations of motion
satisfied by them is the variational approach of
Schwinger. "With a few minor generalizations, the zero-
temperature variational formalism can be made to
apply to finite temperatures in the zero-exciton-
temperature limit.

We employ the variational technique by first adding
to the Hamiltonian H the "source term"

H, =P Jq(t)yq, (18)

"J.Schwinger, Proc. Natl. Acad. Sci. U.S. 37, 452 (1951).

noninteracting phonons.

D(ko k)=M '{(1+Ii)/pko' —v(k)'+i0 )
—ei,//k(P —v(k)' —i0+j), (11)

and then performing variations on the functions J,(t),
in the end setting these equal to zero.

In order to achieve a compact definition of the
ensemble average of an operator when sources are
present, we make use of the interaction-picture 5
matrix for time development of the system governed
by the interaction Hamiltonian (18).

5=—U(~, —~)=—T exp i—dtH, (t), (19)

H, (/) = Q J,(t) exp(iHt) yq exp( —iHt) (20)

+id/b J(t) ,G, „(t,i') ) . (23)

To completely specify the solution of (23), an initial
condition must be stated. It is sufhcient instead to give
the initial condition on the noninteracting exciton
Green's function G»'(t, t'); the provision is only that
the coupling be weak enough so that perturbation
theory for the full Green's function converges in some
finite region in the ko plane. The condition on G is
the same as that on G:

G,'(t j0+, t)=&a (t)u„*(/)),
G,„'(&—0+, t) = &a„*(~)a,(t)) .

Note that the ensemble averages in (24) must be com-
puted according to the prescription (21); thus the ex-
pressions (24) may in general contain dependence on
the functions J,(t).

Equation (23) can then be converted to an infinite
nest of integral equations, "of which the leading equa-
tion is the Dyson equation:

G(ko, k) =Go(ko, k)+Go(ko, k)Z(ko, k)G(ko, k) . (25)
"See Ref. 10, Appendix A, for details.

(the symbol T orders the operators following a power
series expansion of the exponential). A definition of the
ensemble average which reduces to the definition (6)
when sources are removed (then S=1) is

&Q(~)) =Tr{p7'L5'Q(~) j)/Tr{p5') ~ (21)

With the definition (21), the customary result is ob-
tained for the functional derivative of a time-ordered
product of j operators:

~/», (~ )&T{Q.(~.)Q.(~.) Q, (~,)~)
= —i(T{Qi(~i) Q (~)~.(~)/)

+'& T{Q.(~.) Q, (~,)})&.,(~')). (22)

With the aid of (22), the equation of motion for G
4ecomes a single differential-functional-diRerential
equation:

ia/a«„„(~, ~') =S„,S(t t')+~( )kG„—„(t,i')

+ 'I '" Z f(k--, ){&,—(&))G.—.,.(&,&')
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Go is the noninteracting exciton Green's function, and
the exciton self-energy function Z is de6ned as

Z(ko, k) =i (dqo/27r) P I f(k, q) I'G(ko+qo, k+q)

XD(qo, q)r(ko, qo', k,q). (26)

dPG&,-'(t, t")G,„(t",&') = S,„S(t—t') . (28)

The I'(ko, qo, k, q) appearing in (26) results after sources
are turned off (then p=k —q) and the time-dependent
I' is transformed with respect to two independent time
differences. One is led naturally to the hierarchy of
integral equations satisfied by G, D, r, and other more
complicated functions. "

Formal Approximations

The definition (27) for the vertex function I' leads
ordinarily (when ground-state expectation values, not
general ensemble averages, are used) to the fact that,
in the limit of vanishing coupling, I'(k, ,qo, k, q) ap-
proaches the value unity. "It is this feature which makes
the definition (27) of I' useful and which allows an
approximate termination of the infinite nest of equations.

If I' indeed approaches the value unity as the
coupling f(p, q) is made to vanish, then, according to
(27), all variational derivatives of G must also vanish
in this limit —i.e., the noninteracting exciton Green s
function Go must be independent of the source functions
J,(t). The only source dependence of Go lies in the
initial conditions (24); it is readily verified that these
initial conditions are independent of the phonon sources
only if the density matrix p can be written as a product
of factors each involving only exciton or only phonon

(A)

k+q
+ +

k+q k+q+q' k+qr-
+ 0 ~ ~

k+q k+q+q' k+q'

FIG. 1. Perturbation series for the self-energy. The three lowest
order terms are shown. Gp is denoted by a straight line, D by a
wiggly one. Labels denote arguments (energy variables such as
kp are suppressed).

The quantity F (the exciton-phonon vertex function)
satisfies a more complicated equation; within the
variational framework, I' is formally defined as

r„, , (r,e; t")= iv'~ f—(p, q)
'

x p/~(~, (~"))jG„-'(~,~'), (27)

where the inverse of G is defined by

operators. It can be shown that this factorizability of
the density matrix is also necessary if it is to be at all
possible to express the Green's function as a perturba-
tion series involving only noninteracting exciton
Green's functions. Since the exact grand canonical
density matrix does not satisfy the factorizability
criterion, the present formalism bogs down for lack of
any effective approximation procedures; one is forced
to resort to the imaginary-time Green's functions. '

The zero-exciton-temperature density matrix (10),
on the other hand, is trivially factorizable. Thus, F=1
in lowest order, and the usual perturbation series
applies. This perturbation series is generated by solving
the set of integral equations iteratively, beginning with
G=GO and I'=1. The first few terms in the series for
the self-energy are represented in Fig. 1.
We shall not concern ourselves with an accurate

evaluation of the vertex function F but shall, in fact,
terminate the set of integral equations by setting
I'= 1 in Eq. (26). In terms of the perturbation series for
the self-energy, this "I'=1 approximation" involves
leaving out all diagrams in which two phonon lines
"cross,"as in diagram (C) of Fig. 1. When the product

I f(k, q) I'D(qo, q) is regarded as an effective, retarded
exciton-exciton interaction, the F= 1 approximation
can be identified with the time-dependent Hartree-
Fock approximation. "

We shall frequently use an approximation which is
even more severe than I'=1. In the "one-phonon ap-
proximation" we retain for the self-energy only diagram
(A) of Fig. 1. The validity of both the I"=1 and the
one-phonon approximation is discussed in the course of
specific evaluations.

Here I(I'/E represents the exciton-photon coupling;
r, s, and W, have the same meaning as in Eqs. (13)—(16).
The value k=E/c is essentially zero (in units of the
reciprocal lattice vector) for light in the visible range.
Thus

W,b, (E)= (const/E) G~ (E,O)

= (—2 const/E) ImG(E, O) . (30)

The factor 1/E in the energy dependence of the ab-

Absorption and Emission Spectra

The formalism introduced will now be related to
several topics of physical interest. Probably the most
important of these topics, from the point of view of
experiments, is the effect of phonons on the absorption
and emission spectra of a crystal. The connection with
Green's functions is immediate if the expression (13) for
G&(E,k) is compared with the standard perturbation
theory (Born approximation) result for the probability
of absorption of a photon of energy" E:
II'. .(E)= (2 /&) (I II'/EP' '

XZ II', I(.I~~ ~&.Is)I'&(E+E, E,). (»)—
r, s
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sorption probability does not have an appreciable eRect
on the shape of the absorption curve in the range of
exciton energies; all the interesting structure is given
by G (E,O) alone.

Similarly G~(E,O), Eq. (14), is proportional to the
emission probability for a photon of energy E. Kith the
interpretation of 6» and 6 as the absorption and emis-
sion probabilities, respectively, the relation (15) is seen
to be nothing but the familiar statement of detailed
balance for a system in thermal equilibrium. Because of
this relation, and because 6 is simply related to 6», a
knowledge of the one-particle exciton Green's function
6 is equivalent to an immediate knowledge of the de-
tailed shapes of both absorption and of emission spectra.

Quasiparticle Properties

The determination of quasiparticle properties from
the Green's function G(k0,k) is a common procedure in
the applications of the Green's function formalism. '
Quasiparticles can usually be identified with the poles
of G(k0,k) in the complex k0 plane; the real part of such
a pole gives the energy, the imaginary part the lifetime
of the quasiparticle, while the residue of G(k0, k) at the
pole is a measure of the relative probability for exciting
the mode in question. For example, one might be able
to recognize a "trapped-exciton" mode by the char-
acteristics usually associated with such an exciton:
large eRective mass and a short lifetime. A quasiparticle
description of the spectrum of excitations has considera-
ble intuitive value; however, as we shall see in the
examples below, such a description is sometimes in-
accurate and hardly ever complete.

Lattice Displacement

The idea that an exciton may produce around it a
distortion of the lattice is as old as the idea of the exciton
itself. ' Although no attempts seem to have been made
at an experimental determination of such a distortion,
it is at least in principle an important consequence of
the exciton-phonon interaction.

The pattern of lattice displacements produced by an
initially localized exciton is formally the simplest
quantity associated with lattice displacements and is
probably also closest to being experimentally tangible.
The operator representing the displacement of the xith

lattice point is

r„=E 't2 P exp(iq23) p—, (31)

=X—@2g expLi(p —k)213j (32)

X(a„(0)(p „(t)a *(0)).

If an exciton is created at the eth lattice site at time
t=0, the resulting displacements at distances m from
this site, as a function of time, are

S„(t)=( „(0) „„(t).*(0))

5 (t) =X "i2 P e—'0"5 (t) (34)

is the solution of

825, (t)/at2+ v(q)'5, (t)

=(XM)—'Q f(k, )qG k+0(t)G (kt) (35)

(for T=O).
Equation (35) has a clear-cut physical interpretation:

The mode S,(t) which in the absence of excitons oscil-
lates with frequency 3 (q) is driven by the term on the
right of Eq. (35); the resemblance of this driving term
to the exciton-phonon interaction term in the Hamil-
tonian (1) is not too surprising. The calculation of
S (t} from the time-dependent exciton Green's function
is, from (35), straightforward, though not as direct as
the computation of spectra and of quasiparticle
properties.

Though formally and conceptually simple, the exci-
ton-phonon correlation expressed by means of (32)
tends to lead to a rather obscure and complex pattern
of displacements. A simpler and more intuitive dis-
placement configuration shows up only in formally more
complicated exciton-phonon correlation functions. The
five-point function,

5 '(t) =X(ak(0)a„*(t)a,(t} „+„(t)ak*(0))
=& '"Z, .( (o) .*(t) (t) (t) *(o))

Xexp(ipl), (36)

describes the lattice displacement, a distance m from
the exciton, which results after a plane-wave exciton of
wave-vector k is created at time t=0. To get at this
five-point function approximately, we proceed as
follows: The time-ordered five-point Green's function,
from which (36) can be obtained by analytic continua-
tion, can be written Lsee Eq. (22)j as a functional de-
rivative of a four-point function which involves only
exciton operators (up to terms which vanish when
sources are removed). This four-point function is then
approximated by neglecting correlations between

The correlation function which appears in the second
line of (32) is related to the three-point function

(2'(~, (ti)0 k, (t2)~k (t3)))
=&j~~k 2-(t2)Gyk(tl)t3) t Jq(~) 0 -(33)

In fact, (a„(0)02k ~(t)akim(0)) is the analytic continua-
tion of (33), from the piece corresponding to ti) t2) t3,
to t&= t3=0, t2= t. As is suggested by the functional de-
rivative expression for (33), this three-point function is
in turn readily expressed in terms of the quantities G,
D, and F, in a fashion quite analogous to the procedure
used in deriving Dyson's equation.

We do not present this rather lengthy calculation but
merely give the final result. Within the I'= 1 approxi-
mation, we find that the q-wave vector component of
the displacement 5 (t),
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Merrifield. " The one-phonon correction involves a
three-point function which can be related to the exciton
Green's function as before (I'= 1, T=0).

excitons.

Xexp( —ix»)G(x, p+q)G*(x+v(q), p) . (42)

No attempt has been made to evaluate the higher
phonon terms in P (»).

S„'(»)= Re($—'Q f(k,q)M 'v(q) '

(~("(» )a.+,*(» ) .(» )"*(«)))
=(T'fa (» )a *(«))(T'(a.+.*(» )a (» )))
+(T{a (»)a

.
(»))(T(a (»)a *(»))) (37) (b, (0)a»+-(»)a„*(0))=[M (q)] ' lV '"

The noncorrelation approximation (37) is consistent
with F= 1 in the present context. Upon performing the Xp f*(p,q) exp(ipse) (dx

functional differentiation of (37), we obtain products of
exciton Green s functions with three-point functions
of the type (33). The end result of the subsequent
analytic continuations is (for F= 1)

Xexp( —iqm) G"(»)* (dx/2~) exp( —ix»)

APPLICATIONS

Physical Models

In the models to which our formalism will now be
XG(x,k)L(1+nq)G(x —v(q), k+q) applied, we shall restrict ourselves to a one-dimensional

G( + ( )»,+ )]) (3g)
lattice with tightly bound excitons whose propagation
takes place by a nearest-neighbor interaction. The
exciton energy ru(k) then has the form

Exciton Propagation

In order to understand the effect of phonons on the
experimentally important area of energy transport via
excitons, it is necessary to calculate the spatial propaga-
tion of an interacting exciton. The formal description
for the propagation of an exciton is somewhat cumber-
some. The probability that an exciton, created at t= 0
on the eth lattice site, is found m sites away at a time t,
is given by

P„(»)=(a„(0)a„+*(»)a+ (»)a„*(0)). (39)

It is no longer consistent to break this four-point func-
tion up by means of the noncorrelation approximation
(37), essentially because an additional functional dif-
ferentiation with respect to phonon sources is not in-
volved now. Instead, at zero temperature, we split (39)
up by introducing a sum over a complete set of inter-
mediate states between the operators a„+ *(») and
a„+ (»). Taking for the complete set of no-exciton states
the set of.free-phonon states, we may write (39) as the
sum

P-(») =Z P-'(»),
j=0

where j denotes the number of phonons in the inter-
mediate state, i.e.,

P-'(») =- IG- -,-~(») I',

P-'(») =2
I (&.(0)a-+-(»)a-*(0))I',

P (»)=(2)- 2 l(~, (0)&, (0)a-.-(»)a-*(0))l'

etc. Note that the space-time exciton Green's function
directly describes exciton propagation in a rigid lattice
(P =P o); it has been used for this purpose by

co(k) = e—2(u cosh,

where e is the energy of the excited state for an isolated
molecule, while —co is the matrix element of the exciton
Hamiltonian which connects nearest neighbors (we
assume co)0 without loss of generality; if the correct
co is negative, one only has to replace k by 7r —k
everywhere).

Einstein-model phonons Lv(q) = v, independent of q]
will be dealt with most extensively; for these phonons,
the coupling f(k, q) will also be replaced by a constant.
Our Einstein model is identical with the model em-
ployed by Merrifield in a description of the interactions
between excitons and vibrational excitons"; our
method of dealing with this model is entirely different,
however.

Several calculations are performed with the longitu-
dinal (acoustic) phonons that arise in a one-dimensional
chain of identical molecules. These phonons have the
dispersion law

v(q) = vlsin-,'ql,
while the coupling has for nearest-neighbor interactions
the form

f(k,q)=r sin'-,'q+ig sin-,'q cos(k+-,'q) . (45)

The term involving p is a sort of deformation potential
of the exciton; the q term arises from the change in the
transfer matrix element co when the lattice is strained.

One-Phonon Einstein Model

The qo integration in the expression (26) for the exci-
ton self-energy function can be performed explicitly
after I' is set equal to unity and after the expression (11)

'4 R. K. Merri6eld, J. Chem. Phys. 28, 647 (1.958)."R.E. Merri6eld, J. Chem. Phys. 40, 445 (1964).
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is substituted for the phonon Green's function D. The
integration is done by closing the contour of integration
above and making use of the fact that the only singu-
larities of the integrand in the upper half qo plane are
the poles of D, whose locations are known I see (11)$.
For zero temperature (N, =O) the result is

~(ks, k) = —Z. If(k, q) I'L23I&v(q) j '

)&G(ko—(q),k+q) . (46)

-1.0 -0.5

(k,-s-v)/2'
Il Imaginary

Real 0 5 1.0:..:.:.::.":. . :..

In the one-phonon approximation, the noninteracting
exciton Green's function

Gs(ks, k) = 1/(ks —e+ 2&v cosk+i0+) (47)

is used to approximate the Green's function appearing
in (46). If now, in the limit of large E, the sum in (46)
is converted to an integral, this integral can be carried
out explicitly in the Einstein model.

Z(ko, k) = f /( v4rM—)vdqGo(ko —v, k+q)
(48)

= (f'/2M v)/I (k p s v+—i0+—)' 4'']' '—.

The branch of the square root in (48) must be chosen
so that the imaginary part of Z (ks,k) is negative for real
values of k(I.

The self-energy (48) is pure imaginary for real ks in
the range e—2&o+v(ks(s+2&o+v, which is just the
range of energies of one phonon together with one
exciton. Outside this range, the imaginary part of Z is
inhnitesimal. The finite imaginary part of Z gives rise

10

0.4
r

00 I

Values of
v/2' + cos (k)

Q
3

0
-1.0 0

{ko-e- u}/2co
1.0

FIG. 2. G (ko,k) in the one-phonon Einstein model. The coupling
constant f'/8Mvco2 is taken as 0.1. Only the continuum portion is
displayed. For negative values of the parameter v/2co+cosk, the
spectra are mirror images of the ones shown, rejected about
kp —6—v=0.

FIG. 3. Path of the complex pole of G(k&,k) in the one-phonon
Einstein model. The coupling is the same as in Fig. 2.

to a continuum in the density of states G)(kp, k), for
the range of energies indicated; this continuum is illus-
trated in Fig. 2. There is a broad peak at about the un-
perturbed exciton energy, except when the latter
approaches a continuum edge. This quasiparticle peak
can indeed be associated with a pole of the Green's
function; this pole occurs on only one of the two
Riemann sheets of G the branch cut must be judi-
ciously deformed, as is done in Fig. 3, to display this
pole. Near the continuum edges, the correspondence
between the main peak and the pole of 6 becomes vague.
As the unperturbed exciton energy is shifted outside the
continuum, this pole eventually touches the real axis
in the "unphysical" sheet (as distinguished from the
"physical" sheet on whose real axis G) is evaluated)
and splits into two real poles; this behavior seems to
have no physical significance whatever.

The peculiar peaks near the continuo. m edges are not
associated with any poles of the Green's function; their
physical origin is unclear. Similar edge peaks were also
found by Engelsberg and Schrie6er for the case of elec-
trons interacting with phonons. '

Outside the range of energies corresponding to the
continuum, G (ks,k) (it is proportional to the imaginary
part of G) can only have delta-function peaks; these are
located at poles of G, which now lie infinitesimally
below the (physical) real axis. There are two such delta-
function peaks, indicating undamped modes of the
system in the present approximation. They occur just
outside the edges of the continuum, except when the
unperturbed exciton energy ce(k) lies outside the con-
tinuum; in the latter case, one of the peaks lies near the
energy co(k).

The existence of a stable mode of excitation above the
continuum is physically unreasonable and indeed is a
consequence of the one-phonon approximation. When
many-phonon processes are included (see below), the
continuum, in fact, extends to infinite energies; what
in the one-phonon approximation is the upper stable
mode becomes a broad peak in the density of states
with a slightly shifted energy. The lower cutoff of the
continuum as well as the stability of the lower mode are,
on the other hand, real effects in a one-dimensional
crystal and persist in the many-phonon treatment.
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Re(k, I

2(d Real pole~

approximation can be identified with a trapped exciton;
such an exciton must by de6nition be accompanied by
a severe lattice distortion, i.e., many phonons.

l

7r/2

k

FIG. 4. Band structure in the one-
phonon Einstein model. The real parts
of the locations of the various poles
are shown for v/2co=0. 8; coupling is
the same as in Fig. 2.

One-Phonon Acoustic Model

With the one-dimensional acoustic phonons (44) and
the appropriate interaction (45), it is no longer possible
to find an explicit expression for even the one-phonon
self-energy. We have made numerical evaluations of
this self-energy for various choices of the parameters v,

p, and p,. only a brief description of the results of these
calculations is presented.

The qualitative features of the spectrum of excita-
tions are for the acoustic phonons quite similar to those
for Einstein-model phonons. There is a continuum,

The positions of the three peaks in G~(ks, k) (the real
part of the corresponding pole for the broad peak) are
shown in the band diagram of Fig. 4. The residues of G
at these poles are shown in I'ig. 5; these give the areas
under the sharp peaks exactly and the area under the
broad peak approximately (except near the continuum
edges). Note that the peak lying nearest the unper-
turbed exciton energy has the greatest area, so long as
it is isolated from the other two. The areas under the
peaks give the relative probabilities for exciting the
corresponding quasiparticle modes. Only when the
mode nearest the unperturbed exciton energy is clearly
dominant is one justified to speak of it as a "dressed
exciton"—in general, one has to concede the existence
of several quasiparticle branches. It should be added
that none of the modes which arise in the one-phonon
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FIG. 6. G~(ko, k) in the one-phonon acoustic model. The maxi-
mum phonon energy v is taken as v/2&v=1. 4; the coupling con-
stants are y'/8MvoP =q'/8&vvI =0.1.
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FIG. 5. Real parts of,residues of G(ko, k). Coupling is the
same„as in Fig. 2.

although its location now depends on the wave vector k;
the continuum features a dominant broad peak and,
frequently, edge peaks. Two delta-function peaks also
occur, usually just outside the continuum. The edge
peaks are occasionally quite prominent. Another quali-
tative feature distinguishing the spectrum from that of
the Einstein model is that the main continuum peak
may become quite sharp; correspondingly, the associ-
ated pole of the Green's function approaches the real
axis in the physical sheet. A typical density of states
G (ks,k) is shown in Fig. 6.

A typical band diagram giving the locations of the
three poles is presented in Fig. 7. The way in which the
undamped modes imitate the phonon dispersion (44) is
striking and suggests that the Oat portions of the cor-
responding curves in Fig. 4 are similarly a consequence
of the flatness of the Einstein-model phonons. It looks
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as though these modes can be interpreted as bound
states of an exciton with one phonon, where the total
momentum k is shared so as to extremize the total
energy. In particular, the lower mode, whose stability
is real, minimizes this total energy. This mode can be
expected to be a prominent feature of the absorption
spectrum at low temperatures; its observation would,
in effect, lead to a determination of the phonon disper-
sion law. Therefore, it is of interest to digress briefly
from the one-dimensional model in order to estimate
the continuum edge structure in real three-dimensional
crystals.

Fro. 7. Sand structure in the one-
phonon acoustic model. Values of y
and the coupling constants are the
same as in Fig. 6.

Re(k, )

2(d

Continuum Edge in Three Dimensions

The pole of the Green's function just below the con-
tinuum edge is a consequence of the fact that the self-
energy is singular at this edge. The singularity will

always be present in a one-dimensional model, as is
clear from the following. In the one-phonon approxima-
tion, the edge occurs at the minimum (with respect to
q) of the energy ~(k+q)+v(q); except at special and
isolated points, we may expand this energy about its
minimum as

E(k,q) =~(k+q)+—v(q) =E(k,qo)

+C(k) (q—qo)'+ . (49)

Writing xo—=ko —E(k,qo), x—=q
—

qo, the one-phonon self-

energy has near the continuum edge the form

I

7r/2

k

when the crystal is predominantly one- or two-dimen-
sional. In the general case, a pole of the Green's function
occurs near the continuum edge only when the un-
perturbed exciton energy &u(k) is also near this edge;
this pole continues along the edge until cv(k) exceeds
the edge energy by Z(0). Evaluations of the integral
(51) show that the peculiar continuum edge peak is
always associated with a pole near the edge; when the
pole merges into the continuum, the edge peak also
disappears.

2 (xo) X rdr ds/(xo ar2 bs'+—i0+)—;

where
g(0)~ (gg/2a)P(LaR'/bg')'~') (51)

F(u) —=ln(1+u')+2u arccot(u) .
The peak. value Z(0) is seen to depend on the extreme
values of the energy, aR' and bZ'; Z(0) is large only
when the ratio of these energies is large or small, i.e.,

Z (xo,k) = const dx/Pxo —C(k)x'+i0+j

const'( —xo) '~'. (50)

Similarly, Z(xo, k) behaves as ln(xo) in two dimensions
(cf. Ref. 1—there, the continuum edge extends over a
surface, so that the resulting problem is essentially a
two-dimensional one). In three dimensions, however,
the self-energy is no longer singular at the edge. The
real part of Z does, however, have a peak there, and the
height of this peak determines whether or not a pole
will occur. Unfortunately, this height depends on the
entire energy band and not just the region near the
minimum of E(k,q). The above properties can be seen
with the aid of a simple mock calculation which assumes
a cylindrical Brillouin zone, exact quadratic dependence
of the energy about its minimum, and a momentum-
independent coupling.

Remarks on the One-Phonon Ayyroximation

The one-phonon approximation for the exciton self-
energy corresponds identically to the perturbative
method used by several authors to calculate absorption
spectra. ' ' Toyozawa' confines attention to the shape
of a single peak and thus misses the possibility of addi-
tional structure introduced by the interaction with the
phonons. Some of this additional structure is treated in
a general way by Davydov and Rashba'; however, these
authors in effect neglect the real part of the self-energy.
This is a serious omission; for example, in our one-
dimensional calculation, this real part gave rise to the
poles near the continuum edge; in a two-dimensional
calculation (as in Ref. 1), the real part of Z leads to
structure in the continuum region as well.

Still, the results of the last two sections couM have
been obtained without the mention of Green's functions.
We have many reasons for presenting these calculations
as a part of a Green's function treatment of exciton-
phonon interactions. For one, it will be shown shortly
(at least for the Einstein model) that, although the
one-phonon approximation describes the one-phonon
structure of the spectra reasonably well, the description
breaks down if one attempts to improve it by going to
higher order in the perturbation series. The intrinsically
nonperturbative Green's function formalism provides a
means for assessing the validity of results obtained from
perturbation theory. By being part of the general
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FK'. 13. Comparison of perturbation theory with the I'=1 ap-
proximation (T=0). The parameters are as in Fig. 9. Dashed por-
tions in the perturbation curve are sketched for regions where the
perturbation result is grossly in error; these sketched portions are
not based on any calculation. The large peak near (4—e)/2a& = —1
is a delta function which has been given an arti6cial width of
0.02 o).

k(kp) —= (kp —e—v+ $(kp —e—v)' —4oP7't')'

X {ks—e—2v+L(ko —e—2v)' —4oP7'") . (56)

Although the expression (56) for the line-crossing
term does support our contention that fourth-order
perturbation is not valid for a description of one-phonon
effects, this expression also points to weaknesses of the
I'=1 approximation, insofar as two-phonon effects are
accurately described by fourth-order perturbation
theory. We can in no way argue that the Z(&) is small
compared to Z(~) retained in the 7=1 approximation.
What is more, the Z~g) has two additional singularities

particular, our use of the one-phonon approximation as
part of a nonperturbative treatment seems to be vindi-
cated, at least so far as it applied to one-phonon effects.

It might be thought that the trouble at the one-
phonon singularity is canceled in fourth order by the
"line-crossing" term which is left out in the I'=1 ap-
proximation. An evaluation of this term LZ&c): diagram
(C) in Fig. 17 for the Einstein model leads, however, to
a one-phonon singularity which is of dift'erent order
from the singularity in Z(&). Explicitly,

Z lc) (ks,k) = —(f'/2M v)'$4n)' —k(ks)'7

Xt 4cu' —4o)k(ks) cosk+k(ks)'7 '
X L (ks —e—v)' —4o)'7—'

Xp(ks —e—2v)s —4o)s7
—rts

where

for values of kp satisfying

k(kp) =exp(+ik) .

These may lead to new poles of 6, with corresponding
additional two-phonon structure in the density of states
G . A typical absorption spectrum, calculated first
within the F= 1 approximation, then in fourth-order
perturbation, is shown in Fig. 13. An additional sharp
peak arising from the line-crossing term is clearly
visible. Evidently, an approximation better than F= 1
is required for an accurate description of two-phonon
eRects, accurate insofar as the Hamiltonian (1) is used.
It would, however, be physically unwarranted to
attempt such a more accurate calculation without, at
the same time, adding to the Hamiltonian interaction
terms which are quadratic in the displacement
operators.

Lattice Distortion

Of the two expressions (32) and (36), descriptive of
the lattice distortion produced by an exciton, the
pattern of displacements (32) is by far the easiest to
evaluate. Unfortunately, little can be learned from the
results of such a calculation. In the Einstein model, the
spreading exciton leaves behind it a wake of displace-
ments which continue to oscillate without diminishing
amplitude, since no coupling exists between the in-
dependent oscillators representing phonons. The dis-
placements are thus only an indication of the exciton's
past history. With acoustic phonons, there is a diferent
sort of diS.culty —it turns out that the pattern of dis-
placements is entirely dominated by a strong distortion
pulse which is produced initially and which spreads
essentially independently of the exciton.

The evaluation of (36), via the expression (38), is
dificult in even the simplest model. The task becomes
reasonable if we approximate the Green's functions
which appear in (38) by free-exciton Green's functions;
not only does this procedure lead to an immediate
evaluation of the x integral, it also allows the system to
reach a steady state in the limit t ~ ~. In effect, we
are then calculating the lattice displacement accom-
panying an exciton that is forcibly kept in free-exciton-
like motion. The result depends on whether or not the
unperturbed exciton energy e—2' cosh exceeds the con-
tinuum threshold e—2o)+v. Below this threshold, at
T=0, we obtain a localized, exponentially decreasing
distortion surrounding the exciton.

S~"(t) = —(f/2~v) $(v+2n) cosk)' —4o)'7—'t'

XLr~ ' cos(krrs+2o)t cosk)7, (58)
where

r—= v/2co+ cosk —
P (v/2'+ cosk)' —17't',

( v+2' cosk
~
)2o),

2cot))1.

A distortion pattern having the same form for &=0
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was also found by Merrifield. "The divergence in the
displacement which occurs when the continuum thresh-
old is approached is a consequence of our forcing the
exciton to propagate as though it were free.

Within the continuum, when the production of real
phonons becomes possible, we obtain a nonlocalized
distortion pattern due to the presence of as many
phonons as are needed to maintain the "free" motion
of the exciton.

S '(~) = (f/2Mv) P4c ' (v+—2oi cosk)'$-'~'

X {Sint (k —qII)m+2o~t COSkj), (59)
where

( v+ 2~ cosk
( (2~,

2a)f&)1 )
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and
qs= arccos(v/2&o+cosk) .

Fxo. 14. Root-mean-square exciton displacement. The dashed
line represents the rms displacement for a noninteracting exciton.
Values of parameters used: v/2&v=0. 4; f2/SMva&'=0 1.

It is simple enough to generalize S„'(/) to finite tem-
peratures; in addition to (58) and (59), which are to
be multiplied by 1+n, there is a contribution, propor-
tional to e, of the phonons in the ensemble. For mo-
menta such that ~2&v cosk —

v~ (2oi, in particular near
k=0, these phonons lead to an additional background
of the type (59). When ~2&v cosk —v~)2&v (the upper
portion of the energy band), a pattern with a shape like
(59) appears; it is due to the fact that in this energy
range the background phonons cannot be absorbed.

Exciton Propagation

If nontrivial results describing exciton propagation
are to be obtained, it is not possible to make approxi-
mations such as those of the last section. We are faced
with the full analytic structure of the Green's function
in evaluating the necessary transforms and momentum
sums. This structure is, as we saw, quite complicated
in even the one-phonon Einstein model. We have calcu-
lated P e(t) and P '(/) in this model, by means of a
laborious numerical evaluation. The root-mean-square
exciton displacement so calculated is presented in
Fig. 14. It appears that, although the no-phonon con-
tribution to this displacement eventually slacks off,
the one-phonon correction just makes up for it in a way
such that the net rate of exciton propagation is essen-
tially unaffected. This interesting result is most likely
a consequence of the severe physical assumptions in-

herent in the Einstein model: Both the phonons and the
exciton-phonon interaction are con6ned to individual
lattice sites in this model.

Concluding Remarks

In this work we have tried to explore the usefulness
of the Green's function technique for calculating
general features of the interacting exciton-phonon
system. Although we have reservations concerning some
of our approximations, we have indicated ways in which
Green's functions can be convenient for computing
properties such as spectral shapes and quasiparticle
characteristics. Perhaps the greatest virtue of the
formalism, in particular of the variational procedure, is
the ease with which purely formal expressions can be
derived; it is not always easy to perform specific evalua-
tions of such formal expressions.

ACKNOWLEDGMENTS

The author is indebted to Professor S. Engelsberg for
numerous suggestions and for his encouragement. Ap-
preciation is expressed to Professor J. J. Hopfield for
advice during preparation of the manuscript. Valuable
discussions with Professor J. A. Wheeler and with
Dr. R. E. Merri6eld are also appreciated. The support
of a National Science Foundation Graduate Fellowship
during Inost of this work is gratefully acknowledged.


