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assume the initial condition

f(t=p, .)=b(v —V,)

and thus can write

(33)

use of saddle-point techniques in inverting the Laplace
trB,nsfor IQ.

Finally, we remark that in the case where Co,&v on
the average, we can put

f(t,v) =A(v, Vp)
dt7exp o

27ri

Vp

vp

dv'/b(v') (34)
4I'M1V, tr 3n't'm, X,to,')

b(v) =
I

v+
3sr't'm, w es t 4m;N, v' ) (36)

=A (v, Vp) 8 t— dv'/b (v') (35) (37)

A(v, Vp) is some (normalizing) function of v.

This is just the form of the approximate distribution
function (2). Furthermore, if we include terms of next-
highest order, the second derivative of f appears in (29)
but it is still possible to solve and invert the Laplace
transform, by making use of the fact that the coefficient
of it'f/r)v' is small. The result is a distribution function
of the kind (4), where the Gaussian shape arises from

and then the 5 function in (35) can be replaced by

v'+st'
~

b~ t+r ln
Vp'+st'I

(38)

This is exactly the result (16) in Butler and
Buckingham's paper.
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The effect on the radial distribution function g(r) of adding a small, long-range interaction to a short-range
potential is investigated. Two equations are obtained for the corrected g, corresponding to approximations
similar to those used in obtaining the Percus-Yevick and convolution hypernetted chain integral equations.
The equations relate the "short-range" g (assumed known) and the long-range perturbing potential to the g
corresponding to the complete potential. These equations and equations previously obtained by Broyles,
Sahlin, and Carley and Hemmer have been tested numerically for a model having a negative Gaussian-Mayer

f function, for which near-exact solutions are available from the work of Helfand and Kornegay.

g(r) =
V' . exP —P P g,;drs drtr

v i&j

exp —p g Q;;drt dry
v &C2

when the limits lV —+ ~, V —+ ~ are taken such that
p=X/V remains constant; @;;=&(~x;—r;~) is the pair
potential and p= 1/kT.
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I. INTRODUCTION

'HE thermodynamic behavior of a classical, one-
component, monatomic Quid is completely char-

acterized by the radial distribution function g(r) when
the potential energy of the system can be written as
the sum of pair potentials. For an X-particle system in
a volume V, g(r) is defined as

This paper is concerned with the effect on g(r), and
hence on the thermodynamic quantities, of a small
change in the potential @(r).A solution to this problem
could be used in a variety of applications. The need
for a method to correct g(r) arises, for example, in
Monte Carlo calculations of the radial distribution
function, where the long-range tail of a potential such
as the Coulomb potential must necessarily be truncated
at some finite distance. The effect of the neglected part
of the potential must be found for a complete solution. '
Furthermore, if the function g(r) is known for some
temperature T, g(r) for some slightly different tem-
perature T' may be easily found by considering p'tt (r),
P'= 1/kT', to be a perturbation of PP(r) at T and
applying the corresponding correction. This obviates

'D. D. Carley, Monte Carlo calculations for the Coulomb
potential (to be published). The same problem arises from the
Lennard-Jones 6—12 potential; W. W. Wood and F. R. Parker,
J. Chem. Phys. 27, 720 (1957).
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the need for another long, iterative solution of the
integral equations for g(r). Finally, the effect of adding
a long-range, attractive tail to a sharp barrier potential
can be studied. A model with an exponential attractive
potential added to a hard core has recently been in-
vestigated by K.ac, Uhlenbeck, and Hemmer. ' This
model displayed a phase transition in the proper limit
of the attractive potential, and its extension to three
dimensions is of particular interest.

Two recent papers have dealt with this problem.
Broyles, Sahlin, and Carley' (BSC) employed a method
of collective coordinate integration to evaluate the
Fourier transform of Eq. (1). By explicit summation
of diagrams, Hemmer4 has obtained two asymptotic
equations for the corrected g(r), valid in the large r
and small r regions. The equations derived in these
papers, together with two equations for g(r) obtained
in the next section, have been tested on a model for
which exact solutions are known from the work of
Helfand and Kornegay. ' The results are given in Sec.
III. It is also shown that one of the equations derived
in Sec. II reduces, in the large r region, to the BSC
equation and Hemmer's first-order solution for the
same region.

II. THEORY

The 3)V-dimensional integral of Eq. (1) can. be made
more tractable by the use of Mayer f functions, re-
sulting in the well-known expansion of G(r) in powers
of the density' '

G(r) =—a(r) —1=f(r)+I:1+f(r)7C(r), (2)

S(„) = p
+ pa d o+~+~

+ ~ I p

P(l) = —P2I

2P + ~ ~ 0

B(rj = —I n2 + ~ ~
210

I'IG. 2. The series, parallel, and bridge sets.

be represented by diagrams with a one-to-one corre-
spondence in the following manner: An f;; in the
integrand is drawn as a line connecting the points i and
j, which are drawn as dots if they are variables of
integration (field points) or circles if points 1 or 2
(fixed points); p(ts, y) is a symmetry number for the
generic (unlabeled points) diagrams dependent on the
number of Geld points (n) and the diagram type (p).
The first few terms in the expansion of C(r) in this
shorthand notation are shown in I'ig. 1, where the '

density and symmetry factors have been explicitly
written. These diagrams can be classed into three
groups according to their topological characteristics:

(a) A series, or nodal, diagram contains at least one
field point (called a node) through which all paths
connecting 1 and 2 must pass.

(b) A parallel diagram contains at least two paths
between 1 and 2 which are connected only at 1 and 2.

(c) A bridge diagram is one which is neither series
nor parallel.

The sum of all series, parallel, and bridge diagrams
(3) will be denoted by $(r), P(r), and B(r), respectively.

To the second power in density these sets are as shown
in I'ig. 2. Then we have

(&)

C(r)=Z p"~ IIf' Il «,
p(ts, y) ', g i=s

where

f .—f(y . .) —e .pe(~ri)—
C(~) =S(r)+P(r)+B(r),

or

and a 1, 2 index has been suppressed on r. Each power
of the density in Eq. (3) is associated with several
integrals Z. The integrals in the expansion of C(r) can G(r) =$(r)+P(r)+B(r)

+f( )I 1+S( )+P( )+B( )7 (6)

C„, -p~. , r~.~ ~
+—I I

2 + 2 + p3 ~ ~ ~ + ~ ~ ~

l'IG. 1. Dia ram expansion of C(r).

' M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. Phys.
4, 216 (1963).

'A. A. Broyles, H. L. Sahlin, and D. D. Carley, Phys. Rev.
Letters 10, 319 (1963).

4 P. C. Hemmer, J. Math. Phys. 5, 75 (1964).' E. Helfand and R. L. Kornegay (to be published).' J. de Boer and A. Michels, Physics 6, 409 (1939);J. E. Mayer
and E. Montroll, J. Chem. Phys. 9, 2 (1941);J. de Boer, Physics
15, 680 (1949).

7 Here and in the remainder of this section we have adopted,
with some slight alterations, the notation of M. Klein and M. S.
Green, J. Chem. Phys. 39, 1367 (1963).

(7)
W'e will denote the set of all non-nodal diagrams in the
expansion of G(r) by T(r),

T(r) =P(r)+B(r)+f(r)$1+$(r)+P(r)+B(r)7, (8)
=g(~)f(~)e"'"'+P(r)+B(r), (9)

g (r) e&& '"& = 1+S (r)+P (r)+B(r) .

and thus
G(r) =$(r)+T(r) . (10)

The set $(r) is factorable in Fourier transform space
and can be eliminated in the following way. I,et r, be
the first node encountered along a path from 1 to 2 jn
a typical diagram of $(r). Then the subdiagram between
1 and 3 must be of a non-nodal type, i.e., a member pf
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T(y). From 3 to 2 however there is no restriction on the
subdiagram, either nodal or non-nodal being possible,
hence some member of G(y). Summing over all possible
subdiagrams and integrating over rs gives the set S(y),

where
»(y) =-S(y) -S'"(y) (2o)

and AB(y), similarly defined, has been. neglected. "This
will be called the CHNC-type approximation. We have
further from Eqs. (13) and (14) that

S(y) =p T(yis)G(y, s)drs,

so that we may write

G(y) = T(y)+p T(y„)G(y„)drs. (12)

where

pT (k) pT'" (k)
AS(k) =

1—pT(k) 1 pT'"—(k)

L1+pG'"(k) )'AT(k)

1—pL1+pG'"(k) jhT(k)

(21)

—B,T(k), (22)

g (y) =m L
—P4 (y)+ S(y)+ B(y)],

=g'"(y) expt' —Pp'"(y)+BS(y)j,

(1g)

(19)

' L. S. Ornstein and I'. Zernicke, Proc. Acad. Sci. Amsterdam
17, 793 (1914).

s E. Meeron, J. Math. Phys. 1, 192 (1960); T. Morita, Progr.
Theoret. Phys. (Kyoto} 20, 920 (1958); J. M. J. VanLeeuwen,
J. Groeneveld, and J. de Boer, Physica 25, 792 (1959); M. S.
Green, Hughes Aircraft Corporation Technical Report, 1959
(unpublished) ."J.K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958);
J. K. Percus, Phys. Rev. Letters 8, 462 (1962).

"A. A. Khan, Phys. Rev. 134, A367 (1964)."George Stell, Physics 29, 517 (1963}.

This is the Ornstein-Zernicke integral equation which
gives G(y) when the direct correlation function T(y) is
known. The Fourier transforms of G(y) and T(y) are
thus seen to satisfy the relation

G(k) = T(k)/L1 —pT(k) j (13)

Also, from Eqs. (10) and (11),we get that

S(k) =pT'(k)/(1 —pT(k) j (14)

The set P(y) has the property that its members
factor in direct space since there is no integration over
points 1 and 2. An analysis of the diagrams of this set
leads finally to the equation'

P(y) =g(y)ee&&'i 1—Ing(y)e~&t"i—, (15)

which can be used to eliminate P (y) in Eq. (7), yielding

g

(y)esp�

(r) —e s(r)+B (r) (16)

We note in passing that Eqs. (9), (12), and (15) result
in the convolution-hypernetted chain (CHNC) integral
equation' when the set B(y) is neglected, while neglect
of P(y)+B(y) in Eq. (9) yields, with Eq. (12), the
Percus-Yevick (PY) integral equation. '~"

We now assume that we have available a radial
distribution function corresponding to the short range
potential g'"(y):

gas(y) —exp L Pgsr(y)+Sar(y)+Ber(y)$ (17)

We are interested in finding g(y) for g(y) =P'"(y)
+p"(y), where p'"(y) is a long-range potential assumed
weak. compared to g'"(y) Then.

AT(r) =T(y) T'"(y) . — (23)

We now need to approximate AT(y). Since P(y) has
been written as the sum of long- and short-range terms,
the Mayer f function for g,;may be written

(24)

Each integrand of T(y) then becomes a sum of inte-
grands of mixed long- and short-range bonds. One of
these will contain. only short-range bonds f,;" Anothe. r
will contain one long-range bond f, " or compound
bond f; "f, ", and all remaining bonds of the short-
range type, and so on, until no short-range bonds are
present. The first group will sum to give T'"(y). The
first term of the remainder is the single bond f'(y)

PQ'"(y), sin—ce the perturbing potential is assumed
weak. We have thus to lowest order

(A)»()= —~~'"(). (25)

Higher approximations to AT(r) may easily be accom-
modated and are discussed in Sec. IV.

Insertion of the Fourier transform of Eq. (25) into
Eq. (22) then gives, with Eq. (19), the final result,

g( )=g'"( )

where the Fourier transform of H(y) is

L1+pG "(k)7N'"(k)
8(k) =

1+pL1+pG'"(k) jN'"(k)

(26)

(27)

G(y) =G'"(y) —&(y), (28)

which is the BSC equation. ' This equation has been
found to give satisfactory solutions for g(y) at large y,

but runs into difhculty at small r, often giving negative
g's. '4 The derivation above indicates that the BSC

's The form of Eq. (19) was suggested by A. A. Khan (private
communication) ."D. D. Carley, Phys. Rev. 131, 1406 (1963); H. L. Sahlin,
thesis, University of Florida, 1963 (unpublished).

In the large y limit where g(y) and g"(y) both ap-
proach 1, we may take the logarithm of both sides of
Eq. (26) and replace lng(y) by g(y) 1and l—ng'"(y) by
g'"(y) 1 to obtain—
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equation is not applicable at small r. If Eq. (28) is
further approximated by assuming that the first term
on the right is negligible, the resulting equation is
equivalent to that obtained by Hemmer, 4 in first order,
for the large r region.

We note in. passing that in the limit ())'"(r) ~0 so
that (t

)"(r) ~P(r), Eqs. (26) and (27) give the Debye-
Hiickel)5 g(r) when g(r) is specified as the Coulomb
potential.

An equation employing a PY-type approximation,
where DP(r)+AB(r) is neglected, is easily obtained
from Eqs. (7), (22), and (25). The result is

g(r) =g~~(r)e e&)"(~&+e e&'&$Py" (r) ~(r)]. (29)

2.5-

2.0-
p$(x)

l5

l.o-

0.5

ppsr(x&

p$"(x)
FxG. 4. The corre-

sponding short-range
potential and per-
turbing long-range
potential for the g's
of Fig. 3.

Equations (26) and (29), with II(r) determined by
Eq. (27), are the main results of this paper. In the next
section a numerical test is made of these equations and
the results compared to computations with the BSC
and Hemmer equations.

0
0.5 l.O I.5 2.0

The Mayer f function is given by

j(r) e—(r/a& (31)
III. THE GAUSSIAN MODEL

For a proper test of Eqs. (26) and (29) we need an
exact solution of g"(r), so that no additional approxi-
mations are introduced, as well as of the final g(r) to
permit a comparison of results. Such solutions are
available, and can be used for this purpose, for a model
with a Mayer f function approximated by a negative
Gaussian. Helfand and Kornegay' have explicitly
evaluated the coeKcients g„(r) in

where
x=r/d, p=Xd'/V,

d = (-')"'m'"a= 1.100a. (32)

The potential corresponding to a solution g(x) is

and the unit of distance is selected so as to make the
second virial coefficient of the pressure identical with
that of a gas of hard spheres of diameter d. The reduced
units are then

P()) (x) = —ln (1—e—"'*'). (33)

g(r) =e "'"'L1+2 p"g-(r) j
n=1

(30)

l.o

g(x)

Exact
xoct

0.5

0.5 1.0 l.5

Fn. 3. Comparison of the computed g's for the Gaussian model
with the exact solution of Helfand and Kornegay for a density of
0.4. The parameter of perturbation m is 0.6.

'5 P. Debye and E. Huckel, Z. Physik 24, 185 (1923}.

up to m=5 for this Gaussian model. At small values of
density the g(r) obtained in this way is essentially
exact, the criterion being that p'g(;(r) be small.

We can obtain a g(x) for a slightly different potential
in the following way. Perform a coordinate trans-
formation x'=x/m, where 0(m~ 1. Then the function
p(x) =@(x/m) will be of the same form as g(x) but go
to zero sooner. We will call g(x/m) the short-range
potential, p"(x). The correspon. ding g'"(x) is obtained
by replacing x by x/m and p. by pm' in the right-hand
side of Eq. (30).

With @("(x)given by

(34)

and the g'"(x) obtained above, Eqs. (26) and (29) have
been used to compute g (x).This g (x) was then compared
with the known g(x) from Eq. (30). The same input
data were used to compute g(x) from the BSC equation,
Eq. (28), and the two first-order asymptotic forms of

g(x) obtained by Hemmer, Eqs. (35) and (41) of Ref. 4.
(The application of Hemmer's equations to the Gauss-
ian model should be qualified by the fact that a "hard"
barrier short-range potential was assumed in their
derivation, a condition not quite satisf(ed here. )

Calculations were made for densities of 0.1, 0.2, 0.3,
and 0.4, for which the truncated series for g(x) yields
an essentially exact solution. For each value of density,
four values of the parameter m were taken, m=0.9,
0.8, 0.7, and 0.6, representing successively larger
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perturbations. The results for p=0.4, no= 0.6 are shown
in Fig. 3. We see that, as expected, g(x) computed from
the BSC equation compares favorably with the exact
g(x) in the large x region, but becomes far too small as
it approaches the origin. Hemmer's two asymptotic
equations yield good agreement in the small and large
x limits but allow no means of interpolation for inter-
mediate values of x. Of the two equations obtained in
this paper, that corresponding to the PY-type approxi-
mation gives a better result for g(x), although an
additional infinite set of diagrams has been neglected
in its derivation. As with the PY integral equation,
this is explained on the basis of cancellations between
the sets P(r) and B(r).n The potentials for the g's of
Fig. 3 are shown in Fig. 4. The results of other cases
for Eqs. (26) and (29) are given in Fig. 5 in the form
of rms deviation from the exact g(x), where the rms is
defined by

{Q & g Lgex( jQ) —g$$$$u (gQ) js}&/s (35)

Here X is the number of points taken in the numerical
solutions and 6 the interval. The superscripts on g(x)

0.02-

= O. l

Fxo. 6. Density de-
pendence of the rms de-
viations from the exact
Gaussian model g(x) for
g's computed by neg-
lecting AB (x)+AP(x)
and approximating
aT(x) by (A), (8), and
(C). The value of m is
0.6.

I'ms

0.03

0.02—

0.0 I

(A) r
(s)
(C) &r

r~
r~

0.2 0.4

refer to the exact and computed g's. Ke note from Fig.
5 that the rms values obtained for Eqs. (26) and (29)
are relatively insensitive to changes in density.

IV. HIGHER APPROXIMATIONS

More terms may easily be included in the evaluation
of d, T(r). Thus in the diagram expansion of T(r) with
short- and long-range bonds, we may retain beyond
T"(r) both the single bond f'"(r) and the smaller
compound bond f'"(r)f"(r) to give

(36)

Beyond this all diagrams with a direct bond between
1 and 2, either fts'" or fts'"fts'", may be summed to
yield

(37)

FrG. 5. The rms devi-
ations from the exact
Gaussian model g(x) for
g computed from Eq.
(26) (dashed line) and
Eq. (29) (solid line).
Decreasing m corre-
sponds to increasing
perturbation of the
potential.

O.OI—

0.02—

0.0 I
P =0.2

0
rms

0.02-

P=0.3
0.0 I

zrr~
0

0.02-

P $0.4
0.0 I

I.O
I

0.8

rr ~trr

I

0$6

At small densities these higher approximations do
indeed lead to successively more accurate g's than does
(A), Eq. (25), but at the price of worse answers at
larger densities. This is seen for the G-aussian model in
Fig. 6, where the rms values for the equations resulting
from the PY-type approximation and approximations
(A), (B), and (C), are shown as functions of the
density for m=0.6.
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