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Distorted-Wave Born Expansions*
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A successive approximation procedure is presented for calculating transition amplitudes for direct and
rearrangement collision processes. The essential feature of the method is that the base problem about which
the solution is expanded exhibits all the bound states (of subsystems of particles) which appear in initial
or Anal scattering states. While no proof is given that our expansion converges, arguments which have been
presented indicating that the ordinary Born expansion diverges for a wide class of problems no longer apply
to the expansion proposed here. A particular choice of base problem leads directly to the well-known dis-
torted-wave Born approximation. The variational nature of this approximation is exhibited and, as a
consequence of the general formalism, a procedure for systematic improvement is presented. Circumstances
are described under which the erst term in the modified Born expansion has an error of known sign. The use
of separable potentials to generate solutions to the base problem is discussed and is shown, in the three-body
case, to lead to a model proposed recently by Amado. As a by-product of our work a variational principle for
transition amplitudes is developed which is a generalization of the Kohn principle for the two-body elastic
amplitude and is valid for any scattering process described by the Schrodinger equation.

1. INTRODUCTION

HERE has been an increasing amount of attention
turned recently toward the development of

perturbational techniques for scattering problems when

the ordinary Born expansion fails to converge. ' ' Since
this failure is intimately connected with the presence of
bound states the need for new techniques is particularly
apparent in the treatment of rearrangement collisions, 4

where the presence of interaction potentials which are
strong enough to form bound states is an intrinsic
feature of the problem. Actually, the divergence of the
Born expansion is more directly related to poles in the
complex X plane, where P is the potential strength
parameter, rather than to poles in the complex energy
plane, and a rigorous mathematical study of the problem
must take this distinction into account. ' our aims here
are more modest. We present a modi6cation of the Born
expansion which at least avoids the Aaron-Amado-Lee
criticism. 4 No convergence proofs are offered. We rely
solely on the expectation that if a potential is too weak
to cause binding an expansion about that potential
will converge over a wide range of energies. The
possibility that the potential may still be strong enough
to cause a resonance (a pole in the complex X plane) is
recognized but not discussed further here.

The basis of our method is an identity developed by
Kato' ' for two-body scattering in a particular partial
wave and here extended to deal with transition matrix

~ Supported by the National Science Foundation.
r S. Tani, Phys. Rev. 117, 252 (1960).
s S. Weinberg, Phys. Rev. 130, 7/6 (1963); 131, 440 (1963);

IBB, B232 (1964).
s M. Rotenberg, Ann. Phys. (N. Y.) 21, 5'79 (1963).
4 R. Aaron, R. D. Amado, and B. W. Lee, Phys. Rev. 121, 319

(1961).' T. Kato, Progr. Theoret. Phys. (Kyoto) 6, 394 (1951).
s L. Rosenberg and L. Spruch, Phys. Rev. 125, 1407 (1962).

The Kato identity was generalized here to cover binary collision
processes, the system having a well-de6ned total angular momen-
tum. A minimum principle for elements of the X matrix was then
constructed. This paper contains references to earlier work by
the authors along similar lines.

elements in general I see Eq. (2.23)g. An essential
feature of the Kato identity, which is maintained in the
generalization developed here, is that one term in the
identity is explicitly of second order so that its neglect
gives rise to a variational principle for the transition
matrix elements. The distorted-wave Born expansion is
derived in Sec. 3 for two-body scattering. This formula-
tion may be viewed as an alternative to steinberg's
method of quasiparticles. ' A generalization of the
formalism is discussed in Sec. 4, along with two applica-
tions. We first consider a three-body scattering problem
and construct a solvable base problem by making a
particular choice of separable potentials to replace the
true potentials. This base problem turns out to be
identical to a Inodel proposed recently by Amado. ~

We are therefore able to justify Amado's model in the
framework of ordinary potential scattering theory and,
at the same time, to give a procedure for systematic
improvement of this first approximation. As a second
application we show that the well-known stripping
approximation' Le.g. , for a (d,p) reaction) can by a
suitable choice of distorted wave be made to appear as
the first term in a distorted-wave Born expansion. We
have therefore exhibited the variational nature of the
stripping (or distorted-wave Born) approximation, and
this is perhaps the best way to understand its success.
This success in turn may be taken as some indication
that the expansions discussed here will be of practical
utility in a variety of applications.

Qf the two applications discussed in Sec. 4 one is
speci6cally a three-body problem while the other, the
stripping example, is electively reduced to a three-body
problem by the introduction of optical potentials. It
may well be that the requirement of a solvable compar-
ison problem limits the domain of applicability of the
method proposed here to two- and three-body models.
This point does, however, deserve further investigation;

r R. D. Amado, Phys. Rev. 132, 485 (1963).
8 S. T. Butler, Nuclear Stripping Reactions (John Wiley R Sons,

Inc., New York, 1957).
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the shell model, e.g. , might serve as a useful comparison
problem for nucleon —nucleus scattering. ' In any event,
we have chosen to use a many-body model in the
derivation of the basic identity given in Sec. 2. We
believe this identity, and the variational principle which
follows directly from it, to be of general interest,
independent of the particular applications discussed
here.

2. THE BASIC IDENTITY

The multichannel scattering problem under consider-
ation is defined by the Schrodinger equation

(II—E)% &+&=0 (2.1)

with boundary conditions which specify the particular
entrance channel and whether the scattered wave is
outgoing (+) or incoming (—) at infinity. In order to
write down these boundary conditions in a convenient
form we must introduce some notation.

Consider a system of e bodies (each body may itself
be a compound system) with masses m, and position
vectors gi locating the center of mass of each body.
We introduce a new set of position vectors r~, r2,
~ r„ i and Q according to

r;= (&t4/m)'"[q;~i —Q~j, i=1, 2,

(2.2)

where

The spherically symmetric solutions of Eq. (2.7) will
also be required. They are given by

U&+&(kr p)=C (k p)r ""H &''&(kr)

p =3e—5, (2.8)

where H„/2") and H»2") are cylindrical Hankel func-
tions of the first and second kind, respectively. The
normalization factors C~ are specified in Eqs. (A11)
and (A13). We note the asymptotic behavior

tr 2 y'l'e,ii »(kr) -Ekr i
t'p+11

Xexp ~i kr —
~

~7r . (2.9)
4 i

Now suppose each body is actually a bound system
of p; particles; when isolated each system is described
by a normalized eigenfunction X,(p, &, g, s, .9;„,.) with
eigenenergy —e,. (If the ith system is a single particle,
then X,=1 and e,=0.) The y,; are position vectors with
respect to the center of mass of the ith system. The
totality of these vectors can be represented by a hyper-
space vector y. The wave function for the m-body
system (consisting of

particles) is of the form

and

Q;=(P m, q,)/P m, , j=1, 2, n, (2.3) (g X, ) exp(ik r )—=X (p ) exp(ik r )
i=1

(2.10)
(ii,) '= (r&s,+i) '+(2 re;) '

i=1
J'=1 2 . 1l—1. (2.4) where we have now included a channel index n. C

satisfies the Schrodinger equation
Here ns is some conveniently chosen standard mass.
In the following unless otherwise stated we make a
choice of units, and of m, such. that PP = 2m= 1. The
kinetic energy operator for the n bodies in their center-
of-mass system then takes the simple form

(FI V —E)C =0, —

na
E= —e +k ', e = P e; .

(2.11)

(2.12)

n—j
(2.5)

3 (n—1)
r'= Qx (2.6)

If 4 is a wave number vector in this space then we have
the plane-wave solution

(E—k') exp(ik. r) =0. (2.7)

Ideas along these lines have been discussed recently by W. M.
MacDonald, University of Maryland Technical Report No. 337,
November 1963 (unpublished).

A further notational simplification is achieved by
representing the set of vectors r&, r2, r„& by a single
vector r= (xi, xs, . xs~„ i&) in a 3(&s—1) dimensional
space with

The channel index n indicates the quantum state of
the system as well as the particular decomposition into
e subsystems. V is the set of interactions which would
actually exist among these systems for r finite. The
asymptotic form of the wave function can now be
written as
%»'+&—&4s(t»&, rs)+T s&+&(r,ks)X„(p )U„i+&(r ) (2.13)

for r —+ ~, p ( ix&, the carets denoting unit vectors.
The scattering problem resolves itself into a determina-
tion of the amplitudes T p.

With these preliminaries disposed of we are in
position to derive the generalized Kato identity. To this
end consider the expression

J= (+ ' ', (H E$@,+)—
—(+s '+', LH —Ej% 1—&)*, (2.14)
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where 0'p&(+' is a trial function which has the same
asymptotic form as 0 p(+' except that the amplitudes
T p&+' are replaced by trial amplitudes T p, '+& (the
functions X are assumed to be known). Now J, which
represents the lack of Hermiticity of II under the
assumed boundary conditions, may be evaluated in
two ways. We have, of course,

J= (+.&-&, ((H E)@p,—&+&).

Alternatively, a multidimensional form of Green's
theorem may be used to express J as an integral over
a surface at infinity. In fact it is clear from the preceding
discussion that the total center-of-mass kinetic energy
operator can be written as —P, where V' is a multi-
dimensional Laplacian, so that

j=— (Q (
—)*~+p,(+)—Qp, (+)~Q (—)~) dS (2 15)

S

This integral may be evaluated with the aid of Eq.
(2.13). We first observe that terms involving products
of X~* and X~, where y and 8 are two channels which
correspond to different groupings of particles into
subsystems, do not contribute since there will be no
surface element at infinity on which X~* and Xq
overlap. Stated in another way, we may say that as a
necessary condition for a term proportional to X~*X~ to
contribute, channels p and 8 must be such that they can
be connected by a direct reaction (for which &&~=e(;)

or a breakup reaction (for which n~Weq) but not a
rearrangement reaction. More detailed considerations
show that in fact only terms for which rI~=e~ can
contribute. This analysis, which we now sketch, is
greatly simplified by use of the identity

8
exp(ik r)—U(+)(k,r; p) —U(+)(k,r; p)

Br

8
&(—exp(ik r) f(r)ds ~ f(Wk), (2.16)

where the integral is taken over a hypersphere of radius
r. This relation, a direct generalization of its three-
dimensional counterpart given by Dirac, "is derived in
the Appendix. The essential point is that due to the
rapid oscillations of the integrand there is no contribu-
tion unless the coeScient of r appearing in the exponent
is zero.

Now consider the class of terins obtained by replacing
0' ' '* in Eq. (2.15) by 4' *, with 4'p, (+& replaced by
T p&X~U~&+). It will be shown that such terms do not
contribute unless rs~= e . Thus, if we first assume that
n (n~ we see that since X (t) ) vanishes for large &()

the surface integral becomes an integral over all
coordinates except r, which is fixed and large.

'0 P. A. M. Dirac, T/ze Pzizzci p/es of Quazztuez Mechanics
(Clarendon Press, Oxford, 1947), 3rd ed. , p. 191.

f': = —e + (k (2+k P),
L', = —e„+k,'= F (2.18)

Since e (e~ (channel n is, so to speak, obtained from
channel y by a breakup reaction), while k P)0, we
have

~a2 &a+ (2.19)

so that k~P(k~'. Consequently, the equality k~( r~
=k,r~ cannot be satisfied in the doniain of integration
and the surface integral vanishes due to the rapid
oscillations of the integrand for r~ —& ~. In a similar
way the contribution obtained by replacing + ' )~ by
its scattered part and 0'p&'+) by its plane-wave part
reduces to Tp & '*(—kp, —k ). By extension of this
analysis it is easy to see that these are the only contribu-
tions so that

Tp & '"(—kp, —k )—T p, &+&(k,kp)
= (4 ' &, $H —L)+p, (+&). (2.20)

As a first application of Eq. (2.20) we set. +p, &+& = 0'p&+),

which leads directly to the well-known reciprocity
relation"

Tp '—'*(—kp, —k )= T p(+)(k. ,kp). (2.21)

It can now be verified that the amplitudes T p as
defined by Eq. (2.13) are identical to the usual T-matrix
elements. " We set 4p((+&=(I'p in Eq. (2.20), so that
T p, &+&=0, and find, with the aid of Eq. (2.21), that

T p(+&(k.,kp)=(e & ', Vpe'p)
—(@ P' +p(+))

With the introduction of the error function 0 (+)

=4,&+&—4' '+&, Eq. (2.20) takes the form we have been
seeking, that is,

T p&+&(k, kp) = T p, &+&(k,kp)+(+ g&
—

&, LH—Ej+p, &+&)

—(n.&-, (H—Zjnp+ ). (2.23)

A variational principle for T p is obtained by dropping
the second-order term, (0 & &, LH —E)Qp(+&), in Eq.
(2.23). An integral (Schwinger-type) formulation of the
variational principle for rearrangernent collisions has

"M. Gell-Mann and M. L. Goldberger, Phys. Rev. 91, 398
(1963).

Furthermore, the error made in replacing r~ by r in
the function U, &+& will be O(r ') relative to the
leading term. This leading term itself vanishes as r
tends to infinity, since it contains a finite factor,
evaluated with the aid of Eq. (2.16), multiplied by an
attenuation factor which, according to Eqs. (2.8) and
(2.9), is just r '& "~ "~'&'. For e =e„the contribution is
—T pi&+) (k, kp), where we have used the orthonormality
property of the functions X . Finally, if e &e~ the
integral is taken over the surface r, = constant. Now we

may write

exp(ik r~ )=exp(ik i r,) exp(ik 2 g~), (2.17)
where
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been given previously by I ippmann. " The above
differential (Kohn-type") formulation should prove to
be more tractable in practical applications. Further-
more, it is more general than earlier multichannel
formulations of the variational principle'"" in that
no restriction to two-body channels is made. No
essential diS.culties are encountered when the effects
of spin and the Pauli principle are included.

3. TWO-BODY SCATTERING

The identity given in Eq. (2.23) is a useful starting
point for a number of investigations. The construction
of minimum principles by bounding the error term in a
version of the identity in which the integrals are real
has been discussed previously. ' Ke wish to show here
that interesting relations can be derived by setting the
trial function equal to the exact solution of an appro-
priately chosen problem. Consider, for example, a
single-channel two-body scattering problem. We write
the central potential as V(r) = Vp(r)+ V, (r) where

Vp(r) is a solvable potential, and choose for the trial
function +,(r) the exact solution +p(r) of

Vp&; —Vx, , s—1) 2 -S (3.11)

It is easily verified that if Vo is taken as the sum of
separable potentials

v, = P vix, )(V-'),;(x, iv, (3.12)

so that the identity LEq. (2.23)7 becomes

4)rf (kf k ') = 4mfp ('kr k )
+ (+p~&

—) T~&+)+p.&+)) (3 1())

A distorted-wave Born expansion is obtained by iterat-
ing Eq. (3.6) for G and combining that expansion with
Eqs. (3.9) and (3.10).

To illustrate the utility of Eq. (3.10) we consider,
in the remainder of this section, two particular choices
for the potential Vo. Suppose V supports E bound
states. It is assumed, in this 6rst example, that each
bound-state wave function X; is known exactly. The
condition we place on Vo is that it be solvable, and that
it produce the same bound states as V, so that

ps+ V, (r) E)@,(r) 0 (3 1) where V is an EX1&r matrix with elements

If the scattering amplitude for this base problem is
denoted by fp(kf, k;), we have

T p, &+) (k, kp) = 4~fp—(kr, k;).

V;, =(x;i V(x,), (3.13)

then Eq. (3.11) is satisfied. The scattering problem
generated by Vp is easily solved and we just state the
solution here. We introduce the function

To 6nd an expression for the error function in terms of
solutions to the base problem we introduce the operator g'(k) =(kl Vlx,) (3.14)

G(s)= (s—H) ' (3 3) and define the EX1V matrices N '+' (E) and D (E)
according to

and write the operator relation

+&+)=+,&+)+G(E+;„)V,e,&+) (3 4) [N& )(E)7„-=

where (r ~

@&+))=4&+)(r) is the correct wave function.
With 60 defined as

&f'k g, (k)g;(k)

(27r) ' (k'+ e~) (k' —Ea i)&) (3.15)

it follows that
Gp(s) = (s—Hp)-',

G= Go+Govt, (3.6)
To'+' (E)= Vo+ VoGo(E+ir)) Vo,

(3 3) The operator Tp'+', which satisfies

(3.16)

which is a convenient basis for perturbation theory if may then be expressed as

V, is weak enough. From Eq. (3.4) we have (kl Tp&')(E) Ik')
0&+) =Op&+) —0&+)= —G(Eaig) V&+p&+), (3.7)

so that

(Qr&
—

&, LH —E70;&+))
= —{G(E—z)&)v)%'pr&

—
&, LH —E7+p, &+))

= —(@or&
—

&, V,G(E+i)&)V&+p, &+)), (3 8)

where we have used the relation Gt(z) =G(s*).A scatter-
ing operator Tl is now defined as

T).&+) (E)= V&+ V)G(E+ir)) V). , (3.9)

's B. A. Lippmann, Phys. Rev. 102, 264 (1956).
"W. Kohn, Phys. Rev. 74, 1763 (1948).

= E g'(k)LN'"(E)D '(E)7'g (k') (3»)
i, j=1

This representation exhibits the expected analytic
properties of the amplitude. In particular, the poles
agree, in position and residue, with those of the true
amplitude. One can then express fp, %p, and Gp, which
enter in Eqs. (3.6) and (3.10), in terms of To&+)(E);
these mell-known details are omitted here. Since the
bound-state poles are included in fp, the convergence
properties of the distorted-wave Born expansion of the
residual amplitude Lsee Eq. (3.10)7 is expected to be
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This may be viewed as the generalization of the
previously obtained result" that the ordinary Born
approximation provides an upper bound on the scatter-
ing length if no bound states exist.

Upper bounds on scattering lengths can be obtained
even if the bound-state wave functions are not known
exactly. This follows from a theorem" which states that
if X bound states exist and if H is an XgÃ matrix
with elements

then the operator
H;, =(x;,IHI x, ,), (3.20)

H =H pHlx, )—(H ');,(x; IH (3.21)

is nonnegative on the space of functions which vanish
(or at most go like a constant") a,t infinity. Here the
linearly independent set of trial bound-state functions
must be chosen such that H is negative definite. Taking
the expectation value of Hj with respect to the error
function, and use of the zero-energy form of Eq. (2.21),
leads to the desired bound. Scattering by compound
systems can be treated in a similar way. '

The theorem just quoted can be of help in the present
problem. If, as is usually the case, the bound-state wave
functions are not known exactly the choice Vo= II—H~
is suggested. The scattering problem thus generated
has the solution

(l I
Tp&'&%) Ik')

= P h, (k)LH+M&+&(E) j,;-'h, (k'), (3.22)

with
h, (k) =(klHI x;,),

3d h h, (k)h, (k)
(3.23)

(2zr) ' O' Eazr)—M;, &+&(E)=

'4The fact that 0 goes as a constant for large r, rather than
vanishes does not alter this conclusion. This point has been
discussed in detail in Ref. j.5."L.Spruch and L. Rosenberg, Phys. Rev. 116, 1034 (1959).

'6L. Rosenberg, L. Spruch, and T. F. O' Malley, Phys. Rev.
118, 184 (1960).

substantially improved compared to the usual Born
series.

The fact that V and Vo generate identical bound
states has the following interesting consequence. It is
clear that the error function, 0=CO—4', is orthogonal
to each of the x; (note that Vp is Hermitian). Therefore,
at zero energy the error term in the basic identity,
Eq. (2.23), is of known sign, '4 i.e.,

(Q,EN) &~ 0, E=0. (3.18)

Thus, with the above choice of Vo, the distorted-wave
Born approximation, obtained from Eq. (3.10) by
replacing T~ with V~, gives an upper bound on the
scattering length A dered by

A = —limf(kr, k;) . (3.19)

It will no longer be true, in general, that fp correctly
reproduces the bound-state poles of f. Nevertheless, we
can be assured that the residual potential V~ can not
support a bound state, since E+Vr=Ht is positive
dennite. As we have already mentioned, this does not
guarantee that the modified Born expansion will

converge, since the presence of positive energy reso-
nances as well as bound states can destroy the conver-
gence of the Born series. The method outlined above
"subtracts oG" only the bound states. This is expected
to sufBce over a broad range of energies suKciently
removed from resonance regions.

4. MULTICHANNEL SCATTERING

(Hp —E)@p&&(+)=0 (4.2)

and satisfies boundary conditions given by Eq. (2.13)
with T p replaced by To p. Again, the residual potential
V& is de6ned by

H = Hp+ Vr = I&.+Vp+ Vr (4.3)

and Tr(+)(E) is given formally by Eqs. (3.9) and (3.3).
Vo should be chosen so that V~ is relieved of the burden
of reproducing any of the bound states, either of the
total system, or of subsystems in entrance or exit
channels; i.e., these bound states should appear in the
base problem. Clearly, the construction of a solvable
base problem is a Inore formidable task in the many-
body case. Rather than attempting a general discussion
of this point at the present time, we consider two special
cases which should illustrate the utility of this approach.

We consider irst a three-body scattering problem.
The problem is greatly simplified if the three particles
are taken to be identical. This case is treated here; the
case where the particles are not identical will be
discussed in a future report. '~

In Ref. 17 we have established integral equations for
three-body scattering amplitudes which have the
feature that the kernels involve two-body scattering
operators rather than two-body potentials. Iteration
of these integral equations leads to the multiple scatter-
ing expansions discussed by Watson" and others.
When the three particles are identical the integral
equations are particularly simple. Before quoting them
we introduce some notation. Suppose the two-body
potential V supports one bound state, with momentum-
space wave function x(k) and binding energy e. The
entrance channel is chosen to be such that two particles

'r L. Rosenberg (to be published).
's K. M. Watson, Phys. Rev. 105, 1388 (1957).

The discussion in Sec. 3 can be taken over directly
to construct a distorted-wave Born expansion for the
general scattering problem treated in Sec. 2. The basic
identity may be written as

T' s(+)= Tp s(+)+ (+p (—) T'z(+) (g)+ps(+)) (4 1)

where 0'Op(+& is dered as the solution of
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g(kr+2k) g(k+ pkr)

E—(1,+k,)'—k, '—k&P
(4 5)

with g(k) defined by Eq. (3.14). The second form of
Eq. (4.5) is to be used to extend the Born amplitude
oG the energy shell. The amplitude v is defined in
terms of the two-body scattering operator T(E) which
itself satisfies

are bound and the third particle has momentum k, in
the center-of-mass frame (we let A'=2m=1, where m

is the mass of each particle. ) The exit channel is
similarly chosen; the free particle has momentum k~
with k~'= k,'. The scattering amplitude corresponding
to total energy E,=-,'k,'—c is written as

'E(ky, k, ; E)= B(ky,k;,E)+r(ki, k, ; E) . (4.4)

Here the Born term is

B(kr,k; E)=g(kr+pk)x(k'+1k&)

continued oR the energy shell by writing

g (-,'k&+ k')
x(-', kg+ k') =

L~' (k'+—kJ)' —k"—kg'
(4.11)

in Eq. (4.9) and varying krP with E fixed.
Having set up the equations which determine the

exact amplitude we now introduce a base problem by
replacing V with

vlx)(xl v
Vp= (4.12)

which is Eq. (3.12) specialized to the case X=1.
According to Eq. (3.17) the two-body scattering
operator Tp'+&(E) is given by"

1 g(k)g(k')
(kl To&+&(E) Ik')= — S&+&(E) (4.13)

2 E+p
with

T(E)=V+V(E+ir& K) 'T(E—). (4.6)

In the impulse approximation the elastic amplitude is

I(k„k, ; E) = 2 x(-,'k, +k)
(2m)'

1
[S&+&(E)$—'=—

2

Ke then see that

I&&(kr,k;; E)

g'(k)
(4.14)

(2m)' (2k' —E—p») (2k'+ p)

x(kf+ —',k
I
T(E——,'k')

I k, +-,' k)x(-,'k+k) (4.7)

and the breakup amplitude Lthree particles free in the
final state, with momenta kr, kr', and —(k~+ki')] is

I(kr)kr'i k;) E)=2x(-',k,+k )r
X(kr+lkr'I T(E——:kr")Ik'+2k'') (4 8)

The time-reversed amplitude I(kr, k, ,k; E) (three
particles free in the initial state) is obtained from Eq.
(4.8) with the aid of the reciprocity relation, Eq. (2.21).
The integral equations determining r in Eq. (4.4) can
now be written as

r(kr, k;; E)

d'k S&+&(E——;k')
B(kr,k; E) B(k,k;; E)

(2m) ' E—-', k'+ p

rp(k„k, ; E)
d'k

=Ip(kr)k; E)+ B(k )krI E)
(2m-)'

S&+&(E—-', k')
rp(k, k;; E) . (4.15)

E——',k'+ p

Finally, the amplitude V'p(kr, k;; E) becomes, for this
choice of separable potential,

=I(kr, kf, ; E)+ I(kr, k', k; E)
(2~)' (2m)&& V'p(kr, k;; E)

and

r(kg, kr', k, ; E)

=I(kr, kr', k;; E)+2
(2~)'

X(kg+ pkr'I T(E—2k''p)
I
k+-', kr')

XPE+jg (k+kr') '——k' —kr'P] —i

xLE+i~—(k+k')' —kp —k"$-'

Xr(k, k', k;; E), (4.9)

=B(k&,k, ; E)+ B(kr,k; E)
(2m)'

S&+&(E—-'k')
X— r, (k,k, ; E). (4.16)

E ',k'+p—-
This solution may be verified by comparing Eqs. (4.16)
and (4.15), each iterated once, and making use of the
defining relation Eq. (4.4). With the elastic amplitude
known the inelastic amplitudes can be obtained directly;
no other integral equations need be solved. We find that

X r(kr', k; k;; E) . (4.10) "We have changed our notation and units somewhat in this
section in order to facilitate subsequent comparison with results of

As in the case of the Born amplitude, 7 (kr, k;; E) may be
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the breakup amplitude is given by

1'&&(kr,kf', k,", E)

S&+&(E—-sk,")
=-', S g(kf+-,'kf') vp(k'f', k;;E), (4.17)

E—-', kr's+ e

where S indicates a sum over all permutations of final
momenta. The amplitude V'(kf, kf', k;,k,'; E), which
describes the collision in which the three particles are
free in initial and final states, can be decomposed into a
sum of disconnected parts, each describing a two-body
collision with the third-particle unaffected, and the
remaining connected part V ~ which contains the
essential three-body aspect of the problem. This
connected amplitude reduces, in the base problem
introduced above, to

v'&&o(kg, kr', k,k, E)

1 — S&+&(E—-'kf's)
=—g g(kg+-', kr') v'p(kf', k, ,k, R)

12 E—s kr's+ e

(4.18)

Diagrammatic representations of all these equations
can easily be constructed. Such diagrams appear in
Ref. 2, as well as in an earlier paper which dealt with
the construction of a unitary impulse approximation. "
The similarity between the present model and the
unitary impulse approximation will be discussed in
more detail in the future. '~

The integral equation for Vp is no more dificult to
solve than the Lippmann-Schwinger equation for the
two-body scattering amplitude. Eq. (4.16) has been
derived previously by Amado7 who used techniques not
based on ordinary potential scattering theory. The
virtue of the present derivation is twofold. Firstly, the
connection between Amado's techniques and ordinary
potential theory is exhibited; we have produced the
potential which generates Amado's model. Secondly,
systematic corrections to this 6rst approximation can
be obtained from Eq. (4.1) using a (presumably con-
vergent) distorted-wave Born expansion. Generaliza-
tions of the model to deal with certain stripping ampli-
tudes have been suggested by Amado. ~ These general-
izations can also be treated by the techniques described
here.

It may be of interest to observe that the solvable
model discussed by Skornyakov and Ter-Martirosyan, "
in which three identical particles interact by means of
two-body zero-range potentials, appears as a special case
of the base problem discussed above. Ke need ony
replace g(k) by its zero-range limit, which is just a

~ L. Rosenberg, Phys. Rev. 131, 874 (1963).
2' G. V. Skornyakov and K. A. Ter-Martirosyan, Zh. Eksperim.

i Teor. Fiz. 51, 775 (1957) /English transl. : Soviet Phys. —JETP
4, 648 (1957)j; see also, L. D. Faddeev, ibid. 39, 1459 (1960)
LEng1ish transl. : sbsd 12, 1014 (1961)g. .

e(x) =0, x(0
x&0,

(4.20)

and r&& is the radius of nucleus X. The term V,fe(r, —R)
is inserted so that for r,)R (with R»r&&) the potential
is switched on, allowing the formatio~ of the deuteron
in the entrance channel. The statement of the stripping
approximation is then

Tp p=0, (4.21)

where T«p is the stripping amplitude associated with
the potential Vp. Since all the bound states in entrance
and exit channels are present in the base problem as
wel1. as the true problem, it is reasonable to suppose that
the distorted-wave Born expansion about the residual
potential V&= V—Vp is convergent. If we keep only
the 6rst term in the expansion the stripping amplitude
T p becomes

T~p= To p+ (%&&~& ', LV,fe(r,—r&&) e(R—r, )j%&&p&+&)

(+&& t V re(" r&&))+&&p ) (4 22)

where we have used Eq. (4.21) and have taken R large
enough so that e(R—r,) is effectively unity. The
distorted waves 0'p ( ' and 4'pp(+' can be computed
with the aid of elastic and inelastic scattering data
(with stripping ignored) for the processes d on X and
fon Y.

While the result expressed by Eq. (4.22) is well
known, the above derivation has, in addition to its
simplicity, two distinct advantages. Firstly, the
variational nature of the result is displayed, since the
term neglected in the first line of Eq. (4.22) is of second
order as can be seen by comparison with Eq. (2.23).
This formal property, along with the expectation that
the errors 0' ( ~ —4p ( 'and +p(+&—C pp(+) will in fact
be small in a pure stripping reaction, is perhaps the
explanation for the "surprising" success of Eq. (4.22)
in practical applications. Another virtue of the present
derivation is that it indicates a systematic method of
improving the approximation or testing its validity by
looking at additional terms in the presumably covergent
distorted-wave Born expansion.

constant. This is equivalent to replacing 7&(r) by its
asymptotic form.

As another illustration of these techniques we con-
sider a deuteron stripping reaction X(d,f)Y, where X is
the ground state of a target nucleus. Particle c in the
deuteron is captured by X to form Y, the nucleon f
acting as a "spectator. "The basic assumption made is
that in a pure stripping reaction the process depends
solely on the interaction V,r between particles c and f,
and then only when c is outside the nucleus X. That is,
let the total potential V= Vxf+V,f+V,x be replaced
by

Vp= Vxf+ V rPe(rp r )+e(r —R)$+ V x, (4.19)

where r, is the separation of c and X, e(x) is the step
function
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APPENDIK

We shall derive Eq. (2.16) of the text; we first
consider the function U(+), given by Eq. (2.8), and
replace H(') by its asymptotic form given by Eq. (2.9).
The normalization constant C+ in Eq. (2.8) is specified
below.

To treat the surface integral we introduce (following
Somrnerfeld") a set of hyperspherical coordinates
defined in terms of the Cartesian coordinates x;, by

We now write

r/= ky (1+cos8),
f(y) =g(~/ky)

(A6)

I&—
&k

—(p—~)/2 e(p-1)/2ete(2 e/ky) (pt. l)/2

(suppressing the dependence of g on the angle variables
y~) so that

a~= r cos0

x2=r sine cosy~

x3——r sino sing ~ cosp2

x~I ——r sin8 sing I sing 2 sing p I. cosq „
(Af)

Xg (~/ky) dr/+0 (f/y) . (A7)

By applying the mean value theorem to each of the
r-dependent factors in the integrand we see that we may
let y —+ ee in the integrand, the error being O(1/y).
Therefore, in the limit of infinite r, Ig becomes

g~2= r sing sin+] sin(Ip2' ' 'sinpp ] sinpp
Ie= 2 u+&) g(o)ik—((n—&)/2&

& (p—1)/2~ ivd
where p+2 is the dimensionality of the space. The
orientation of the coordinate system is chosen such that
k is along the xr axis. The surface integral in Eq. (2.16)
then becomes

(n—&)/2 ~p+ f~i ("+')/'r(
& 2

)' (A8)

(2 1/2

C+~
— exp{ i(p+1)7r/4} d&e„sinr 0d0yr+r'
k~ 0

( 8 — 1
X

~
exp{iky cos0}— exp(iky)

Br r(p+»/'

Thus Eq. (2.16), with the upper sign chosen, is verified
provided C+ is chosen such that

C+(2/k~)'"( —i) ("+'& '0„2i(2/k) (& '&/'

XFL(p+1)/27=1, (A9)
where"

with

1 0
exp(iky) —(exp{iky cos0})

~ f(y), (A2)
r (p+&)/&

(p+1)/2
Qp= ZGDy= 2~

f'E(p+ 1)/27

This simplihes to

(A10)

sin" gad py sin"
0

sin pp yd p~y

C+= m' '(k/2)" 'E2n.i(p+ 1)7 '. (A11)

(The significance of this normalization is that U(+'
(A3) (k,y; p) satisfies the unit source condition, i.e.,

We erst examine the integral over 0,
BU(+)

d0=1~ (A12)

which reduces to

Ig ——ikrp+'r (p+'/')

sin&0d0y~'( )f(y),

sin"8d0 exp{iky(1+cos0) }

(A4)
where the integration is taken over a sphere of radius
y-+0.) Equation (2.16) can be verified for the lower
sign by choosing

C = m' (k//2—)&/'Pai(P+f)7 '=C+a (A13)

X (1—cos0)f(y) Lf+O(f/y)7. (A5)
"A. Sommerfeid, Partial Differential Pqaatior/s (Academic

Pgegg Inc. , ¹wPork, 1949), p. 227.

so that U&+'*=U& ). If we now take the complex
conjugate of Eq. (2.16), with the upper sign chosen,
and transform r to —r in the integrand we obtain the
stated result, which completes the proof.


