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If the open-channel target states are known, the minimum principle formulation of scattering theory
provides a systematic approach whereby. one can, to arbitrary precision, monotonically approach the re-
actance matrix K. The scattering wave function and the Green's function for the open-channel approxima-
tion, that in which the closed channels are not taken into account at all, must be solved numerically. An ex-
plicit method for constructing the Green's function is given. The minimum principle approach is probably
limited at present, in practice though not in principle, to the three-body problem with just a few open
channels. A very useful simplification is possible at the threshold for a new channel; one need not there
include the new channel in the equations that must be solved exactly.

1. INTRODUCTION

HE minimum principle formulation of scattering
theory was originally restricted to the case for

which the initial relative kinetic energy of the two
systems, E', was zero. ' The formulation was a practical
one and was applied to a number of scattering problems. '
The initial extension' to E'&0 was not quite in a practi-
cal form, but recently an improved (and truly rigorous)
formalism was derived4 for E'&0 which can and has
been applied to single-channel scattering by a compound
system. The present paper will be primarily devoted to
extending this newer minimum principle formulation to
multichannel scattering. It will be useful to begin with

a brief outline of the results that were previously ob-
tained. The notation to be used will be that of Ref. 4
and of a paper on bounds on multichannel scattering
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parameters. ' (As opposed to some of the earlier usage,
we here distinguish between bounds and minimum
principles 'minimum principles, which might alternat-
tively be called variational bounds, contain variational
parameters, while bounds do not. )

For simplicity, we consider the scattering of a particle
by a compound system, rather than of one compound
system by another, and we take the incident particle
to be distinguishable from the target particles, to have
no spin or orbital angular momentum and to have no
charge; we further assume that no rearrangement proc-
esses are possible, and that the ground state and all of
the excited states of the target have zero angular mo-
mentum. Under most circumstances these restrictions
can be trivially relaxed. We also assume this time not
for simplicity but because of a basic limitation of the
minimum principle approach, that the incident energy
is too small to produce breakup. -

Let the target have eigenfunctions Pr (r) and associ-
ated energy eigenvalues Ep, where m=0, 1, 2,
and assume that the total energy E lies between
E~,~ 1 and E~~, so that there are S open channels. It
will unfortunately be necessary to assume that the
open-channel eigenfunctions and energy eigenvalues
are known. This is only natural since the eigenfunctions
and eigenvalues appear explicitly in the speci6cation of
the boundary conditions. We let the index i refer to
open channels, and let k; and p; represent the wave
number and the reduced mass in channel i. We now
introduce for the moment the trial function 0 ~ which is

5 Y. Hahn, T. F. O' Malley, and L. Spruch, Phys, Rev, 134,
B397 (1964).
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regular at the origin and which has the asymptotic
form in the ith (open) channel given by

@,—+ (p;/k, )'"Pr, (r) [a; sin(k, q, +8)
+b, , cos(k,q,+8)j/q, , q, ~ . (1.1)

The exact wave function has precisely the same asymp-
totic form, but with b, , replaced by the exact (unknown)
value b;. Introducing the vectors a, h, and b~, with
components a, , b;, and b;&, respectively, the exact and
trial reactance matrices Ko and Ko& are defined by

(1 2)

respectively. With the error function or difference
function 0 defined by

EC= —3 and EC]———A g, (1.8)

respectively, where 3 is the scattering length and At, is
the trial scattering length. For ko sufficiently small, we
now have

bo= —ko~ao bo~= —&o~ ~go

matrices Kp(=K) and Kp~(= K~) reduce to tang and
tang&, respectively, for single-channel scattering. We
now introduce the "threshold reactance matrices" K
and K& defined by

K= kpK and K&= koXt.

X and EC& are then 1&1 matrices for ko suKciently
small, and are given by

which then has the asymptotic form

(1.3)

Q —+ (ii,/k, )'"pr, (r) (b, i
—b~) cos(k,q,+8)/q, ,

q, —& c& (1.4)

in channel i, one can prove the identity'

and choosing

we have for ho=0, the asymptotic forms

Q —+ pp'"ikrp(r) (A —Ag)/qo,

+~ ~ po'"Pro(r) (qo &~)/qo, —
while Eq. (1.5) reduces to

(1.10)

(1.11)

(1.12)

—27rk'a Koa= —2s.k'a Ko&a+ 4'~(H E)+~dr—
2sk'A = 2s.k'A &+ +&(H Ero)Ãdr—

Q(H —E)Qdr, (1.5) Q(H Erp)Qdr . —(1.13)

where H and E are the total Hamiltonian and total
energy of the system. One immediately obtains a varia-
tional principle for a Koa on dropping the (unknown)
second-order error term, (Q, [H—EjQ), but whereas Q

will hopefully be small, this will never be assumed in
the course of the analysis, the objective of which is to
obtain an explicit bound on the error term and henceon
a Koa.

The bound is simple to obtain if the incident kinetic
energy E is equal to zero. Approaching this limit, it
follows from the assumptions that we have made con-
cerning spins and angular momenta that we have no
degeneracy and therefore that there is only one channel
open, that labeled by i=0. As the wave number ko
in this channel approaches zero, the asymptotic form of
0 becomes

Q —+ (po/ko)' 'Pro(r) (ho~ —&o) (cos8 koqo sin8)—/qp. (1.6)

"Appropriate normalization'" ' requires the most rapid
possible decay in qo so that we want to eliminate the
term in the numerator proportional to qo, this is most
simply achieved here' by the choice 8=0. The reactance

'In the limiting process E' ~ 0, it was previously found that
appropriate normalization corresponded to 0= ~+, as opposed to
the result 8=0 obtained here. The difFerence is due to the fact
that the nonzero energy normalization used in some of our recent
papers and in the present paper, while allowable, does not reduce
in the limit of zero energy to the normalization used in our earlier

If now the incident particle cannot form a composite
bound state with the target, it follows that H —Ego
is a non-negative operator with respect to any function
Q which satisfies the boundary conditions of Eq. (1.11).
We therefore obtain an upper bound on 3 by simply
dropping the error term. Note that for the choice 0= —,'z
the asymptotic form of 0 would not decay with qo and
the knowledge of the nonexistence of a composite
bound state would not suffice to determine the sign of
the error term.

If there are Ã composite bound states, one can still
obtain a rigorous upper bound on —a Ka if one can
find E approximate bound-state functions which are
good enough to give binding, ' ' by effectively subtract-
ing out the contributions to the error term of these
bound states. The above considerations are applicable
not only to E'=0 single-channel scattering but, where
the process is possible, to E'= 0 multichannel scattering;
reintroducing spins for the moment, these include, for
example, nucleon-nucleon scattering with tensor forces

papers. To have had the same normalization we should not have
used

a; sin(k;g;+8)+b; cos(k;g;+8),
as in the present paper, but

a; cos(k;g;+a) k; sin(k;g;+8)—
since it is the a; which are taken to be known and since in our
earlier papers it was always the sine function which was multiplied
by the unknown number.
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and nucleon-deuteron scattering with spin-dependent
forces. Similarly, if for the moment we introduce orbital
angular momenta, with or without spins, and if the
ground state of the target has a nonzero angular mo-
mentum and is therefore degenerate, there will be a
number of channels open even for E'=0 for a fixed total
angular momentum, corresponding to different angular
momenta of the incident particle and of the target, and
the above approach provides bounds on the threshold
reactance matrix provided the forces are of sufficiently
short range.

The determination of a bound on the error term is a
much more difficult matter for E')0, for in addition to
any discrete states which give a negative expectation
value of H —E, there will now be a contielgm of states,
or a number of continua of states, which give a negative
expectation value of H —E. More precisely, if as before
we have

rently being applied to the scattering of electrons by
hydrogen atoms.

Section 2 will represent a straightforward extension
of the projection technique to multichannel scattering
processes in which all of the allowed channels contain
only two systems. The interesting special case of scat-
tering at the threshold of a new channel will be studied
in Sec. 3; it will be shown there that a very useful simpli-
fication of the formalism is possible for this case. A
concrete method for the construction of the Green's
functions that appear in the formalism is presented in
an Appendix.

2. THE MINIMUM PRINCIPLE

I et I' be a projection operator which projects onto
all open channels and possibly some closed ones, and let
Q=1 P. We —then write

Ep,z—z&E&Ez~ (1.14) (H—E)+=0 (2.1)

there will be associated with H —E a total of S continua
whos@ lower limits, E~,—E for i =0, 1, , X—1, lie
below zero. The problem was first attacked by truncat-
ing the various potential and erecting potential bar-
riers, thereby eliminating the continuous spectra, but
other than for potential scattering the method is not
ordinarily a practical one. It was subsequently realized
that the projection technique of the formal theory of
reactions, ~ introduced to avoid the truncations of the
earlier formal reaction theory formulations, was pre-
cisely what was needed for a practical minimum
principle formulation for E')0, and the formalism was
presented for single-channel scattering. 4 The essential
feature was the replacement of the identity of Kq. (1.13)
by an identity in which the role of the error term
(Q, [H—E]Q) was played by

(QQ, Q[Se—E]QQ) = (QQ, Q[H —E]QQ)
+potential term, (1.15)

where Q is projection operator onto the excited states
of the target. The potential term does not change the
end points of the continuous spectrum, but the appear-
ance of the Q's causes the continuous spectrum of
Q[H —E]Q to extend not from Ere E to ~ but from-
Ez~—E to ~, so that, since we have E&E7~ by the
assumption that we are dealing with single-channel
scattering, there are no negative continuum contribu-
tions from (QQ, [H—E]QQ) and the situation for E')0
is then of precisely the same form, though algebraically
more complex, as that for E'=0. The formulation has
been applied to the single-channel scattering of
positrons by H atoms for angular momenta L=O, 1,
and 2, with extremely encouraging results, ' and is cur-

7 H. Feshback, Ann. Phys. (N. Y.) 5, 357 (1958);19, 287 (1962);
L. Fonda and R. G. Newton, ibid. 10, 490 (1960).

Y. Hahn, T. F. O' Malley, and L. Spruch (to be published);
C. Kleinman, Y. Hahn, and L. Spruch (to be published).

as

P (H E)P%=—PHQ%'—

Q(H —E)Q% = —QH~,
(2.2)

(2.3)

the formal solutions of which are

PC =E%~+PGrPHQ+,

Q%'= QG@QH~,

where

P (H E)2%P=0. —

(2.4)

(2.5)

(2.6)

G~ is defined by

G~=[P(E—H)P] ' (2.7)

and by boundary conditions which follow from taking
the asymptotic form of Kq. (2.4) and inserting the
asymptotic forms of P%' and of P%'~; G is defined by

G'=[Q(E—H)Q] ' (2.8)

and by boundary conditions which follow from studying
the asymptotic form of Kq. (2.5). Qe will not actually
need G@. Substitution of Kqs. (2.5) and (2.4) into Kqs.
(2.2) and (2.3), respectively, leads to

P (H+HQG@QH E)PC'= 0, —

Q(H+HPG~PH E)Q%'= QHP4—'P—(2.9)

(2.10)

The boundary conditions on the various functions are

Pq. +(p,/k;) "gr, (r) [a—, sin(k, q, +II)
+b, cos (k,q,+II)]/q, (2.11)

in channel i, with similar forms for ~"but with b;
replaced by b,", and

(2.12)

faster than 1/q, asymptotically as q, ~~. Multiplying

Kq. (2.2) by ~~, Kq. (2,6) by ~, subtracting, and
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X=Q[H+HPG~PH]Q (2 13)

From the standing wave boundary conditions for P%
as given by Eq. (2.11) and the similar form for Pql~,
the Green's function 6~ is clearly de6ned with the
principal value boundary condition and thus real and
symmetric. Consequently the resulting X is a real and
symmetric operator. (An elaborate and explicit discus-
sion for the case of single-channel scattering has been
given in Ref. 4.) We can therefore write

—2grh'(a bg —a bg~) =2(P@i',H(%)
+(& [X—E]&), (2 16)

where we have chosen that linear combination which is
stationary with respect to variations of ~.Introducing
the error function QQ, defined by

Qn=Qe, —Qq, (2.17)

where the trial function Qqrg vanishes for any coordinate
going to infinity, as does PI, there are then no linear
terms in QQ in Eq. (2.16), and we find

—2griss (a bg —a bg~) = 2 (Pq ~,HQe, )
+ (Q%'g, [X—E](%g)—(QQ, [X—E]QQ) . (2.18)

Since the continuous spectrum of K runs up to inanity
from a value greater than E, and since only diagonal
elements of X—E appear, the last term in Eq. (2.18),
the only term that cannot be calculated explicitly, can
be bounded by the same technique that was used in
our previous papers. If, in particular, X does not have
any (discrete) eigenvalues below E, X E is a non-—
negative operator and we obtain a bound on a bg by
simply dropping the term in 3C—E. More generally, if
K has X@ eigenvalues which lie below E, where X@

then depends upon E and upon 0, we must find X
orthonormalized functions C„&@which satisfy

(C.go, XC go) = h„gob„,

h.,~&E, 1&~, ~&+. (2.19)

We can then bound (QQ, [X—E]QQ), and we find

—2grh a Kga( —2grA'a. Kg a+2(QV&, HP@ )

+ (Q~g, [X-E]Q~g)
'

I (Qc. ', [[X—E]Q++QHP+ ])I'

n=1
(2.20)

integrating, we 6nd with the use of Green's theorem
that

—2grA'(a bg —a bg ) = (~ ,PH(%). (2.13)

Taking the inner product of Eq. (2.10) with 4, we have

(Qe [X E—]Qq)= (pear@ )
(2.14)=—(~ H@I )

where we have defined the operator X(E,e) =X by

Equation (2.20) is almost identical to the correspond-
ing equation for single-channel scattering, and the way
in which it will be used will be very similar. Once again
one will not normally know the value of X@,' and the
procedure will be to choose QV, to contain more and
more terms, ignoring the sum term, until one believes
that one has passed through the X@ decreases in the
right-hand side of Eq. (2.20). From this point on one
does have a rigorous bound on a Kga, and the bound will
then converge monotonically toward its final value. The
"best"4 choice for the variational parameters that
appear in the trial function is the choice which mini-
mizes —a Kga, though if we have not yet passed through
all of the K@ decreases, that is, if we are not yet on the
correct "branch, " there will be other choices of the
parameters which will, accidentally so to speak, give
estimates of the elements of Kg which lie closer to the
true values.

The vector a has thus far been completely arbitrary.
For the particular choice a=a(", where a&'& has the
components

a ('&=8" (2.21)

we immediately obtain a minimum principle for E&;;
from Eq. (2.20). We cannot however obtain a minimum

principle for any individual oB-diagonal element, though
we can of course obtain a minimum principle for various
linear combinations of elements. A minimum principle
for a particularly interesting linear combination, related
to the eigenphase shifts, can be obtained as follows.

Let PC ~(a"&) be the uniquely determined solution
of Eq. (2.6), with appropriate boundary conditions,
associated with a&'&. lt follows that

(at'i) ~. .[8,;sin(k, q, +0)+ ], q; —&m. (2.22)

Ke now define the vector

Pg =P, a&'V%i'(a&'&)

where the sum contains S terms, and choose

Pe'(a) =Pq a,

(2.23)

(2 24)

where a is arbitrary. P%'~(a) is then a solution of Eq.
(2.6), while asymptotically it approaches

2%P(a) ~ [u; sin(k;q;+t))+ ], q,
—+~ . (2.25)

g We showed previously (Ref. 4) that for the incident kinetic
energy sufficiently small X@was the difference between the number
of negative eigenvalues of H Erg and of P(H Era)P—, where P—
is the ground-state projection operator. This is a useful result since
the first number can be determined experimentally and the second,
which requires the analysis of only a one-body problem, theoretic-
ally. It should not be difBcult to obtain a similar result, expressing
K@ as the difference of two numbers, in the neighborhood of any
threshold. The result might not be as useful, however, since it
would no longer be possible to experimentally determine either
of the two numbers. On the other hand, it is possible that the num-
ber which is more or less impossible to determine by a direct theo-
retical attack would eGectively have been determined either theo-
retically or experimentally by a study of the scattering process at
energies below the given threshold energy.
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E%~(a) is then the solution of Eq. (2.6) appropriate
to the (arbitrary) vector a.

Correspondingly, let Q+&(" be some choice related to
a").QI, (') is not uniquely determined by the specifica-
tion of a "&. In general, one would choose some Q@i")
containing variational parameters and then determine
the parameters, not necessarily precisely, by trying to
minimize the right hand side of Eq. (2.20), with a= a "&.

We now define

uum virtual states, with variational parameters which
are to be adjusted to give the "best" possible results,
where "best" has the precise meaning noted above.
Thus, while the close coupling approximation is often
beset by slow convergence difhculties for electron hydro-
gen scattering in particular" and probably rather gen-
erally, no such difhculties should ordinarily attend a
minimum principle calculation.

and choose

Q( —P.a(o~ (o (2.26) 3. SIMPLIFICATION AT AN EXCITATION
THRESHOLD

Q'-I'g =Q(.a, (2.27)

where a is arbitrary. Equation (2.20) now becomes

—a Ega& —a K»ga,
where

—2~@K„—=—2~))gsKg P

+2(Q(»PX)+ (Q( L5('—&jQ()

'
I
(Qc'- ', I:I:&—&jQ(+QIIPxj) I'

n=l

(2.28)

(2.29)

where, though we have not made it obvious notationally,
each term in Eq. (2.29) is of course a matrix. We denote
the X (calculable) ordered real eigenvalues of the sym-
metric matrix K)gg by tan(&))g, —0) and the corresponding
real eigenvalues of the symmetric matrix Kg by
tan(r), —0).

Since a is arbitrary, and since K»g is independent of
a, Eq. (2.28) becomes

—Kg& —K)&g,

from which it follows that

tan(&), —0))tan(g)~, —0), s=1, 2, 1&&T. (2.30)

We note in passing that a comparable result can be
obtained given any X linearly independent vectors a
and their associated %~(a), the particular choice that
was made being simply the most convenient.

We close this section with a more general comment.
It should be clear that the basic result, Eq. (2.20),
can serve as a powerful tool in the anaylsis of the effects
of virtual excitation, with potentialities outside of the
domain of an approach such as the close coupling ap-
proximation. " More precisely, the eBects of virtual
excitation, which include through the 6~ term the con-
tribution of ~—~~, are taken into account through
the introduction of I/I, . Thus, as opposed to the close
coupling approximation, virtual excitation is accounted
for not by including the virtual states (and in particular
only the discrete virtual states) one by one, but, for
the introduction of each new term in PI, , by including
an arbitrary linear combination of discrete and contin-

The minimum principle formulation just described
requires the introduction of the projection operators
P and Q, where P must include all open channels. This
is also true, in particular, for single-channel scattering.
At E'= 0, however, it is unnecessary and therefore un-
desirable to introduce projection operators; as dis-
cussed in the Introduction, the original formulation,
valid at E =0, provides a minimum principle which is
much simpler to obtain. The relative merits at E'=0
of the formulations with and without projection oper-
ators, and the connection between them, is discussed in
Ref. 4.

The original (8'=0) formulation can be thought of as
containing projection operators, but with P=O and
Q= 1, that is, with P not containing the ground-state
channel. We will show in this section that an analogous
simplification is possible at any excitation threshold,
that is, at exactly that incident energy at which some
new channel (or channels) opens up, namely, that it is
then unnecessary (and generally undesirable) to include
in the P the state which has just opened up. The re-
duced dimensionality of P and hence of ~~ and even
more significantly of PG" effects a considerable
simplification.

Let the total energy E be exactly equal to E&z. There
are then X+1 open channels, the last of which is just
open. In view of the simplifying assumptions noted in
the Introduction, and in particular those related to spins
and angular momenta, the new channel is nondegener-
ate. (There would be no difficulty in extending the
formalism to include the degenerate case in which the
target state associated with the new channels has non-
zero angular momentum. The simplification achieved
in this case would be even more significant. ) The formal-
ism developed in the previous section requires the in-
clusion of the new channel in P. We will now modify
the treatment so that it will be applicable even though
the new channel is included in Q rather than in P.

Since one will ultimately be interested in making the
connection between the scattering at energies greater
than Ep~ and the scattering at E~~, we consider an
energy E just above Ez~—in particular, not enough to
open up the next channel —and go through a limiting
process in which k~ approaches zero. To obtain "ap-

"P. G. Burke and K. Smith, Rev. Mod. Phys. 54, 458 (1962). "P.G. Burke (to be published).
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propriate normalization" we set 8=0. The only dis-
tinction between the present situation and that con-
sidered in the previous section is that Q+, because it
now contains the new channel, here possesses non-
vanishing asymptotic components. More precisely, with
k& not zero, (% behave asymptotically as

as
P (H Er—//) Pq/ = P—HQ%',

Q (H Er—//) Q4 = QH—Pq/'.

(3.12)

(3.13)

The formal solution of these equations is then given by

pq. =pq. r+pGrpHQe, (3.14)
pI ~ (/1~/k~)'"1/r//(r) (a// sinks q~

+b// cosk//q//)/qx, q~ ~~ . (3.1)
Q@=Q% o+QGoQHPq, (3.15)

The asymptotic form of P4' in the ith channel, where we
where Pk'~ is that regular solution of

here restrict i to values from 0 to N —1, is given by P(H Er//)P—q. r=0, (3.16)

Pe ~ (/1,/k, )'/2gr, (r) (a, sink, q,

+b, cosk, q,)/q, , q, —+~ . (3.2)

As k~ approaches zero, the asymptotic form of PC
changes only in the replacement of k; by k,&, the
(nonzero) value of k, at E=Er//, but the asymptotic
form of PI approaches

Q+ ~ (/ ///k//)'"Pr//(r) (/1//k//q~+&~)/q~. (3.3)

a=~~/2~

where

The a; for 0&j&$ are arbitrary, and to simplify the
limiting process we introduce the vector a, with elements
a;, defined by

(3 4)

which behaves asymptotically as does ~, in Eq. (3.9),
but with b, replaced by b,r, while QV@ is that regular
solution of

Q(H —Er/v) QV@=0, (3.17)

which behaves asymptotically as does Qq, in Eq. (3.10),
but with b~ replaced by b~@. G and G@ are defined in
the usual way. It is an essential feature of the present
section that neither Q+& nor G@ need actually be con-
structed explicitly; they appear only in the formal
manipulations.

The substitution of Eqs. (3.15) and (3.14) into (3.12)
and (3.13), respectively, gives

P(H+HQG&QH Er//)Pq/= P—HQ'I/&, (—3.18)

Q (H+HPGrPH Er//) Q%' = —QHPq/r (—3.19)

kg g
g'/'

If now we multiply Eq. (3.12) by P+r and Eq. (3.16)
by P1t and subtract, integrate, and use Green's theorem,
we find

N

Similarly, we introduce the vector b, with elements b, ,
defined by

b =as—'/21,

and the threshold reactance matrix X, defined by

a.Ka=a. Ka.

(3.6)

(3 '7)

and that
5=Ka.

If we now let k~ approach zero, we have asymptotically

P% —& /1,1/2gr, (r) [a;(sink, /2 q,/k;/1 )
+b, cosk;11 q,]/q;, q, ~~, (3.9)

Q+ ~/ N'"Pr//(r) (a//qN+b//)/q//, q~ ~~ . (3.10)

It then follows, since there should of course really be
an adjoint on the left element of the dot product, that

~1/2+~1/2 or g ~—1/2K~ —1/2

—2~i22 Q'; (a;b; a~b, r) = (—P+r,PHQ+)
= (QHP@,Qe) = —(Q[x—Er/2]pI, Qq'), (3.20)

where in the sum i runs from 0 through S—1, we used
the fact that PHQ vanishes asymptotically to enable
us to move PHQ from the right to the ldt of the comma,
and where in the last step we used Eq. (3.19) and
introduced

X=Q(H+HPG PH)Q. —

We rewrite Eq. (3.20) as

(3.21)

—22rA2 P'; (a;b; a,b;r) =2(P4'r, P—HQq )

+(&,Q[&—E. jQ+) (3.22)

in order to make the right-hand side stationary with
respect to variations in ~, and introduce a trial func-
tion Pk& which is regular at the origin and which
behaves asymptotically as does Qq/, in Eq. (3.10), but
with b~ replaced by b~~. Defining the error function
QQ in the usual way as

(H—Er/1)%' =0 (3.11)

This completes the limiting process, and we are now
in a position to proceed, with the appropriate modifica-
tions, as in Sec. 2. %e rewrite

QQ—=Q%,—Q%,

the asymptotic behavior of QQ is given by

Qfl ~ / //"V r//(r) (b//1 bN)/qN. —

(3.23)

(3.24)
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Using the relationship

(QQ, Q[X—Er~]QC g)
—(Q%'„Q[X—E2 gg]QQ)

= 27''(a~b~ a—~b~g), (3.25)

which follows from Green's theorem and Eqs. (3.10)
and (3.24), Eq. (3.22) can be rewritten as

—2 xh'a Ka= —2sh'(Q' a,b,p+argbNg)

+2(~~,PHQ+g)+ (+kg, Q[X—E~](N'g)
—(QO, Q[X—E~]QQ), (3.26)

where the threshold reactance matrix K is defined by

a Ka= P'; a—,b,+a&b~= ab.— (3.27)

The identity given in Eq. (3.26) is exactly of the
form which makes it possible to provide a minimum
principle for a.Ka and therefore for K. If, for example,
there are no discrete eigenvalues of K below' Ez~—the
continuous spectrum of this operator starts at Ez~-
the only unknown term in Eq. (3.26), the last (second-
order error) term, is greater than zero and we obtain a
minimum principle for a Ka by simply dropping the
error term. Notice that the sign of the error term is
known only because we used "appropriate normali-
zation" so that QQ had the asymptotic behavior given
by Eq. (3.24). Had we used 0=-', gr rather than 0=0, the
asymptotic forms of Q+ and of Q%'g would be altered
with the consequence that the asymptotic form of QQ
would be proportional to ggf r~(r) rather than it r~(r)/q.
The information that 3C had no eigenvalues below Ez~
would Not then be enough to determine the sign of the
error term nor therefore to provide a minimum
principle. '2

If BC has a number of eigenvalues below E~N, we
must go through the usual "subtraction" procedure.

The threshold energy dependence of the usual reac-
tance matrix I follows immediately from a knowledge
of the threshold reactance matrix K, for Eq. (3.8) can
be rewritten as

K'f (~ NllspjN1/2K', )+.. . , spell)

K N=K~ = (k ~'"K ~)kgb"+ iAS
KÃN (KrrN)~N+ ' ' '

~

APPENDIX A: A CONNECTION BETWEEN
THE MINIMUM PRINCIPLE AND A

VARIATIONAL PRINCIPLE

It is of interest to see the connection between Eq.
(2.20) and the simple variational expression which
follows from the identity, Eq. (1.5),

—a Ka= —a Kggga+(4g, [H—E]4'g), (A1)

"The choice 8=0 is essential in order to obtain a minimum
principle at threshold. However, it is more convenient to choose
e=sggr for the study of reactance matrix near a resonance. LSee
for example, G. L. Shaw and M. H. Ross, Phys. Rev. 126, 806
(1962).jThe difference of —,gr in the choice of 8 is a reflection of the
fact that the difference in the phase shifts at threshold and at
resonance is —',gr (mod gr).

where +& is a trial function which satisfies boundary
conditions of the form given by Eq. (1.1). (We use the
tilde here in order to distinguish between the trial
function +& to be inserted into the variational principle
and the trial function +„or rather Q+„ to be inserted
into the minimum principle. ) Consider the particular
choice

4'g=P4'P+G~PHQC +~„(A2)
which satisfies the required boundary conditions and is
in fact suggested by the exact relationship

4=Pk+Q%'= P% +6 "PHQ@+Q@. (A3)

With the insertion of Eq. (A2) into Eq. (A1), we re-
produce the first three terms of the right-hand side of
Eq. (2.20). We can reproduce the fourth term of Eq.
(2.20) by choosing"

4g=P+~+G~PHQ+g+Q+g+ P b„QC „go, (A4)
1

where the variational parameters b„do not appear in
Q+g nor in the C„, , inserting this choice of 4g into
Eq. (A1), and setting the variation with respect to the
b„equal to zero.

4g as given by Eq. (A3) or (A4) represents an itera-
tion on %g. For the same trial function, Eq. (2.20) will

therefore generally give a better result than will Eq.
(A1), but of course Eq. (2.20) is much more difficult to
apply. For the particular case of zero incident energy,
where the potentials need not be truncated, it is
preferable to use the result obtained previously, ' which
is just Eq. (A1) with the subtraction terms. Examples
of multichannel scattering processes which should be
attacked by the older formulation are the zero-energy
scattering of nucleons by deuterons or by protons. In
the latter case the approach of Sec. 2 is not even appli-
cable because we do not then have scattering by a
compound system.

APPENDIX B: CONSTRUCTION OF THE GREEN'S
FUNCTION, PG"

I,et P be the projection operator onto the M-dimen-
sional space which includes all Ã open channels and
M—X closed channels. We here assume that the various
particles are distinguishable. We furthermore restrict
ourselves to excitation, that is, we exclude rearrarige-
ment collisions. The problem is to construct PG",
denoted by PG in this Appendix, which is defined by

P(H E)PG= P, — —
and by the appropriate boundary conditions. (Through-
out the Appendix we will not actually specify the bound-
ary conditions, which depend upon whether the various
channels are open or closed, although they are necessary
to uniquely define the different Green's functions. )

'3 The situation is very similar to that for B'=0. See the third
paper of Ref. 1.
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P, (H E)P,G,=— P, , — (83)

P, (H E)P,G—,= P;, — (84)

respectively. G, is the Green's function for an ordinary
differential equation and its numerical determination is
therefore a simple matter, and will henceforth be as-
sumed to be known.

G;, G; and G are similar to one another in that they
are the Green's functions for 1, M—1, and M channels,
respectively. Our expression for G will be recursive in
nature, involving G;, and certain readily constructed
Green's functions, including G,. I.et us then assume that
G; is known.

Since P=P,+P;, Eq. (81) can be rewritten as a
set of coupled equations for P,G and P,G

We also introduce the projection operators P, and P;
which project onto the ith target state and all but the
ith target state, respectively, that is,

P P, =P,el, P=Q' P;, P,=P P,—, (82)

where here and throughout Appendix 8 all indices take
on 3II values. (To consider rearrangement collision, we
would have to deal with elementary projection operators
P; which were not all orthogonal. ) We further introduce
the associated Green's functions G; and G, defined by

The solution of Eqs. (87a) and (87b) is then given
by

P,G=P,g;+P,g;P;HP,G „
P,G =P,g,+P,Q,P;HP,G, .

Ke can now write

PG =P,G+P,G,

(810a)

(810b)

(811)

where j=2 if i = 1 and j= 1 if i =2, where we have used
the fact that for the two-channel case G;=G, and
P;=P, , and where G; and g; are defined by

but this is only a formal solution since Eq. (810b)
for P,G involves the g; whose determination we would
prefer to avoid. Ke can however write

PG=Q'P,G=P' [P;g,+P,g,P;HP,G,j, (812)

where the sum includes M terms. The determination of
the M-channel Green's function, PG, has thus been
reduced the determination of the M different M—1
channel Green's functions, P,6;, and of the M simple
Green's functions P,g;.

For the two-channel case we have, in particular,
labeling the target states 1 and 2,

(813)
PG= Q [P,g;+P,g,P,HP;G; j,

P; (H E)P,G = —P; P;HP—,G,— (85a)

P, (II E)P G= P—, P,H—P,G. —(85b)

The formal solution of these equations is given by

P (II E)PG = —P-
P,(H+HP, G,P;H E)P;g,= —P, . —

In the more transparent matrix form, we have

(814)

(815)

P,G =P,G;+P,G;P;HP,G, (86a)

P,G= P,G,+P,G;P;HP,G. (86b)

Substitution of Eqs. (86a) and (86b) into Eqs. (BSb)
and (BSa) respectively, leads to zzzzcompled equations for
P,G and P,G
P,LH+HP, G „P,H EjP,G-

P, P,HP,G;, (—87a)—

P,[II+HP,G,P;H EjP,G-
P, P;HP,G,—. (8—7b)

We now introduce two new Green's functions, g; and

g „defined by

P;[H+HP,G;P,H EjP,g, = P; —(88)—
and

P,t H+HP, G,P,H E]P,g,= P;, —(89)—
respectively. Since G; is known by assumption, P,g;
is the Green's function of an ordinary integrodifferential
equation and can therefore be readily constructed
numerically. g, on the contrary is the solution of a set
of M —1 coupled equations whose construction it would
be very desirable to avoid. Ke will show in fact that it
is not necessary to determine the g;.

PG= PGP

PlglPl PigiPiHPzGzPz)
(816)

PzgzPz

The Pauli case, which requires some modifications, will
be treated in the course of an actual application.

APPENDIX C: A CONNECTION BETWEEN MINI-
MUM PRINCIPLES AT AND ABOVE

THRESHOLD ENERGIES

As in Appendix A, a connection between the two
forms of minimum principle for energies at and above
the new excitation threshold can be easily shown by
constructing a suitable trial function @Pl. For 1V+1
open channels, we define the projection operators

P=Po+Pl+ +P x i+Px=P x—+-Ar, (C1)—

Q=1 P=Q zr Pzz— -—(C2)

The two minimum principles derived in Secs. 3 and 2

can then be rewritten as

—a b& a~ b zz~ ~ a~ b~—l+2(Q zz@l,HP—zz+ ")
+(Q ~4„[H E»+HG HjQ e,), —(C3)—
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and

—a.b& —a b +2(Q%'t, HPk' )
+(ge„(H Z,—~+HG H]~,), (C4)

where we have neglected the possible subtraction terms
for simplicity. LUsually Eq. (C4) contains fewer sub-
tractions than Eq. (C3). When there are infinite
number of resonances below the Xth threshold, thus
requiring an infinite number of subtractions in Eq.
(C3), then Eq. (C3) would no longer be useful. ]

Now, from the exact form of the solution 0' given by

4=Pk"+G~HPP+Q+
=P N% +—P1r+ +g trHQ+—+QNHQ+

+G ~HgtrH(%+GtrHg AH(%+Q%', (C5)

it is possible to construct a function Q ~%t of the form

Q or%—=Ptr+e+~e
=Ptr+~+towH~t+&Hg NH-~~+~t (C6)

Substitution of Eq. (C6) into Eq. (C3) and simplifying
the resulting expression, one obtains Eq. (C4). The
calculation is tedious but perfectly straightforward,
and the followj. ng relations prove useful:

G =g tr+G —xH'Btr+GzrHB zr+tdtr) (C7)

a ~ b ~' "=tt -~ b x'+(P ~+' "HP-~+'), (Cg)

atr btrt=tstr bN +(Ptr+t)HP z% )
+ (Ptr%'~, [H Ez tr]—P~%'t), (C9)

cJtrHG tr=GNHg tr, (C10)

G tr —g ~= G AH—GtrHg tr. (C11)
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Measurements that are of limited accuracy, are incomplete, or require a finite time to make do not
generally permit one to construct a wave function for describing a physical system. The use of such partial
information to predict the results of subsequent measurements is studied here. There are several practical
applications of this problem, including the use of the autocorrelation function for a particle counter in a
scattering experiment.

I. INTRODUCTION

' tT is customary in the pedagogical development of
quantum mechanics and field theory to mention the

limitations on correlated measurements of observables
at different space-time points. Little attention has been
given, however, to actual experiments for making such
observations, or their usefulness. In this paper and in a
subsequent one, we shall discuss both of these subjects
from a general point of view and with particular appli-
cations to scattering processes.

This work. is an outgrowth from a recent paper on the
correlated counting rate of two detectors recording
partides scattered from a target. ' There it was shown
that by such an observation both the magnitude and
phase of a scattering amplitude can be determined. Such

*This work was supported in part by the U. S. Atomic Energy
Commission and in part by a grant from the U. S. Air Force.

' M. L Goldberger, H. W. Lewis, and K. M. Watson, Phys. Rev.
132, 2764 (1963).

an observation of spatial correlations is only one of a
much broader class of experiments to measure time and
space-time correlations in a particle beam. For example,
as we shall show in a subsequent paper, the time-
dependent autocorrelation function for a single counter
can provide information on the coherence of, say, a
laser beam. ' If a beam has been scattered, the auto-
correlation function yields a measure of relaxation
processes in the target.

In this paper we make some general comments on the
theory of measurement for quantum-mechanical sys-
tems and illustrate the theory with some conceptually
simple examples: (a) measurement of the spin of either
one of two interacting particles at a time t2 following the
measurement of the spin of one of them at an earlier
time t&, and (b) the theory of intensity correlations of
the Hanbury Brown- Twiss variety.

~See, for example, C. H. Townes and R. Serber, Qmantlns
Electronics (Columbia University Press, New York, 1960), p. 233.


