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Feynman Rules for Any Spin. II. Massless Particles*
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The Feynman rules are derived for massless particles of arbitrary spin j.The rules are the same as those
presented in an earlier article for m) 0, provided that we let m —+ 0 in propagators and wave functions, and
provided that we keep to the (2j+1)-component formalism Lwith Gelds of the (j,0) or (0,j) type/ or the
2(2j+1)-component formalism Lwith (j,0) 8(0 j) Geldsg. But there are other Geld types which cannot be
constructed for m=0; these include the (j/2, j/2) tensor fields, and in particular the vector potential for
j=2. This restriction arises from the non-semi-simple structure of the little group for m=0. Some other
subjects discussed include: T, C, and P for massless particles and 6elds; the extent to which chirality con-
servation implies zero physical mass; and the Feynman rules for massive particles in the helicity formalism.
Our approach is based on the assumption that the S matrix is Lorentz invariant, and makes no use of
Lagrangians or the canonical formalism.

I. INTRODUCTION

HIS article will develop the relativistic 6eld theory
of massless particles with general spin, along the

lines followed in an earlier work' on massive particles.
Our chief aim is, again, to derive the Feynman rules.

Ke assume that the 5 matrix can be calculated from
Dyson's formula

s= p
n=o g I

Here, X(x) is the interaction energy density in the
interaction representation. In general, it would be the
00 component V"(x) of a tensor 9"&"(x), but in order
that 5 be Lorentz-invariant it is necessary that 9"&"(x)
be of the form

with X(x) a scalar. Lorentz invariance also dictates that
X(x) commute with X(y) for x—

y space-like, in order
that the 0 functions implicit in the time-ordered product
in (1.1) not destroy the Lorentz invariance of S.

We also assume that X(x) is built out of the creation
and annihilation operators of the free particles appear-
ing in the unperturbed Hamiltonian. In order that X (x)
transform properly we construct it as an invariant
polynomial in various free fields lt „(x),which behave as
usual under translations, and which transform according
to various representations of the homogeneous Lorentz
group

In order that X(x) commute with itself outside the
light cone, we require that the P„(x) have causal
commutation or anticoynmutation rules: for x—y space-
like,
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These assumptions will be sufficient for all our pur-
poses. In particular, we will have no need of Lagrangians
and the canonical formalism, nor will we need to start
with any preconceptions about the form or even the
existence of the 6eld equations.

Ke begin in Sec. II with a review of the transforma-
tion properties of massless particle states and creation
and annihilation operators. This information is used in
Secs. III and IV to construct (2j+1)-component fields

d'x~T(X(xi)' ' X(xn)). (1 1) transforming according to the (j,0) and (0,j) repre-
sentations. Condition (1.4) is used in Sec. V to complete
the construction of the 6elds, and to prove the spin-
statistics theorem and crossing symmetry. The Feynman
rules are presented in Secs. VI, VII, and VIII. The
inversions P, C, and T are discussed in Sec. IX.

In Sec. X we attack a separate problem: To what
extent does chirality conservation guarantee the exist-

V'~ (x)=-gs X(x), ence of a particle of zero physical mass? Our conclusion
[for general j~-,') is that this theorem can probably
only be proved in the context of perturbation theory.
But if parity as well as chirality is conserved, then it is
possible to prove the nonexistence of a nondegenerate
particle of finite mass.

The chief conclusion of this work is that the Feynman
rules for massless particles in the (2j+1)-component or
2(2j+1)-component formalisms are precisely the same
as for m) 0, except, of course, that we must pass to the
limit m ~ 0 in wave functions and propagators. ' In this
limit it becomes impossible to produce or destroy
particles with helicity other than &j.

But there is still one important qualitative distinction
p'[g)p„(x) f/p) —i= Q D„p—i)lf (px) (1 3) between ris =0 and ns) 0. We prove in Sec. III that not

all of the 6eld types which can be constructed out of the
creation and annihilation operators for m&0 can be so
constructed for m=0. Specifically, the annihilation
operator for a massless particle of helicity X and the

2This conclusion is in agreement with the theorem that the
decomposition of the S matrix into invariant amplitudes takes the

[lt'„(x),P„(y)]~=0. (1 4) same form for m=0 and m)0, proven by D. Zwanziger, Phys.
Rev. IBB, B2036 (2964}.Neither Zwanziger's work nor the present
article oQ'er any understanding of the fact that photons and
gravitons interact with conserved quantities at zero-momentum
transfer. This point will be the subject of further articles, to be
published in Phys. Letters and in Phys. Rev.

B882



F EYN MAN RULES. FOR ANY SP I N. I I. MASSLESS PARTI CLES B883

II. TRANSFORMATION OF STATES

The starting point in our approach is a statement of
the Lorentz transformation properties of massless par-
ticle states. The transformation rules have been com-
pletely worked out by Wigner, 5 but it will be convenient
to review them here, particularly as there are some little
known but extremely important peculiarities that are
special to the case of zero mass.

Consider a massless particle moving in the s direction
with energy ~. It may have several possible spin states,
which we denote ~'A), the significance of the label X to be
determined by examining the transformation properties
of these states. Wigner defines the "little group" as the
subgroup of the Lorentz group consisting of all homo-
geneous proper Lorentz transformations (R&„which do
not alter the four-momentum k& of our particle.

S~ k"=k~ (2.1)

creation operator for the antiparticle with helicity —A

can only be used to form a field transforming as in (1.3)
under those representations (A,B) of the homogeneous
Lorentz group such that X=8—A. This limitation
arises purely because of the non-semi-simple structure of
the little group for srr=0. The difhculties (indefinite
metric, negative energies, etc.) encountered in previous

attempts to represent the photon by a quantized vector
potential 3"(x) can therefore now be understood as due
to the fact that such a field transforms according to the
(-', rz) representation, which is not one of the repre-
sentations allowed by the theorem of Sec. III for
helicity X= &1. On the other hand, the (j,0) and (0,j)
representations used in this article (corresponding for
j= 1 to the field strengths) are allowed by our theorem,
and they cause no trouble. ' In a future article we shall
show that it is in fact possible to evade our theorem,
and that the Lorentz invariance of the S matrix then
forces us to the principle of extended gauge invariance.

In Ref. 1 we gave the Feynman rules for initial and
final states specified by the s components of the massive
particle spins. In order to facilitate the comparison with
the case of zero mass, and for the sake of completeness,
we present in Sec. VIII the corresponding Feynman
rules in the helicity formalism of Jacob and Wick. ' The
external-line wave functions are much simpler, though
of course the propagators are the same.

The states ~X) must furnish a representation of the
little group. That is, the unitary operator U[(R] corre-
sponding to 6I,&, does not change the momentum of the
states ~X), and thus must just induce a, linear trans-
formation:

U[0l]~) )=P d,.&[(R]~) '), (2 3)

with
2 d) x-[04]&v ), [(Rs]=@i,[%@s]. (2.4)

Therefore, we can catalog the various possible spin
states iX) by studying the representations d[$] of the
little group.

This is most easily accomplished by examining the
infinitesimal transformations of the little group. They
take the form

(Ro,=bio, +Qo„, (2.5)

where Qi", is infinitesimal and annihilates k:

Q~,k"=0. (2.6)

In order that (2.5) be a Lorentz transformation we must
also require that

Q~"= —Q"~
7 (2.7)

the index v being raised in the usual way with the metric
tensor gi"", defined here to have nonzero components:

gll g22 g33 f gpp (2.8)

Inspection of (2.6) and (2.7) shows that the general Q""
is a function of three parameters 0, Xl, X2, with nonzero
components given by

Q12 Q21 —0 (2 9)

Qlp= —Qpl=Q»= —Q»= X,1) (2 1o)

Q20 Q02 —Q23 — Q32 (2.11)

The Lie algebra generated by these transformations can
be determined by recalling the algebra generated by the
full homogeneous Lorentz group, of which the little
group is a subgroup. An infinitesinial Lorentz trans-
formation A"„can be written as in (2.5), with Q", subject
only to (2.'7). The corresponding unitary operator takes
the form

k'= k'=0 k'= k'= ~. (2.2) U[1+Q]= 1+(i/2) Q& J„r (2.12)
' As a case in point, there does not seem to be any obstacle to the

construction of field theories for massless charged particles of
arbitrary spin j, provided that we use only proper 6eld types, like
(j,0) or (0,j). The trouble encountered for j~1 by K. M. Case
and S. G. Gasiorowicz LPhys. Rev. 125, 1055 (1962)j, can be
ascribed to their use of improper field types, such as (-,', —',).We plan
to discuss this in more detail in a later article on the electro-
magnetic interactions of particles of any spin.

4 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959).
E. P. Wigner, in Theoretica/ Physics (International Atomic

Energy Agency, Vienna, 1963), p. 59.

JPV= —JPP= Jg.t. (2.13)

Ji 2 &ij kJj k y (2.14)

E.=J 0= —Jp ~ (2.15)

It is conventional to group the six components of J„„
into two three-vectors:
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with commutation rules

[J,,J,]=i e;, I,JI„

[J,,K;]=i e,, iKi,

[K,,K,]= ie;;iJg, .

(2.16)

(2.17)

(2.18)

We see that the unitary operator corresponding to the
general infinitesimal transformation (2.9)—(2.11) of the
little group is

U[(R(g, x,,xg)] = 1+igJi+iXiLi+iX,Lg, (2.19)

where
(2.20)

(2.21)

The commutation rules for the three generators of the
little group are given by (2.16)—(2.18) as

[J,,L,]=iL„
[Jg,Lg]= —iLi,

[Li,Li]=0.

(2.22)

(2.23)

(2.24)

We can now find all the representations of the little
group by finding the representations of this Lie algebra.
But it strikes one immediately that this algebra is not
seyni-simple because the elements L~ and L~ form an
invariant Abelian subalgebra. [In fact, Wigner points
out that (2.22)—(2.24) identify this algebra as that of all
rotations amd traeslatioes in two-dimensions, a fact of
no known physical significance. ) In order that the states

1» form a finite set, it is necessary to represent the
"translations" by zero, i.e.,

L, 1»=L,1»=0 . (2.25)

Therefore, a general 6P„ in the little group transforms

1» into
U[$]1&)= exp{zO[(R]A}1&), (2.26)

the angle 0'[(R] being some more or less complicated
real function of the 6I,&„) which is given for infinitesimal
(R by (2.19) as

O[e.(e,x„x,)] (2.27)

If we now identify the states 1» as eigenstates with
definite helicity ),

(2.28)

we see that the physically permissible irreducible repre-
sentations of the little group are all one dimensional:

U[6t]1))=exp{@0[61]}1». (2.29)

Comparing with (2.3) and (2.4) shows that 0' must
satisfy the group property

0'[i]+ o'I ~] = 0[6ti61~] (2.30)

For global reasons it is necessary to restrict the
helicity P to be a positive or negative integer or half-
integer &j.We de/me a right- or left-handed particle of

spin j~0 as one with helicity lI. equal to +j or —j,
respectively.

It is, of course, very well known that a spinning
massless particle need not occur in snore than one spin
state (or two, if parity is conserved). The restriction
(2.25) is much less familiar, but we shall see that it is
responsible for the dynamica/ peculiarities of massless
particle field theories.

A particle of general momentum p and helicity X may
now be defined by a Lorentz transformation

I y,»= [~/I y I]'"U[&(y)]I », (2 31)

where U[Z (p)] is the unitary operator corresponding to
the Lorentz transformation 2,"(p) which takes our
"standard" four-momentum k& into p&:

p~= z~ (y)k"

p~= (y, 1p1}; k~= {0,0,~,~,}. (2.32)

There are various ways of making the definition of 2 (p)
unambiguous, but we will find it convenient to define 2

&" (p) =R" (p)~".(1 y 1 ) (2.33)

Here, B(1p1) is a "boost" along the s axis with nonzero
components

&' (Iy I) =&' (I p1) =1,
~'~(l y I) =~'o(I y I ) =cosh'(l y ), (2 34)

~'o(I y I) =~'i(l y I) =»nhe(ly1),
e(l p I )—=»(I p I /~) (2.35)

Since B&„takes k" into {0,0, 1y1, 1p1},we choose R(p) as
the rotation (say, in the plane containing p and the s
axis) which takes the s axis into the unit vector
p=p/1y1. The factor [~/1p1]'" is inserted in (2.31) to
keep the normalization conventional,

(y', X'1p,»=P (y —p') 5ii. . (2.36)

Having defined helicity states of arbitrary momentum
in terms of states 1li) of a fixed standard four-momentum
k&, it is now quite easy to find their transformation
properties. A general Lorentz transformation A&„, repre-
sented on Hilbert space by a unitary operator U[h],
will transform 1p,X) into

U[h]1p,7)
=[/I pl] "U[h]U[~(y)]1»
= [~/1p1]'"U[Z(hp)]U[Z '(hy)hz(p)]1». (2.37)

But the transformation 8 '(hp)hZ(p) leaves k& un-

changed, and hence belongs to the little group. Equation
(2.29) then lets us write (2.37) as

ULh]lp, »= [./Ipl] "
Xexp{iXO[Z—'(hp)hZ(p)]} U[Z(hp)]1»,

and finally

ULh] I y,»= [1hy I/I yI]'"
Xexp{iXO[Z—'(hy)hz(p)]}1hp, ». (2.38)
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III. A THEOREM ON GENERAL FIELDS

As a first step, let us try to construct the "annihilation
fields" P„&+&(x; ),), as linear combinations of the annihi-
lation operators u(p, )t), with fixed helicity )t. We require
that the g„'+' transform as usual under translations

i[P„,Q„&+&(x; ).)]= r)„P„&+&(x; )~) (3 1)

and transform according to some irreducible represen-

It is not so obvious what is meant by a massless particle being
its own antiparticle. If charge conjugation were conserved, then
we would call a particle purely neutral if it were invariant (up to a
phase) under C. But if we take weak interactions into account then
only CP and CPT are available, and they convert a particle into
the antiparticle with opposite helicity. For massless particles there
is no way of deciding whether a particle is the "same" as another
of opposite helicity, since one cannot be converted into the other
by a rotation. This point has been thoroughly explored with regard
to the neutrino by J. A. McI ennan, Phys. Rev. 106, 821 (1.957)
and K. M. Case, ibid. 107, 307 (1957). See also C. Ryan and S.
Okubo, Rochester Preprint URPA-3 (to be published). Even if a
massless particle carries some quantum number (like lepton
number), we can still call it purely neutral if we let its quantum
number depend on the helicity; however, in this case it seems more
natural to adopt the convention that the particle is different from
its antiparticle, with b(p, X) Ng(p, X).

A general state containing several free particles will
transform like (2.38), with a factor [I

y'
I / I y I

]U'e'8" for
each particle. These states can be built up by acting on
the bare vacuum with creation operators u*(y,)t) which
satisfy either the usual Bose or Fermi rules:

[~(p,)t),~*(p',) ')]~=&.i ~'(p —p'), (2 39)

so the general transformation law can be summarized
in the statement

L'C~] *(p ) )U-'C~]=[I~pl/lpl]'"
Xexp fi)tO~[Z '(Ap)h Z(p)]}a*(ay,)~) . (2.40)

Taking the adjoint and using the property [see (2.30)]

O[R]= —O[R-'] (2.41)

gives the transformation rule of the annihilation
operator

IJC~] (y)t) fJ 'C~]= [I~Pl/lyl]'"
Xexp{i)to~[Z—'(y)h —'p(AP)]}a(AP, X). (2.42)

We speak of one massless particle as being the anti-
particle of another if their spins j are the same, while
all their charges, baryon numbers, etc., are equal and
opposite. Whether or not every massless particle has
such an antiparticle is an open question, to be answered

affirmatively in Sec. V. But if an antiparticle exists,
then its creation operator b*(p,)t) will transform just
like a*(y,)), and b*(p, —)t) will transform just like

a(p, )~):

L'C~]f*(y, —))~ 'Ci1]=CI~PI/Ipl]'"
Xexp(i)to[2 '(y)h. 'g(AP)]}b*(AP, —X). (2.43)

If a particle is its own antiparticle, ' then we just set
b(p, )t) =a(y, )t).

It is well known that the various representations
DCA.]can be cataloged by writing the matrices J and X,
which represent the rotation generator J and the boost
generator K as

J=A+8; X= —i(A —8). (3 3)

Since J and K satisfy the same commutation rules
(2.16)—(2.18) as J and K, the A and 8 satisfy decoupled
commutation rules

AXA=iA; BXB=iB,
[e,,5~;]=0.

(3.4)

The general (2A+1) (28+1)-dimensional irreducible
representation (A,B) is conventionally defined for inte-
ger values of 2A and 28 by

A a b, a' b' fJb b'& a a' (A)

Bab, a'b' fJaa'& bb' (&)
(3.5)

where a and b run by unit steps from —A to +A and
from 8 to +8—, respectively, and Jti& is the usual
2j+1-dimensional representation of the angular mo-
mentum

[Ji&"ai J2& '].,=6. ..~i[(jW~) (j+o+1)]'",
(3.6)[J,(ii]., =oui, ,

For massive particles of spin j, we have already seen
in Sec. UIII of Ref. 1 that a field f&+& (x) can be con-
structed out of the 2j+1 annihilation operators a(y, o),
which will satisfy the transformation requirements (3.1)
and (3.2), for any representation (A, B) that "contains"
j, i.e., such that

j=A+8 or A+8 1or or IA—Bl . (3.7)—
[A spin-one field could be a four-vector (-', t2), a tensor
(1,0) or (0,1), etc.]We might expect the same to be true
for mass zero, bit this is rot the case. We will prove in
this section that a massless particle operator a(p, )i) of
helicity X can only be used to construct fields which
transform according to representations (A, B) such that

8—A =X. (3.8)

For instance, a left-circularly polarized photon with
)t= —1 can be associated with (1,0), (2,-', ), (2,1), . . .
fields but not with the vector potential (—',P), at least
until we broaden our notion of what we mean by a
Lorentz transformation. It will be seen that the restric-
tion (3.8) arises because of the non-semi-simple structure
of the little group.

tation D[A] of the homogemeotts proper orthochronous
Lorentz group '.

V fags„&+&(x ))VP]-i

=Q D [h. ']P &+&(Ax )) (3.2)
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D[IR(e,x„x,)]=1+icy,+ix, (x,—g,)
+ix, (x,+g,), (3.16)f &+&(x X)=

(27r)'~' or, using (3.3),

The condition (3.1) requires that P„i+& be constructed matrix representatives J and X:
as a Fourier transform

X e'&'a(p X)N„(p X) (3.9)
[2IPI]'"

the factor (2~) '~'[2I pI] '~' being extracted from the
"wave function" e„(p,X) for later convenience. The
condition (3.2) together with the transformation rule

(2.42) then requires that N„(p,X) satisfy

expfiXO[Z '(p)A 'Z(Ap)]}u (p,X)

=Q D„[A. ']u (Ap, X). (3.10)

We will now show that this determines m (p,X) uniquely.
In particular (3.10) must be satisfied if we choose

p= k—= (0,0,~};A.=z(q),

[83+$3]up) =Au(X),

[O', i—ieg]u(), ) =0,

[e,+ill, ]~( ) =0.

(3.18)

(3.19)

(3.20)

Of these three conditions, (3.18) could certainly have
been anticipated as necessary to a field of helicity X. The
other two arise from the detailed structure of the little
group, but are equally important, for they force e(X) to
be an eigenvector of 83 and $3, with

D[61 (e,x,, x,)]= 1+i'(O;,+e,)+ (x,+ix,) (O,,—in, )
+ (x,—ix,) (5l,+i5l,) . (3.17)

Recalling from (2.22) that 0'-+ 0, our condition (3.13)
is now split into three independent conditions:

vrhere q is some arbitrary momentum. In this case (3.10)
reads

83Ã(X) = —2 ll(X),

(83N(X) =+BI(X),

(3.21)

(3.22)
N, (q,X)=g D, [z(q)]u (X), (3.11)

or more explicitly

where I P,) is the wave function for our "standard"
momentum k

I (X)=u„(k,X).

(3.23)

Using (3.18) now gives the promised restriction on A

and B.
(3.8)rf+8 X.

Insertion of (3.11) into both sides of (3.10) shows that
(3.10) is satisfied by (3.11) if and only if the Nm(X) For a left-handed particle with ) = —j, the various
satisfy possible fields are

exp f iXO[Z-'(p) A-'Z (Ap) ]}QD„„[Z(p)7u„())

for any Lorentz transformation R of the form

61= Z—'(p)X-'Z(Xp) (3.14)

But these R's, for general p and A, just constitute the
little group discussed in Sec. II. In order that (3.13) be
satisfied for all such N. it is necessary and sufhcient that
it be satisfied for all infinitesimal transformations

tR~„=b~„+0~„(0,x„x,), (3.15)

the nonvanishing components of 0 being given by
(2.9)—(2.11).The matrix D[R] corresponding to (3.15)
is obtained by replacing J and K in (2.19) by their

or in other words, if and only if

P D„[(R]e (X) = exp(iXO[(R]}u„(X) (3.13)

[left] (j,0), (j+-', , -', ), (j+1,1), , (3.24)

while a right-handed particle with X=+j can be as-
sociated with a fieM transforming like

[right] (0,j), (-,', j+i), (1, j+1), (3.25)

If parity is conserved, then the particle must exist in
both states ) = &j, and the field must then transform
reducibly, for example, like (j,0) Q+ (0,j).

Our theorem certainly applies to the ie and out fields,
since they are constructed just like free fields. It must
then also apply to the Heisenberg representation field
that interpolates betweenie and out fields if we insist
that they all behave in the same way under Lorentz
transformations. Furthermore, the only "M functions'"
that can generally be formed from the Smatrix are those
corresponding to the representations (3.24) and (3.25).

In a forthcoming article we shall see what goes wrong
when we try to construct a field with 3 and 8 vio-
lating (3.8).

7 H. Stapp, Phys. Rev. 125, 2139 (1962); A. O. Barut, I.
Muzinich, and D. N. Williams, ibid. 130, 442 (1963).
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~,(+) (x) =
(2sr) 't' [2 I p I

)its

X '" *D.-"'C~(p)] (p, j), —(4 1)

1 d'p
X,(+)(x) =

(2 )'" [2lpl]'"
Xe"*D.;&"CZ(p))&s(p, j), (42)

and they transform according to

UCA)q. (+) (x) U 'CA]=g D..&')[h. ')p. &+&(Ax), (4.3)

U[A)X.(+)(x)U 'CA)=P D .&t)[A—')X .&+&(Ax) (44)

Here D&'&[A) and D&»[A) are the nonunitary (2j+1)
X (2j+1)-dimensional matrices corresponding to h. in
the (j,0) and (O,j) representations, respectively. They
are the same as used in Ref. 1, and can be defined by
taking $=0 or 8=0, or, equivalently, by representing
the generators J, K with

D(i) J—J(i) I&,
— sJ(»

D&» J=J(» ~=+sJ(»
(4.5)

(4 6)

where J"' is the usual spin-j representation of the
angular momentum, de6ned by (3.6). In particular, the
transformation Z(p) de6ned by (2.33) is represented on
Hilbert space by

U[~(p)]= UCR(P)] exp{—W(l pl)&s}, (4.7)

0 (I p I)=»[I I I/u), (2.35)

and therefore the wave functions appearing in (4.1) and
(4.2) are

D..—"'C&(p))

IV. (2j+I)-COMPONENT FIELDS

For a left- or right-handed particle with X= —j or
X=+j, the simplest field type listed in (3.24) or (3.25)
is, respectively, (j,0) or (0,j). The corresponding
(2j+1)-component annihilation fields will be called

&t,&+)(x) and X,&+&(x). They are given by (3.9), (3.11),
and (3.23), as

2j+1-dimensional unitary representation' of the ordi-

nary rotation group. [Note, also, that if we tried to
construct a (j,O) field for a right-handed particle, or a
(0,j) 6eld for a left-handed particle, we would not only
fail to get the desired I.orentz transformation property,
but we would also 6nd a catastrophic factor

I p I-& in the
wave function. )

Using the wave functions (4.8) and (4.9) in (4.1) and
(4.2), the annihilation fields now take the form

p (+) (x)— d'p[2lpl]' '"
(2~) sts

X.&+& (x) =
(2sr) sts

dsp[2lyl)t-»s

x."D. ,&)CR(p)].(y, j) (4..11)

We have redefined their normalization by replacing the
factor ~ ~ by 2&. We see that only the ordinary unitary
rotation matrices' are needed; R(p) is the rotation that
carries the s axis into the direction of y.

If our particle has an antiparticle (perhaps itself), then
there is available another operator b*(p, —X) which

transforms just like &s(p,l&) [see (2.43)], and which

carries the same charge, baryon nu~ber, etc. It is then
possible to define creation fields

p (—)(x) =
(2sr) sts

dsp[2lyl]&
—'t'

x.-"'D. ,& CR(p)»*(p, j), «»)

which satisfy (3.1), which transform according to (4.3)
and (4.4), respectively, and which also transform like
y&+' and y~+& under gauge transformations of the first
kind. [For a "purely neutral" particle, ' b*(p, )).) is to be
replaced by &s*(y,X).)

The most general fields satisfying all these conditions
are linear combinations of creation and annihilation
fields.

x.'-'( ) = d'p[2
I p I)' "'

(2sr) sts

X&' '"'D.
, ("CR(p)]f*(p, j), (4 13)—

& .(x) = his. (+) (x)+n~s. ( '(x) (4 14)

(4.15)&

=& D-"'CR(p)][exp{—4(lyl)~s"'}). , ;

D.. "C&(p))
Ul A] .( ) U 'CA]=Z D- "'[A '] "(A*), (416)

=& D- "'[R($))Lexp{4(I p I)~s"'}].,;

X.(X)= &isX.&+) (X)+rtr, X.&—& (X) .
=D..-"'CR(P))(l pl/ )', (4.8)

They again transform as in (4.3) and (4.4):

=D.
, ")[R(P))(lpl/u)'. (4.9)

Note that the matrices D&t)[R] and D&t)[R) for a pure
rotation E are both equal, being given by the familiar

UCA)x. (x) U-i[A]=P D...& )CA]X., (Ax) . (4.17)
0'

See, for example, M. E. Rose, Elementary Theory of Angular
Momentum (J. Wiley Ik Sons, Inc. , New York, 1957), p. 48 B.
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H these particles have no antiparticles (including them-
selves), then we have to take itz ——itii

——0. We will see in
the next section that, instead, requirement (1.4) (and
hence the Lorentz invariance of the S matrix) dictates
full «»»ng ~y~~~t~y, with

I » I

=
I
(~

I

The fields obviously obey the Klein-Gordon equation

. [ II (~—~3)7-
(2j)! ~=;+i

(5 5)

The matrices m and ~ can be easily calculated by use
of the obvious formulas

'q, (x)=0; O'X (x)=0. (4.18) . LII (~3—~)7-'
(2j)! &,=—

&

(5.6)

However, they are (2j+1)-component objects con-
structed out of just two independent operators a(y, X),
b*(p, —X), and so they have a chance of obeying other
field equations as well. It is not hard to see from
(4.10)—(4.13) that they do indeed satisfy the additional
Geld equations

222 j
~(P)= II (!P'—I &),

(2j)!x—&+i
(5.7)

Applying the rotation matrix D" [R(p)7 and multi-
plying by

I
2y I" gives

[J ~—j(8/Bt)]q (x) =0,

[J ~+j(8/at)]x( )x=0.

(4.19)

(4.20)

22i ~-1
~(P)= II (1 J—~P').

(2j)!~=~
(5.8)

[~-(x),v "'(y)7+= ~- (—~~)
v X[E—iB]+i (8/Bt) [E—iB]=0, (4.21)

v&&[E+iB]—i(B/Bt)[E+iB]=0. (4.22) &&[I P&I2e'"'&' »~( )"I»l'e '"'&~»7 (5 9)

For j=-, these are the Acyl equations for the left- and These are monomials of order 2j in the light-like four-
right-handed neutrino fields, while for j=1 they are vector P&, so (51) and (52) now become
just Maxwell's free-space equations for left- and right-
circularly polarized radiation: d3

The fact that these Geld equations are of first order for
any spin seems to me to be of no great signi6cance, since
in the case of massive particles we can get along per-
fectly well with (2j+1)-component fields which satisfy
only the Klein-Gordon equation.

V. CROSSING AND STATISTICS

W'e are assuming that the a's and b's satisfy the usual
commutation (or anticommutation) rules (2.39), so it is

easy to work out the commutators or anticommutators
of the fields p, and X, defined by (4.10)—(4.15):

-(—'w
(2 )'

&&[I~.l"" — ~(-) I"I"-' -7. (51o)

l~. l'= ~(—)"l~. l',

I t~ I'= ~ (-)"
I ~~ I'

(5.11)

(5.12)

In order that (5.9) and (5.10) vanish for x—y space-
like, it is necessary and sufficient that exp[ip (x—y)7
and exp[ —ip (x—y)7 have equal and opposite coeffi-
cients

[~.(x),~"'(y)7+= ~.. (p)
(2 )' 2lpl

&&[Is I'e'"" "'+I»l'e ""' "'7 (5 1)

So we must have the usual connection between spin and
statistics

(5.13)

1 d'p
LX.(*),x"'(y) 7+= s„(p)

(2 )' 2lul

(5.2)

and furthermore, every left- or right-handed particle
must be associated, respectively, with a right- or left-
handed antiparticle (perhaps itself) which enters into
interactions with equal strength:

where

~- (p) =
I

2@i�

"D,-t"'[R(P)]D",-"'*[R(P)7, (5 3)
(5.14)

~- (p) =
I
21

I
"D "LR(p)]D","'LR(p)7 (5,4) Hy redefining the phases of the a's and b's, and the

normalization of q and x, we can therefore set
These are the only nonvanishing commutators (or
anticommutators) among the q, yt, x, and xt (except
for a "purely neutral" particle, in which case y is
proportional to qt, see Sec. IX).

kr. =sr, =fs =nz=1 (5.15)

with no loss of generality. The Gelds are now in their
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final form:

V.(x) =
(2~) 3&'

d'p[2]p)]' '&'D, ,&&&[R(p)]

X [a(p, j)—e'" *+b'*(p,j )e '"'] (5.16)

with properties:

(a) II and II are scalars, in the sense that

D~ &[~]il(q)D~ &P ]!=11(Aq),

D&&&[A)II(q)D&'&[A)~= II(Aq) .

(6.3)

(6.4)

X,(x) =
(2x) '&2

d'p[21 pl]' "'D., "'P(P)]
(b) 3 and t are symmetric and traceless in &&ii+2' ' 'Jt&2&.

(c) II and II are related by an inversion

II(—q, q') = II(q). (6.5)

X[a(p,j)e" '+b*(p, —j)e—" ']. (5.17) (d) II and II* are related by a similarity transformation

The commutator or anticommutators are

[v.(x),v"'(y)]~=~~- (—i~)~(x—y), (5 18)
where

II*(q)=—CII (q)C
—', (6.6)

(6.7)

(e) II and II are further related by

II (q) II(q) = II(q) II(q) = (—q')".
where ih(x —y) is the commutator for zero mass and

f If q is in the forward light cone then

(6.8)

d'p
A(x) = g$po Q g /pe Q

(2~)'

= —(1/2~)b(x„x~)e(x).

11(q)= (—q')'exp[ —»(q)q J"'],
II(q) = (—q')' exp[28(q)q J&&'&),

sinhg(q) —= [~ q~'/ —q']'"

(6.9)

(6.10)

(6.11)

If a particle has no additive quantum numbers like
the photon, we must' set b(p, !&.) equal to a(p, !&,), and
"causality" then tells us through (5.14) that the particle
must exist in both left- and right-handed helicity states.
Both fields y, (x) and X,(x) can be constructed, and in
fact we shall see in Sec. IX that p is just proportional
to x~.

On the other hand, a particle which carries some
additive quantum number that distinguishes it from its
antiparticle can possibly exist in only the left- or the
right-handed. helicity state, and "causality" only re-
quires that it has an antiparticle of opposite helicity.
(A familiar example is the neutrino. ) In this case only
one of the fields q. and X.can be constructed. Of course,
if parity of charge conjugation are conserved, then both
particle and antiparticle must exist in both left- and
right-handed states, and both q, and X exist.

VI. LORENTZ INVARIANCE

Our formulas (5.18) and (5.19) for the commutators
or anticommutators were derived in a Lorentz invariant
manner, but they do not look like invariant equations.
It will be necessary to see how their invariance comes
about before we are able to derive the Feynman rules.

It was shown in Appendix A of Ref. 1 that the
familiar angular momentum matrices J&&' can be used to
construct a pair of scalar (2j+1)X (2j+1) matrices II
and II, as monomials in a general four-vector q&:

22j j
11(p)= II (!p' —p J'"),

(2j)!&=—g+&

221

II(p)= II ( p'+p J"'),
(2j)!&=&+&

or in terms of the matrices (5.7), (5.8)

(6.14)

(6.15)

(g) For integer j and arbitrary q

II&" (q) = (—q')'+[( —q')' '/2!](2q J&'&)(2q J"'—2q')

+[(—e)' '/4 ](2q J"')L(2q J"')'—(2q)']
X[2q J~» —4q']+[(—q')&

—'/6!](2q J&»)

X [(2q J"')'—(2q)']L(2q J"')'—(4q)']
X [2q J"'—6q']+, (6.12)

the series cutting itself off automatically after j+1 terms.
(h) For half-integer j and arbitrary q

"'
q = (—q' ' '" q' —q J"']+( / ' (—q')' '"

X[(2q J"')'—q'][3q' —2q J"']
+(1/5 )(—q')' '"L(2q J"')'—q']
XI (2q J"')'—(3q)')

X[5q' —2q J&'&]+. ~, (6.13)

the series cutting itself off automatically after j+-,
terms.

It follows from (6.12), (6.13), and (6.5) [or, more
directly, from (6.9) and (6.10)] that for a light-like
vector p" the monomials II and II simplify to

, (q) ( )21'/ IP1P2. . .&12jq q
. . .q

II (q) = (—)"t ."'"'""'~qq . . q'(6.1)

(6 2)

II„(p)=~.. (p) [p light-like],

II.. (p) = rr.. (p) [p light-like).

(6.16)

(6.17)



The Lorentz invariance of formulas (5.18) and (5.19)
for the commutators or anticomynutators now follows
immediately from (6.3) and (6.4).

J(i)* CJ(j)—C—i (7.2)

[We use an asterisk for the ordinary complex conjugate
of a matrix. $ If derivatives appear they will enter as a
2X2 matrix:

8„.= o „'(8/Bg') b„(B/—Bt), (7.3)

where 0-' are the usual Pauli spin matrices; the indices 0.

and 0-' are to be treated as if they appeared respectively
on j=-,' fields q and X .

We list below some typical examples of possible in-
variant terms in K(x):

(ji j2 ia')
(h) (g)~ (ja)(g) ~ (j3) (g)

&r 1&r24'3 0 1 +2 0 3

&r 1&r2(r3&r3 0 y 0 2 0 3

VII. THE FEYNMAN RULES

The Hamiltonian density X(x) is to be constructed as
an invariant polynomial in the (2j+1)-component fields

y, (x) and X,(x), without any distinction made between
zero and nonzero mass. In each term of R(x) all 0.

indices on the p, (x) are to be coupled together to form a
scalar, using Clebsch-Gordan coefficients in the familiar
way. The same is to be done indeperidently with the
indices on the X,(x). If adjoint fields enter in K(x) then
C„. 'X, t(x) is to be treated like q, (x) and C„. 'p, (x)t
is to be treated like X,(x); the matrix C is defined by

D("[h.]*=CD("[h.)C ', (7.1)

or more specifically,

tor in q., X, y,~, or X,f:

(2n) at'(2lyl)' ' 'D, ), ' [R(p))e'&'*
[particle destroyed), (7.7)

(2m) 3&'(2II)l)' "'D )'"[R(P))*e 'i' *

[particle created), (7.8)

(27r) 3'&( 2l pl) i 't'D'g )(i)[R(p))e 'i' *

[antiparticle created), (7.9)

(27/) 3&2(2l yl)i i&2Dg $(i)[R(p))*e'i'*
[antiparticle destroyed) . (7.10)

We remind the reader that D&')[R) is the usual (2j+1)
X (2j+1)unitary matrix' corresponding to an ordinary
rotation R, and that R(p) is the rotation that carries the
s axis into the direction of p.

The "raw" propagator corresponding to an internal
massless particle line running from x to y is

P'{&.(x) ~"'(y)))o

+ (—)"e(y—x)(v .'(y)v .(x))0, (7 11)
01

(X{X.(x),X,.t (y)))()

+ (—)"0(y—*)(X"'(y)X.(x))o (7 12)

An elementary calculation using (5.16), (5.17), (5.3),
(5.4), (6.16), and (6.17) gives the vacuum expectation
values as

((.( )vx"'(y))0=iiI- ( i~)~+—(x y), —(7 13)

(—)"( "'(y) .( )) = 11- (—~)~ (y —), (7 14)

and
(X.(x)X..t (y))0——irI...(—ia)~(x—y), (7.15)

—)'i(X,.t(y)X, (x))a=ill...(—ia)h+(y —x), (7.16)

2)

~& ~2~3«' 0'i a 2 a J a'' 0 3 01

(»)(g)p (im)(g)g, X (5)(g) (7 6)

etc. The fields p, and X, appearing here may be either
of zero or of nonzero mass.

The S matrix can be calculated from BC(x) by using
Wick's theorem to derive the Feynman rules, as we did
in Sec. V of Ref. 1. The only additional information
needed here is a statement of the wave functions
corresponding to external mass zero lines, and a formula
for the propagators corresponding to internal mass zero
lines.

The factor arising from the destruction or creation at
x of a massless particle or antiparticle of helicity X=~j
can be determined from (5.16) and (5.17) as the coeK-
cient of the appropriate creation or annihilation opera-

1 —iirl)(x')e(x) . (7.17)
4+2-X'

As discussed in Ref. 1, the presence of the 0 functions
in (7.11) and (7.12) makes these propagators non-
covariant at the point x=y, for spins j~ 1.In order that
the S matrix be Lorentz invariant, it is necessary to
assume -that noncovariant contact interactions appear
in 3C(x) which cancel the noncovariant terms in (7.11)
and (7.12). (The Coulomb interaction in Coulomb

gauge is such a contact interaction, made necessary by
the unit spin rather than by the zero mass of the
photon. ) With this understanding, we can move the
derivative operators II(—i&t) and II(—iB) in (7.13)—



F E YN MAN RULES FOR AN Y SP I N. I I. MASSLESS PARTI CLES 8891

(7.16) to the left of the 8 functions in (7.11) and (7.12),
obtaining the propagators

S„.(x—y) = ill—., ( —i8)6'(x —y)
P 3+J.f i P'lP'2' ' '$27'g () ~ ~ ~

Pl P2

X8„6'(x—y) (7.18)

S(q) = d4xe"*S(x)= —iII(q)/q' —ie, (7.23)

8(q) = d4xe "~8(x)= —iII(q)/q' —ie. (7.24)

8...(x—y) = i—il...( i—a)~ (x y—)
= —i2'+~t„,~l» "»j8„8„~~ ~Ijl P2

Xa„„.a (x—y), (7.19)

where iA—'(x y—) is the usual propagator for spin zero
and mass zero

—i/& '(x) = i8(x)6+(x)+i8(—x)A+(—x)
=+(1/4m 2(x2+ie)]. (7.20)

Equations (6.3) and (6.4) show that these propagators
are covariant in the sense that

D&"Lh/S(x)D&/&)A/t= S(/&&x), (7.21)

D"&[hj8(x)D"&$Aj =8(Ax). (7.22)

The propagators in momentum space are given by the
Fourier transforms of (7.18) and (7.19)

where R(p), as always, is the rotation that carries the s
axis into the direction of p. Using (8.1) in (8.3) gives

U (x y l&)= (2~) "'(2~) "'
X fexp( —P.J&/&8)D&/&(R(j)]).&e'&'*

= (2&0)
—'/'(2') ~/'

X (D&/& LR(j)) exp( —g, &/&8) ).,e".
—(2~)—&/2(2~) —3/2D „&g&LR(P)]e

—xHe/y z (8 4)

Furthermore we see from (8.2) that

e—"'=P~(p)+
~ y [/mj-". (8 5)

In order to avoid m's appearing in the denominator of
U, for negative helicity, it will be convenient to re-
normalize all fields of mass m by multiplying them with
a factor m7. With this understanding, the wave function
for a particle of spin j, helicity X, momentum p, and
mass m, destroyed by &/&, (x), is

U (x p X)=(2~) '/'(2&r) '/'D
&,&/'[R(P)j

Xm~+" (~+
~ p~) "e'~' (8 6)

(It should be kept in mind that the index o, which is of
no direct physical sig~ihcance, will appear on some
other wave function or propagator, and eventually be
summed over. ) The corresponding wave function for a
particle of definite helicity X is

U.(x; y, &)=2 D.~"'LR(f)3~.(x; y, /) (83)

Explicit formulas for the monomials II(q) and II(q) are
given in Eqs. (6.12), (6.13), and (6.5), or for j&3 in
Table I of Ref. 1.

~=
t

p2+m271/2

sinh8= [pi/m.
(8.2)

VIII. GENERAL HELICITY AMPLITUDES
AND THE LIMIT m ~0

The Feynman rules were given in Ref. 1 for incoming
and outgoing massive particles having prescribed values
for the s components of their spins. It turns out, how-
ever, that the external-line wave functions are much
simpler in the Jacob-Wick formalism, ' where initial and
final states are labeled instead by the particle helicities.
For m=0, of course, we have had no choice, since only
the helicity amplitudes are physically meaningful. %'e
will first derive the helicity wave functions for m& 0, and
then use them to show how the Feynman rules given
here for m =0 can be obtained by taking the limit m —& 0
of the Feynman rules for positive m.

According to the Feynman rules of Ref. 1, the wave
function for a particle of spin j, J,=p, , momentum p,
and mass i/i, destroyed by &p. (x), is

N, (x; p, /&) = (2(v)
—'/'(2m) —3/~

X t exp (—y J&/&8)j.„e*&*, (8.1)

The wave function for the creation of the same particle
by &r,t(x) is just the complex conjugate

U.*(x p X) = (2&0)
—'/'(2') 3/'D.

&,&/&'LR(P) j
X~/+&(~+ ~y~)

—&e—&u & (8 7)

The wave function for the creation by &t&.(x) of the
antiparticle with helicity 'A and spin y can be easily
obtained in the same way from Eq. (5.4) of Ref. 1, by
using the relations

D"'LR(P))=~D"'LR(P)X' '
—1—( )

—/+&8

We find that the antiparticle creation wave function is

I".(x;y,l)=(2 ) "'(2 ) "'(-) '+"D.—"'LR9)j
Xm/-"(co+

~ p~) "e—'&', (8.8)

and the wave function for destruction of the same
antiparticle by &&.t(x) is the complex conjugate

I'.'( y ~) = ( ~) "'( ~) "'(-) '+"D -""LR(i)3
X i&&

i—& (~+
~ p ~ )& e+ &y z (8 9)

A massive particle can be created or destroyed in any
helicity state by either the (j,0) field p, (x) or the (0,j)
fieM X,(x). Inspection of the field X,(x) given in Eq.
(6.9) of Ref. 1 shows that the wave functions corre-
sponding to (8.6)—(8.9) are given by replacing 8 by —8,
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and supplying a sign (—)3i for antiparticles:

U. (x p X) = (2~) "'(2')-"D.& [R(p)]
Xm j—X (~+ I p I )Xe i@.z

[particle destroyed], (8.10)

U, *(X;y,X) = (2co) "'(23r)—3t3D.i, &i' [R(p)]
Xmi i(~+ Ipl)ie —ip x

[particle created), (8.11)

I'.(x p»=(2~) "'(2~) "'(—)'"D.-~"'[R(P)7
Xmy+i (~+

I p I ) Xe—i p z

[antiparticle created], (8.12)

I'.'(x p»=(2~) "'(2~) "'(—)'+'D. ,-~"'[R(P)7
Xmi+~(~+

I yl ) xe+ip r

[antiparticle destroyed]. (8.13)

Now suppose that m —+0, or, more precisely, that
Ipl/m —+~. The only wave functions among (8.6)—
(8.13) that survive in this limit are (8.6), (8.7), (8.12),
and (8.13) for 'A= —j, and (8.8), (8.9), (8.10), and
(8.11) for Ii=+j. This agrees with the situation for
m=O, in which case we know that p, and p,t can only
create and destroy particles with X= —j and antipar-
ticles with li=+ j, while X, and X,t only create and
destroy particles with X=+j and antiparticles with
Ii= —j.Furthermore, if we set I~= —j in (8.6) or X=+j
in (8.10) we see that these wave functions reduce for
Ipl/m —+~ to the particle destruction wave function
given for m=0 by (7.7). The same agreement is ob-
tained on comparison of (8.7) and (8.11) with (7.8),
(8.8), and (8.12) with (7.9), and (8.9), and (8.13) with
(7.10). [The observation that particles described only
by p, (x) are dificult to create or destroy for

I p l))m in
any helicity state other than X= —j is very familiar for
electrons in beta decay. ]

The propagators for an internal p or y line are given
in Ref. 1 as

S„(x—y) = —iII„( i8)6'(—x y; m),—(8.14)

8„(x—y) = —iII., ( i8)6'(x y; m—) . (8.15)—

[Recall that we are now using fields renormalized by a
factor m', so the factor m 3i in Eq. (5.7) of Ref. 1 is
absent here. $ We see that the propagators given for
m=0 by (7.18) and (7.19) are the limits respectively of
(8.14) and (8.15) as m —+ 0. For m/0 there is also a
"transition propagator" between p and X, ~, but it is
proportional to m'& and disappears as m —+ 0.

In contrast, the Feynman rules for m=0 could not be
obtained as the limit as m —+0 of the corresponding
rules for m&0, if we used one of the field types like
(j/2, j/2) which are forbidden by the theorem of Sec.
III. For example, it is well known that the propagator
for a vector field has a longitudinal part which blows up
as m 2 for m~O; this is just our punishment for
attempting to use the forbidden (-,',—',) field type for j= 1
particles of zero mass. '

R,{0,0,1}= {0,0, —1}, (9.5)

so that U[R,]lli) is a state of momentum {0,0, —z}.
[The factor (—)3'+" is extracted from 3tq*(P) for con-
venience later. ]In order to calculate the effect of T and
P on

I p,X& we need the well-known formulas

TJ,T 1=—J
TE,T—'=E;,
PJ,P i=J;,
PE;P '= E, . —

(9.6)

(9.7)

(9.8)

(9 9)

[It is easy to check that (9.6)—(9.9) are consistent with
the commutation relations (2.16)—(2.18), if we recall
that T is antiunitary. ] According to (2.31) and (4.7),
the state Ip,» is

I
p»—= [~/l pl]"'U[R(p)] exp[—O(l pl)E3]I», (9.10)

so therefore

Tlp»=&i (T)[i&/I pl] 'U[R(p)]
Xexp[iltl (I pl )E3]U[R,]I li&,

Pl p,»= (—)'+"n~'(P)[~/I pl)"'U[R(p)7
X exp[i'(l y I

)E,]U[R,) I

—».
But

U '[R,]E3U[R,]= E3, —
and thus

T
I y,~i) =a~*(T)[~/I p I]"'U[R(P)R.)

xexp[ —iy(l p I)E371» (9»)
PI y, ~i) = (—)'+"n *(P)[/I pl]"'U[R(p)R.]

xexpL —i4(lpl)E3]l —&). (9.12)

The rotation R(p)R, carries the s axis into the direc-
tion of —y, and must therefore be the product of R(—p)

IX. T, C, AND P

Time-reversal (T) and space inversion (P) are classi-
cal.ly de6ned as transforming a particle of momentum p
and helicity X into

Tlp, »"
I

—p, », (9.1)

Plp, »-
I

—p, -», (9.2)

while charge conjugation (C) just changes all particles
into antiparticles, with no change in p and X. However,
in quantum mechanics there appear phases in (9.1) and
(9.2), which we shall see are necessarily momeittlm
depe33de33t for massless particles. In order to get these
phases right it is necessary first to define the action of T
and P on our standard states

I » of momentum
0= {0,0,i~}, and then use the definition (2.31) of Iy, X).

We will de6ne "standard phases" 3tq (T) and 3tq(P) by

Tl»=~, *(T)U[R,]I», (9.3)

Pl»= (—) +" *(P)U[R,]l —», (9.4)

where R, is some fixed but arbitrary rotation such that
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times a rotation of C (p) degrees about the s axis

~LR(r)R.5 = ~l:R(—r)5 expLic'(r) ~ 5 (9 13)

The angle C (p) depends on how we standardize R, and

R(f), but we will fortunately not need to calculate it, as
it will cancel in the field transformation laws. Using
(9.13) in (9.11) and (9.12), and recalling that Ja
commutes with E3, we have at last

(9.25):

Ty. (x)T—'=g;(T)P C..«. (x, —x'),

Tx.(x)T—'=q, (T)Q C...x..(x, —x'),

Cq. (x)C '=g;(C)Q C..—'X. t(x),

(9.26)

(9.27)

(9.28)

T
I p,X)= iI),*(T) expl inc (p)5 I

—p, X), (9.14)

Pl p»)= (—)'+"n.*(P) expi —il I'(j)5I —» —l ) (9»)
These one-particle transformation equations can be

translated immediately into transformation rules for the
annihilation operator:

Ta(p, X)T '=iIi, (T) expl —iM (p)5a( —p, X), (9.16)

Pa(p, l )P '= (—)""n~(P)
XexpLiM (p)5a(—p, —X). (9.17)

The antiparticle operators will transform similarly, but
perhaps with different "standard" phases q&, (T) and
n. (p):

Tb(p X)T-'=pi, (T) expl ilia (—p)5b( p, X)—, (9.18)

Pb(p, li)P '= (—)""n~(P)
&&expI i' (p)5b( —p, —X). (9.19)

And, of course, C just changes a's into b's and vice versa.

Ca(p, z) C-i=&, (C)b(p,y), (9.20)

Cb(p, X)C '= rIq(C)a(p, X) . (9.21)

The phases qi, (T,C,P), gati, (T,C,P) are partly arbitrary, '
partly determined by the structure of the Hamiltonian,
and partly fixed by the specifically held-theoretic con-
siderations below.

In order to calculate the effect of T, C, and P on the
fields y, (x) and X,(x), it will be necessary to use the
we11-known reality property of the rotation matrices

D&"I R5*=CD&'&LR5C ' (9 22)

«.(x)C '=a~(C)(—)"2 C- '«"'(x) (929)

Py. (x)P—'=g, (P)x.(—x, x'),

PX.(x)P '=q;(P) y.(—x, xo).

(9.30)

(9.31)

In deriving (9.26)—(9.31) it is necessary to fix the
antiparticle inversion phases as

n~(T) =n-~*(T),

~~(C)=n-.*(C),

n~(p) = (-)"v-~*(p)

(9.32)

(9.33)

(9.34)

n-~(p) n. (p) = (—)", (9.35)

while the intrinsic parity of a massless particle anti-
particle pair of the same helicity is not fixed by these
general held-theoretic arguments.

If a particle is its own antiparticle' then we must set

because any other choice of the g~ would result in the
creation and annihilation parts of the field transforming
with different phases, and would therefore destroy the
possibility of simple transformation laws.

It is interesting that the transformation rules (9.26)-
(9.31) turn out to be identical with those derived in
Sec. 6 of Ref. 1 for the case of massive particles, though
the derivation has been different in many respects. The
same is true of the phase relations (9.32)—(9.34), except
that the only correlated particle and antiparticle in-
version phases are those of opposite helicity. In par-
ticular, (9.34) tells us that a left- or right-handed
particle plus a right- or left-handed antiparticle together
have intrinsic parity

where, with the usual phase conventions,
b(p, ) ) =a(p, l~) (9.36)

C, ,= ( )'+'b, ,
=

I
—exp(imJ2&& i)5;,. '(9.23).

We shall fix the rotation R, introduced in Eq. (9.5) as a
rotation of 180' about the y axis, such that X.t(x) =g C., q. (x), (9.37)

In this special case, the (j,0) and (0,j) fields are related
by

D&&'I R,5=C '= (—)'&C. (9.24) v.'(x) = (—)"2 C- X"(*) (9.38)

Another needed relation then follows from (9.13) .

D.~"'LR(i)5
= (—)""expl: —il C'(f) 5D.,-""[R(—P) 5 (9 25)

Also (9.36) requires that the antiparticle inversion
phases g~ be equal to the corresponding g~, and therefore
(9.32)—(9.34) provide relations between gi, and g i, '.

The effect of T, C, and P on the fields (5.16) and
(5.17) can now be easily determined by using (9.16)—

9 For a general discussion, see G. Feinberg and S. steinberg,
Nuovo Cimento 14, 571 (1959).

n~(T) =~-~*(T),

n~(C) =~-~'(C),

n. (p) = (-)"n-~*(p)

(9.39)

(9.40)

(9.41)
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However, there is still no necessity for any of these
phases to be real.

Observe that (9.17) and (9.19)—(9.21) make sense
only if both the particle and its antiparticle each exist in
both helicity states ) =&j.For a particle not identical
with its antiparticle, this is now a part of the assumption
of C or P invariance, whereas in the case of massive
particles it followed directly from the Lorentz invariance
of the S matrix.

In contrast, T conservation leaves open the possibility
that the particle exists in only one of the two helicity
states, with an antiparticle of the opposite helicity.
This is consistent with (9.26) and (9.27), which show
that T does not mix q, and X,. The same is true of the
combined inversion CP.

CPq (x)P-'C '

=q~'(C)g —i(P)g C- 'p" t(—x, x'),
0'

(9.42)

CPx. (x)P—'C-'

=g;(C)g, (P)P C...-'X.. (—x, x'), (9.43)

and of course it is also true of CPT.

q .(x) —& e"q .(x); X.(x) -+ e-' X.(x). (10.1)

In the 2(2j+1)-component formalism" we unite the

(j,O) and (0,j) 6elds p, (x) and X,(x) into a (j,0) Q+ (0,j)
field P(x):

4(*)=
V (x)

-X(x)-
(10.2)

' See Ref. 1. Many features of this formalism have been worked
out independently in unpublished work by D. N. Williams.

X. CHIRALITY AND RENORMALIZED MASS

We have not made any distinction, either here or in
Ref. 1, between the mass characterizing the free field
and the mass of the physical particles. This was
purposeful, because it is always possible and preferable
to arrange that the unperturbed and the full Hamil-
tonians have the same spectrum. But there still remains
the question: Under what circumstances will the physi-
cal particle mass in fact be zeros The classic conditions
are gauge invariance or chirality [i.e., "ys"j conserva-
tion. Gauge invariance is without content for the (j,O)

and (0,j) fields discussed in this article, so we are led to
consider the implications of chirality conservation. Our
work in this section is entirely academic except for

j= ~, but even in this familiar case our conclusions are
not quite in accord with public opinion.

For definiteness we will understand chirality conser-
vation as invariance under a continuous transformation

and we write the transformation (10.1) as

P(x) —+ exp(icy')P(x) . (10.3)

S(q) = iII (q—)/(q' ie) . — (10.4)

The exact propagator is

~'(q) =~(q)+~(q) ~'*'(q)~'(q)
(10.5)

The (2j+1)X (2j+1) matrix Z&*' (q) is the sum of all

proper diagrams with one q line coming in and one
going out, with no propagators on these lines. Stripping
away its external propagators changes the Lorentz
transformation behavior of Z, '*~ from that of p, p, ~ to
that of X,X *, so Lorentz invariance dictates its form as

Z...i*i (q) = i11...(q)Z( —q') . (10.6)

Using (6.8) now gives the exact propagator (10.S) as

—iII(q)s (q)=
I

1—(—q') '~(—q') Xq' —i~j
(10.7)

We have not used chirality yet. In general the self-

energy part Z&*& (q), and hence the function F (—q'), may
have a pole at q'=0, due to graphs with one intermedi-
ate X line. But under any form of chirality conservation
such graphs are forbidden. (For example, there is no
neutrino X, field. ) Hence F(—q') has no pole at q'=0,
and therefore S'(q) does have such a pole, corresponding
to a particle of zero renormalized mass.

There are other possible discrete or continuous chirality
transformations, but our discussion will apply equally
to all of them.

The question, of whether chirality conservation im-
p/ies zero physical mass, can be asked on two diferent
levels:

(1) Suppose that Ho is chosen so the interaction
representation 6elds y, (x) and/or X,(x) describe free
particles of zero mass, and suppose that the interaction
density K(x) is invariant under the transformation
(10.1). Is the renormalized mass then zero in each order
of perturbation theory'

(2) Suppose that there exists a unitary operator
which induces the transformation (10.1) on the Heisen-
berg representation fields, and which leaves the physical
vacuum invariant. Can we then prove anything about
the physical mass spectrums

Our answers to these two questions are (1) yes, and

(2) not necessarily. I.et us consider perturbation theory
first. The bare momentum-space propagator of the p,
field is given by (7.23) as
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Of course there may also be another particle with non-
zero mass nz given by

1=m"F(m') .
But such a particle would have to be unstable so m
would lie off the physical sheet.

Now let us turn to the second question. We assume
that there exists a unitary chirality operator X(e) which
transforms the Heisenberg representation fields into

X(e)q.~(x)X '(e) = e "(p ~(x), (10.8)

X(e)X."(x)X—'(e) = e—"X (x) (10.9)

and which leaves the physical vacuum invariant. It is
certain that this assumption alone is not sufhcient, in
itself, to allow us to prove anything about physical
particle masses, because we have not yet said anything
to connect the fields y, (x) and X,(x) with each other.
For instance, we might choose p, (x) as (1+ps)/2 times
the electron field, and X,(x) as (1—ys)/2 times the
muon field. Then (10.8) and (10.9) are obviously
satisfied if we choose the chirality operator as

X(e)=exp(ie [electron number
—muon number]) . (10.10)

But we can hardly conclude from this that the electron
or muon is massless.

Clearly, the only information that can be gleaned
solely from the existence of X(e) is just what would
follow from any ordinary additive conservation law.
Namely, the propagator of y, (x) or X,(x) can receive no
contribution from any massive pslrely neutral one-
particle state that has no degeneracy beyond the
(2j+1)-fold degeneracy associated with its spin. "For
any such state Iy,p) would have to be a chirality
eigenstate

X(') Ip~ii)=e'~'I y~ii) (a= j~ ' ' ' j) (10 11)

and thus

(Ol y.~(x) ly, ii)=0 unless )=1, (10.12)

(0I q."'(x) Iy,p)=0 unless (=—1. (10.13)

But CP or CPT conservation tells us that these two
matrix elements are proportional to each other, and
hence must both vanish. [Observe that we cannot
forbid a massless purely neutral particle from contrib-
uting to the propagator of q, (x) or X,(x), since CP and
CPT reverse its helicity, and its two helicity states
might have opposite chirality. This is consistent with
the remark' that it is only a matter of convention
whether we call a massless particle purely neutral or
not.

"This is an abbreviated version of a proof given by B.Touschek,
in Lectures on Field Theory and the Many-Body Problem, edited by
E. R. Caianiello (Academic Press Inc. , New York, 1961), p. 173.
It is not clear from Touschek's article whether he feels that this
theorem implies that the neutrino cannot have 6nite mass. As
indicated herein, I do not.

Unfortunately this theorem offers no proof that the
accepted chirality-conserving weak interactions do not
give a massive neutrino, with a distinct massive
antineutrino. It should be kept in mind that we cannot
decide just by looking at a Lagrangian whether the
physical one-particle states will be purely neutral or not.
Of course, any massless particle can be called purely
neutral, but this is not relevant if what we want is to
prove the absence of massive particles.

Ke can say somewhat more about the mass spectrum
if we are willing to assume parity conservation [which
links p, (x) with X,(x) by (9.30) and (9.31)] as well as
chirality conservation. In this case the propagator of
q, (x) or X,(x) can receive no contribution from any
massive one-particle state that has no degeneracy, be-
yond the (2j+1)-fold degeneracy associated with its
spin, and an additional 2-fold degeneracy if it happens
to have a distinct antiparticle. For it would then be
possible to form a one-particle chirality eigenstate

I p,p):

X(.) I p,l )=e~(i.() I p, p) (10.14)

by taking
I p, ii) as either the one-particle state itself or

some linear combination of it and its charge conjugate.
Lorentz invariance requires that

(Ol y,~(x)
I p,p)=N~(2&v) 'I'D &'i[1.(p)]e'&'*, (10.15)

(o I
"."( ) I »~)=&.(2 ) "'D.„[L,(y)]." . (10.16)

Parity conservation tells us further that

I &.I

=
I &x I

=& — (1o 17)

This is just to say that the matrix element of the
2(2j+1)-component field lt (x) satisfies the generalized
Dirac equation [Eq. (7.19) of Ref. 1], which is to be
expected under the assumption of parity conservation.
But (10.8) and (10.14) give X=O unless )=+1, while
(10.9) and (10.14) give X=0 unless $ = —1, so we may
conclude that S=0. Again, this proof does not apply for
zero mass, because the two helicity states are uncon-
nected by space rotations and hence may have differ-
ent $'s.

[It might at first sight appear that the free fields
constructed in Ref. 1 provide a counter-example to this
proof. In the absence of interactions they certainly
describe nondegenerate particles with nonvanishing bare
and physical masses, and yet there is no coupling that
violates either parity or chirality. The trouble with this
argument is that no operator X(e) can be constructed;
in fact Eqs. (7.23) and (7.25) of Ref. 1 show that

This point is more transparent in the conventional
language in which we would just say that the free-field
Lagrangian does not conserve chirality. As m —+0,
(10.18) vanishes as m", and for nz =0 it is easy to con-
struct X(e) explicitly. ]

The last proof is of some interest, because it shows
that unless the vacuum or electron is degenerate, the
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mass of the electron cannot arise entirely from electro-
magnetic interactions, which conserve both parity and
chirality. But it is useless for the neutrino, and we are
forced to conclude that only perturbation theory can
account for its zero mass.

XI. CONCLUSIONS

The Feynman rules for massless particles in the
(2j+1)-component formalism are identical with those
derived in Ref. 1 for particles of mass m)0. It is only
necessary to pass to the limit m —+ 0 to obtain the cor-
rect propagators for internal lines, and wave functions
for external lines. Also, the various possible invariant
Hamiltonians BC(x) can be constructed out of the fields

tt, (x) and X (x), with no distinction between massive
and massless particle fields.

Furthermore, the transformation properties of tt. (x)
and X,(x) under T, C, and P are the same for rtt) 0 and
m =0. If P and/or C are conserved it is very convenient
to unite tt, (x) and X,(x) into a 2(2j+1)-component

field f(x), which transforms according to the reducible

(j,0)Q+(O, j) representation; for j=—', this yields the
Dirac formalism, while for j= 1 it corresponds to the
union of the irreducible fields E&iB into a six-vector

(E,B). Here again there is no distinction to be made
between zero and nonzero mass, so we need not repeat
here the details of the 2(2j+1)-component formalism"
constructed in Ref. 1.

Ke have seen no hint of anything like gauge invari-
ance in our work so far. In fact, the really significant
distinctions between field theories for zero and nonzero
mass arise when we try to go beyond the (2j+1)- or
2(2j+1)-component formalisms. In particular, for
m&0 there is no difriculty in constructing tensor fields
transforming according to the (j/2, j/2) representations,
while for as= 0 this is strictly forbidden by the theorem
proven in Sec. III. We will see in a forthcoming article
that the attempt to evade this prohibition and yet keep
the S matrix Lorentz-invariant yields all the results
usually associated with gauge invariance.
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In a previous paper, a simpli6ed model was used to study the effects of strong interactions on the weak
interaction theory of Feinberg and Pais. In this paper, we use a more general argument, a power count
based upon the Ward-Takahashi-Nishijima multimeson vertex function identity, to show that the same
conclusion remains valid even when crossed ladder graphs are included. Our conclusion may not apply, how-
ever, to the modi6ed program of peratization where W —W scattering plays an essential role.

I. INTRODUCTION

''N a previous paper, ' the possible effects of strong
~ ~ interactions on the peratization theory of Feinberg
and Pais' were studied in a simplified model where the
strong interactions acted through modifications only of
the baryon vertices and propagators. It was shown
there that the final "peratized" nuclear vector P-decay
coupling strength Gp" is no longer equal to the "pera-
tized" p-decay coupling strength, G„ if the vector
current is conserved. In this paper, we wish to present
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an argument which shows that the same power counting
conclusion holds when all possible effects of strong
interactions, within the framework of per atization
theory, are taken into account. Furthermore, the very
nature of our argument shows that the same conclusion
holds even when one includes, in peratization theory,
the sum over the crossed ladder graphs so long as power
counting is valid. That is to say, if we define the
peratized (crossed+uncrossed ladder graphs) tt-decay
constant by G„= (g'/m') (1—s)), then the corresponding

per atized nuclear vector P-decay constant is Gtt"
= (gs/rats)(1 —Zst), where Z is the strong interaction
nucleon renormalization factor. Thus, unless peratiza-
tion vanishes (s)=0) when all graphs are included, the
situation remains that G„/Gp" when the vector current
is conserved. This makes it hard to understand the


