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The first factor in expression (12) comes from the
interaction of the pseudoscalar charge density with the
electric field. This factor rotates the spin of the incident
particle about the axis (j x M) through the angle

aeEm
Sp=- S slIlp ~

Pgnt+ (1—a)s'"Wj

where (j M)=cosp. The second factor in (12) comes
from the interaction of the scalar charge density with
the electric 6eld. This factor rotates the spin of the
incident beam about the z axis through angle 80,. At
the low-energy limit, the ratio of the two angles bp and
ee, is

3p/3trr. = —tt(1—gs)—&(c/v) sinp,

where c and v are the velocity of light and of the
incident beam. Thus, there is a possibility at very low

energy that bp)b8„ that is, as far as the spin rotation
is concerned, the eGect of the pseudoscalar charge
density is larger than the eGect of the scalar charge
density.

Thus, it has been shown that the pseudoscalar charge
density is an observable.

Note added t'n proof It was .shown in I and II that
g'& —', . Here we shall improve the upper limi. t of p'.

Among the spectral functions p;, the inequality

(I'+v'+ws 2—gv 2—alw+ 2avw) p r

2Q
+—(v+ttw) ps —{2vw+a(—tt'+tp+w')) ps& 0

holds, where I, e, and m are any real numbers. From this
inequality one obtains

Zs-' —— dx'[pt —aps] and
0

= —Z2 Zg p3)
1—8 0

one can prove
1)Z2& 0 and a'
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Particle mixing is studied in a ield-theoretic context, as a further approximation to the pole approxima-
tion. Although particle mixing is well suited for treating spinless particles, another approximation, also a
further approximation to the pole approximation, called vector mixing, is better for treating particles of
spin one. Vector mixing is applied to several processes involving the mixing of the co and the @by the inter-
action that breaks unitary symmetry.

I. INTRODUCTION

+ARTICLE mixing approximations in elementary
particle physics have been used by Gell-Mann

and Pais' (neutral E-meson mixing due to the weak
interactions), Glashow' (p-to mixing due to electro-
magnetism), and Okubo' (&o-p mixing due to the un-

*Work supported in part by the U. S. Air Force OfBce of
Scientific Research Contract No. 49 (638) 589.

t Work supported in part by the National Science Foundation.
' M. Gell-Mann and A. Pais, Phys. Rev. 97, 1387 (1955).' S. L. Glashow, Phys. Rev. Letters 7, 469 (2962).' S. Okubo, Phys. Letters 5, 165 (1963).See also S. L. Glashow,

known interaction tha. t breaks unitary symmetry. ) All

these authors have discussed particle mixing within the
framework of a Schrodinger equation acting on the
space of one-particle states; the relation of the approxi-
mation to the usual approximations of elementary
particle physics, derived from field theory or dispersion
relations, is by no means clear. It is our intent here to
discuss particle mixing within a field-theoretic context,
as a further approximation to the pole approximation.

Phys. Rev. Letters 11, 48 {2963);J. J. Sakurai, Phys. Rev. 132,
434 (1963);R. Dashen and D. Sharp, Phys. Rev. 133, 1585 (1964).



B864 S. COLEMAN AND H. J. SCHNITZER

Fxo. T. The propagator approximation. The blobs labeled A
and 8 represent vertices; the shaded blob represents a propagator,
We assume that all dependence of the matrix element on the
momentum transfer along the propagator comes from the mo-
mentum dependence of the propagator, and none from the vertices.
Further, when we consider broken symmetry, we only consider
the effect of the symmetry-breaking interaction on the propagator,
and not the eBect on the vertices. This corresponds to considering
only those terms in the perturbation series that are enhanced by
the presence of small-energy denominators.

We argue that although particle mixing is a reasonable
approximation for scalar mesons, it is a most un-
reasonable one for vector mesons. If we naively attempt
to calculate the effect of particle mixing on the electro-
magnetic form factors of the baryons, we will find that
it can alter the charge of the proton. We introduce a
new approximation, called vector mixiog, which does
not share this deficiency: it is designed to preserve the
conservation of charge. If the force mixing the particles
is truly weak, particle mixing and vector mixing are
indistinguishable. (In. this sense the relation between
the two approximations is much like that between
perturbative calculation of the 5 matrix and per-
turbative calculation of the E matrix. )

We apply vector mixing to deduce a modified form
of the Gell-Mann —Okubo mass formula, 4 ' and also to
calculate the effect of ce-P mixing on the form factors
of the strange baryons. Interestingly enough, the pre-
dictions of unitary symmetry for the strange baryon
magnetic moments are not altered, even though the
shapes of the form factors are changed considerably.
I
There is a simple physical reason for this. te-P mixing

effects the electric and magnetic form factors in the
same proportion. We know it cannot alter Ft(0)
because of the conservation of charge. Thus, it cannot
alter Fs(0). Of course, effects of the symmetry-breaking
interaction other than particle mixing may act differ-
ently on F& and F& and alter the magnetic moments. $
We also discuss the effects of to-g mixing on. nucleon-
nucleon scattering and on the decays of the P. In an
Appendix we consider massless vector meson.

elastic scattering. The propagator approximation con-
sists of only considering diagrams of the type shown
in Fig. 1, and, further, of assuming that the two vertices
may be replaced. by their value at fixed t, where t is the
square of the four-momentum associated with the
internal p-meson line. That is to say, all of the de-
pendence of the matrix element on 3 comes from the
propagator. A further approximation, the pole approxi-
mation, consists of replacing the propagator by its
pole term and the two vertices by their values at the
pole. In the particular example, this is known to be a
good approximation for two-pion production near the
pole.

When we have a held theory with a high degree of
symmetry, we usually have the possibility, in any given
process, of exchanging several kinds of mesons. In this
case we must use a matrix propagator; otherwise the
propagator and pole approximations are defined as
above. If we introduce a syrrnnetry-breaking per-
turbation, we will only consider its effect on the
propagator, not on the vertices. This can be justified
by looking at the nonrelativistic perturbation ex-
pansion: The terms we retain include all those terms
that are enhanced by the presence of small-energy
denominators.

In fact, all of the approximations we will consider
are not only approximations to the propagator approxi-
mation, but also approximations to the pole approxi-
mation. Since the pole approximation may be obtained
from analytic 5-matrix theory, presumably all of our
work could be done without recourse to entities defined
off the mass shell. Nevertheless, because we find certain
sum rules and symmetry properties derived from the
propagator useful, we prefer to consider our approxi-
mations as special cases of the propagator
approximation.

Structure of the Matrix Propagator

Let us now consider the structure of the propagator.
For the moment let us assume the particles involved
are scalar. Then the propagator, D(k'), a matrix, is
de6ned by

II. GENERAL THEORY

We begin by considering what we will call the
propagator approximation. Consider a process of the
sort shown in Fig. 1. For definiteness, let us assume
that the external lines attached to vertex A represent
two incoming and two outgoing nucleons, the internal
line represents a p meson, and the external lines attached
to vertex 8 represent two pions. The diagram then
describes two-pion production in nucleon-nucleon in-

4 M. Gell-Mann, Phys. Rev. 125, 1067 (1962).' S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962).

i d4k(2—s.) 4e '" &* »fD(k'')],; & (1)

where i runs from 1 to e, and e is the number of
particles in the channel of interest. Inserting a complete
set of intermediate states, we find

D(k') = da'9(a') (k' a'+is)—
where

L9(a')3;;= K„&oI
A, (0) I ~) (~l as(0) I

0)s(z„'—a'). (3)
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where

02=I 7 (4)
and

(6)

From its definition, Io is a Hermitian, positive definite
matrix. Furthermore, if we assume invariance under
the antiunitary TCI' operator 0, which has the proper-
ties

rr(k') =M+(I—Z)k',

n

M—i P (~(r)/m 2)
r~l

n
Z-I —Q p(r)

(12)

(13)

(14)

then

I:e(~')le=2 &o I A'(0)
I ~)&~ I Aa(0) I0»P'-' —o')

= Le(&')L' (7)

That is to say, TCI' invariance implies y is symmetric.
Since we already know y is Hermitian, this means I0

must be real.

The Pole Approximation

Let us suppose there are n stable particles in the same
channel as the n fields we have discussed above. In that
case we may separate out the contributions from the
one-particIe states.

e, (")=&OIAg(x) Ir,p)e'& * (10)

n

D(k') =P Ly(")/(k' —m„'))+continuum terms, (8)
r=l

where

y
(r& =*e(r&e (r~ t

7

M and Z are, by definition, real, symmetric positive-
definite matrices.

We note that the pole approximation involves e
arbitrary components for each e("' and e arbitrary
masses —a total of e'+n arbitrary parameters. We
obtain the same number of parameters by counting
the components of the two unknown real symmetric
matrices M and Z.

If the e("~ are all independent, we may find a matrix
S such that

LSe(~)j;=g;~.

SD(k') St= (k' —~)-'.
(15)

(16)

where A. is a diagonal matrix with m, in the rth entry.
If the particles involved are unstable, then the poles

are on the second sheet and the m, are complex numbers
whose imaginary parts are connected in the usual way
with the lifetime of the unstable state. The y("' are
complex symmetric matrices of rank one, and M and Z
are arbitrary symmetric matrices. Everything is as
before, except that we now have n'+e complex parame-
ters instead of N~+m real ones.

If the particles are of spin one, nothing is altered
except that the analysis above applies to the transverse
part of the propagator only, which is the only part that
contributes to processes of physical interest.

and Ir,p) indicates a state of one particle of the rth
kind in an eigenstate of momentum with eigenvalue p.
Since the y'"~ must all be real symmetric matrices, it
must be possible to choose the phases of the one-particle
states so the e("~ are all real. The pole approximation
consists of the propagator approximation with the
neglect of the continuum terms in Eq. (8). LOf course,
we could also have obtained the pole approximation
from the viewpoint of dispersion relations, without
using the propagator approximation —in fact, without
talking about fields at all. However, we have found it
more convenient to prove the reality and symmetry
of the g(') by this method. j

We may also write D(k') in another way. We may
define the matrix II(k'), which we call the self-energy
matrix, by

(k' —rr (k') )-i=D(k').

We prove in Appendix I that the pole approximation
is equivalent to assuming that II is a linear function of
k2.

Broken Symmetry

Let us suppose that the Hamiltonian of the world is
such that there is an absolute selection law forbidding
transitions from one of our e-particle types to another.
Then, by normalizing the fields, we may write the
propagator in the pole approxilnation in the form

D(k') = (k' —Mo)-', (17)

where Mo is diagonal. Now let us suppose we introduce
some perturbation that allows the particles to mix.
The propagator then assumes the form

D (k') = (k'—Mo —5 —S,k')-'

where 6 and 6, are unknown, real symmetric matrices.
This expression involves e'+e unknown parameters.
This is more than we can reasonably determine from
the crude experimental data that is usually accessible
to us; therefore it is desirable to introduce further

approximations to reduce the number of independent
parameters. Below we shall discuss three such.
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Particle-Mixing Approximation

In this approximation we assume the propagator to
be of the form

we have another sum rule, 6

dasas9(as) = da'a'5'(a') (25)
D(k') = (k' —M)-'. (19)

If we are interested only in processes that go on in a
limited range of energy —for example, in multipion
production in the neighborhood of the p and co masses-
we may choose M to be the value of II(k') somewhere
in that range. It then does not seem an excessively
drastic truncation of the pole approximation to neglect
the dependence of II on k'.

We want to show the connection of this formulation
with the usual formulation of particle mixing theories,
in which we solve a Schrodinger equation for a
Hamiltonian acting on a Hilbert space in which the
only states are one-particle states. ' ' It is characteristic
of such a method of calculation that, as a consequence
of the conservation of probability, the sum of the
residues of the perturbed propagator must be the same
as the sum of the residues of the unperturbed
propagator. That is to say, since the only states
allowed are one-particle states,

We assume in the sequel that the symmetry-breaking
interactions always preserve (21) and (25). A typical
interaction that preserves these sum rules is 5g+ygI@.
Some interactions that violate them are bp'qP and

bZr)„pr)„p
If we attempt to apply Eq. (25) to the pole approxi-

mation alone, we obtain, in analogy to (20),

Q 9&'&tie,s= Mo.
i=1

(26)

We cannot use both (20) and (26); together they imply
that the new propagator is the same as the old one.
Clearly, we must choose (20); the sum rule (21) is
much more dependent on the low-mass part of the
weight function than the sum rule (25).

We remark that the particle-mixing approximation
involve sr(ts'+is) Parameters, half as many as the Pole
approximation.

Q 9(~)=I (20) Vector-Mixing Approximation

I

da'y(a') = dasy'(a'), (21)

where p' is the weight function for the unperturbed
propagator. However, in the full theory, residue may
be transferred from the continuum to the poles.

Applying to Eq. (20) i,he matrix S defined by Eq.
(15) we find

Equation (20) is the shadow of an equation that exists
in the full theory. It is easy to show, ' that if the inter-
action does not effect the vacuum-expectation value
of the equal-time commutators of the fields and their
erst time derivatives,

Satisfactory as it is for many purposes, the particle-
mixing approximation violates an important property
of vector-meson dynamics, the transversality of the
vector mesons (or, equivalently, the conservation of
the current to which the vector mesons are coupled).
We would like any approximation we use for vector-
meson theories to preserve this condition —one of the
phenomena in which vector mesons play a large role
is the form factors of elementary particles; if me use
an approximation that viojates current conservation,
we are liable to 6nd charge disappearing from the
proton. The reQection of current conservation in the
propagator is that the corrections to the propagator
vanish at zero-momentum transfer,

g(a')da' 9'(as)da'
S P y&"&St=SSt=I,

r=l
(22)

to say S is unitary Equations (22) and (16) Just as in the scalar case, if the interaction obeys

imply that certain additional conditions, there is another sum rule,

where
D(k') = (k' —M)

—'

M=ST.S.
y(a')da'= 9'(a')da'. (28)

It is easy to see by direct comparison that M is the
mass matrix of Glashow' and of I'einberg and
Bernstein. ~

If the interaction satisfies somewhat more stringent
conditions than those that are necessary for Eq. (21),

s H. Lehmann, Nuovo Cimento 11, 342 (1954).
r J.Bernstein and G. Feinberg, Nuovo Cimento 25, 1343 (1962).

We assume in the sequel that the symmetry-breaking
interactions always preserve (27) and (28). A typical
interaction that preserves these sum rules is be%'y„%'A„.
Some interactions that violate them are 8p'A„A„and
3Z(B„A„—i3„A„)(B„A„).In contrast to the scalar case,
t,he sum rule (27) is more strongly dependent on the

' K. Johnson, Nucl. Phys. 25, 435 (1961).
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low-mass part of the weight function than the sum rule

(28). Therefore, the condition we must apply to the
propagator is

PROPAGATOR

APPROXIMATION

ANALYTIC I
S-NATRIX 1

THKRY

which implies

P (gt"&/m„')=Ms '
i=1

(29) POLE

APPROX IMAT ION

[n~+n]

REGGE POLES, I
I

D(k') = (k' —Mo+ Sk')—'. (3o) PARTICLE

MIXING

f (n~+n) j'2]
VECTOR MIXING

((n2+Sn)i2]

OFF OIAGONAL

VECTOR IlIXING

[(n~+n)l 2]

We call this form for the propagator the vector mixing
aPProximation; it involves sr(r4s+3n) unknown

parameters.

D(k') = (ks—M+ 5k')-' (31)

where M is diagonal and 5 is symmetric and off diagonal.
This approximation will not violate charge conser-
vation as long as the original symmetry group contains
no transformations that exchange the vector mesons
mixed by the perturbation. We shall not use oB-
diagonal vector mixing in the subsequent parts of this

paper, but it is, for example, a suitable approximation
for the p-cv mixing problem of Glashow. ' Off-diagonal
vector mixing involves s (e'+rr) parameters.

Off-Diagonal Vector Mixing

Vector mixing contains more parameters than
particle mixing. We would like to describe here an
approximation which we call oG-diagonal vector mixing
that shares many of the desirable features of vector
mixing but has fewer parameters. The approximate
expression for the propagator is obtained from (30) by
replacing the diagonal elements of 8 by constants.
Thus,

Fio. 2. The relation between some approximations which occur
in elementary particle physics. The number in square brackets is
the number of arbitrary parameters in the approximation, for a
process that may proceed through n intermediate states, each
with the same quantum numbers. The approximation at the head
of an arrow is a further approximation to the approximation at the
tail. We discuss in this paper only the approximations inclosed in
solid lines.

Figure 2 shows the relation between the various
approximations we have discussed in this section.

III. APPLICATIONS

The Strongly Interacting Vector Mesons

We wish to apply the vector mixing approximation
described in the preceding section to the strongly
interacting vector mesons. Under unitary symmetry,
these nine particles form an octet and a singlet; the
symmetry-breaking interaction causes them to de-
compose into two singlets Q and a&), two doublets (the
E*'s) and a triplet (p).' If we assume the sytnmetry-
breaking part of the Lagrangian transforms like part
of an octet, then arguments similar to those which lead
to the Gell-Mann —Okubo mass formula4' tell us that
the propagator is of the form

LD(k')] '=

(1+4)k'—Mr
0
0
0

0 0
(1—24)ks —M, 0

0 (1+2e)k'—Mr
0 O'P

0
0

O'P
k' —M2

(32)

P(1+2e)m ' Mr j(me' M—s) P'me'—=0 —(35)

which yield
Ms ——0.68 (BeV)',

p= a0.18.
mx*'= M r/(1+ e),

m '=M, /(1 —24).

and
and

(33) Note that M& and M2 are equal to within experimental
accuracy; in the absence of the symmetry-breaking
interactions, the vector octet and the vector singlet
have the same mass. This apparently accidental de-
generacy was first observed by Okubo, using the
partic)e-mixing approximation.

These yield
e= —0.12,

Mr=0.69 (BeV)'.

The remaining two parameters are determined by the
requirement that D has poles at the observed re and P
masses. This implies

We use the following masses for these particles m p 750 MeV,
m~'=888 MeV, m =785 MeV, and m4, ——1020 MeV. H. Barkas
and A. H. Rosenfeld, University of California Radiation Labora-
tory Report UCRL-8030 (rev. ) (unpublished).L(1+24)m '—Mrj(m '—Ms) —P'nz 4=0,

where the rows and columns correspond to the fields and
E*, p, &o, P, in that order, and Mr, Ms, P, and e are
unknown constants. Using the known masses of the K~
and the p, it is simple to determine M~ and e from
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The 2&&2 isoscalar submatrix of D may be written in
the form

where
D=(k' —m„') 'y +(k'—m ')—'y (37)

Nucleon Electromagnetic Form Factors

Let F,(k') (i=1, 2) denote the usual electric- and
magnetic-nucJeon form factors. We may write these
quantities in the form

F,r(k') =$R,,/(k' —m, ')]+remainder,

F, (k )= PE;„/(k —te„)]1Pg, y/(k —my )]
+remainder,

where the remainder terms are free from singularities
at the vector-meson masses. "The pole terms are given
exclusively by diagrams of the type of Fig. 1, with the
incoming particle a photon and the outgoing particles
a nucleon and an antinucleon. Following the approxi-
mation procedure explained above, we use unitary-
symmetric values for the vertices but the expression
(32) for the propagator. In the absence of the sym-
metry-breaking interactions, let the coupling constants
of the nucleon to the vector mesons be G;~, G;„and
G;„:let the couplings of the p and ~ to the photon be
p, and p„. (Under unitary symmetry, there is no p-p
coupling. ) Then the residues are given by

)m.'—M2 —m 'p

E —m„'P (1+2')m„' M—~l

and y~ is of the same form with m„and mz interchanged.
Noir that we have determined the parameters of the

vector-meson propagator, we may apply our model to
several processes in which mixing plays a significant
role.

is the sum of an &u pole and a p pole, and the isovector
form factor is the sum of a p pole and a soft core of the
type discussed by Hand, Miller, and Wilson" at 30 F '.
We then determine the residues at these poles by fitting
the values and first derivatives of our form factors to
the values and first derivatives of the form factors
given by Hand et al. at zero-momentum transfer. In
this way we obtain form factors that agree with experi-
ment for space-like momentum transfers about as well

as those of Hand ef a/. We find that RIq=13 F ',
R]~ 16 F ) R2y 10 F ) Rheo 5 F ) Ryp 11
F ' and R2,= —57 F '.

These numbers should not be considered excessively
reliable. To take one example of a way in which error
might arise, if there is a hard core in addition to co and

P poles in the isoscalar-electric form factor, then we

may transfer large amounts of residue from the g pole
to the core without destroying the fit of the form factor
to the data. Such a reduction of R~& mould much
diminish our estimate of G~~.

We now have the products yG; to proceed further
we must know p, and p„. Unitary symmetry tells us
that y, is VSy„, and if we assume that the p pole domi-
nates the pion-electromagnetic form factor, the deter-
mination of y, is straightforward. It has been discussed
in detail by Sakurai" (actually, he discusses the deter-
mination of the residue at the p pole in the pion form
factor, but to obtain y, from this is trivial). The result
1s

(40)—~ 2(1—2~)»2/(g~)»'.

(The sign is arbitrary. ) This yields p, = —3.2 F ' and
y„=—1.9 F '. Combining this with Eq. (39) we find

(with the above choice of sign),

Gyp ——4,
Gyp= 22.1,
GI„=5,

and
G)~——w21.

aIld

E,p
——G,„y,/(1 —2e),

y„L(m '—M2)G, —m. 'PG, p]
R~o)—

(1+2»—p') (m '—m ')

We do not bother to tabulate values for the isoscalar-
magnetic coupling constants; the isoscalar-magnetic
form factor is poorly known and any numbers we would
obtain would be extremely inaccurate.

y„[(mp' M2)G, —mq'pG, q—]
(1+2&—p')(m '—m ')

(39)

We emphasize that the quantities to be compared with
the predictions of unitary symmetry are G and p, not
the experimental residues.

We obtain the experimental residues R by the fol-
lowing procedure. We assume the isoscalar form factor

' Note that it is the remainder terms that determine whether
the form factors require subtractions. The number of subtractions
can not be decided from our approximations, which are blatantly
invalid at high-momentum transfers.

A Remark on Strange-Baryon Form Factors

Unitary symmetry tells us that there are only two
independent coupling constants for the coupling of an
octet of vector mesons to the baryon octet, and only
one for the coupling of a vector-meson singlet. We are
thus in a position to use Eqs. (40) and (41) to calculate
the residues at the vector-meson poles in the strange-
baryon electromagnetic form factors. Since measure-

» L. N. Hand, D. G. Miller, and Richard Wilson, Rev. Mod.
Phys. 35, 335 (1963).

'~ J. J. Sakurai, in TheoreticcL Physics (International Atomic
Energy Agency, Vienna, 1963), p. 227.
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ment of these quantities seems remote, we shall resist
the temptation; however, we remark, that as a con-
sequence of the vector mixing-approximation, for any
baryon

R,„y„G,„
nz„'

(42)

That is to say, oi-P mixing does not affect the predictions
of unitary symmetry et zero-momentum transfer. In
particular oi-P mixing has no effect on the predictions
of unitary symmetry for the magnetic moment of the
A. is (Of course, other effects of the symmetry-breaking
interaction may change the A moment; we merely
assert that those which are enhanced by the presence
of small-energy denominators do not. )

g'.'= G'.'/(1 2s)— (43)

Scotti and Wong" have estimated that gi,'/4ir= 1.3,
gi„s/4ir= 2.8, and giss/4ir= 2.3. These numbers are
probably very unreliable; other investigators have
obtained quite different results. "

We may solve these to obtain an estimate

and

Gyp= 45,
Gj„=6.7,

Gg~
——3.5.

Vector Resonances in Nucleon-Nucleon
Scattering

We may also use our methods to obtain the residues
at the vector-meson poles in nucleon-nucleon scattering.
We shall denote these residues by g;,', g;„', and g;~'.
These are related to the quantities we have determined
by

g
'= L(1+2s—Ps) (tg s—its s)]—i

X{(m„'—Ms) G,„'—2m„'pG;~G, „
+E(1+2e)m„'—Mi]G,~'),

g '=((1+2e—p')(m '—m ')]—'

X{(mp' Ms) G—,„' 2m''—PG;sG,„
+L (1+2e)mg' —M i]G;qs},

and

The agreement of the 6rst of these with the 6rst of
Eqs. (41) offers no confirmation of either unitary sym-
metry or vector mixing; it is Inerely the statement that
R$p is approximately equal to p,g», and is independent
of all our analysis (except, of course, our calculation of
p,). It is the second and third equations of (41) and
(44) that are sensitive to our theories. Their failure to
agree is not so discouraging as might first appear, since
the "raw data"—the J"s and the g's—used in calcu-
lating the G's are so very poorly known.

We emphasize that our uncertainty is only temporary.
The near future is certain to bring far more reliable
estimates of the residues in both nucleon-nucleon scat-
tering and the electromagnetic form factors; our
methods will then provide a good check on unitary
symmetry.

X* Interactions

The only strange-vector coupling constant about
which there is some information is that of the E~ to
the A and E. Using the values for the G's given by
Eq. (44), we find Girce&iv ———4.8. Using the values
given by Eq. (41), we find Giz*siv= —6.1. The experi-
mentally measured coupling constant is

girc. iiv'/4ir = Gircesiv'/4ir (1+e), (45)

and hence girc~siv'/4ir=3. 0, if we use Eq. (44), 0.7, if
we use Eq. (44'), and 3.4, if we use Eq. (41).An estimate
of this constant was made by Chan, "who assumed that
the K* pole dominated the process ir +p —& E'+A.
Using his results and an experimental width of 45 MeV,
we estimate 0.24&girc*qiv'/4ir&0. 35. Once again the
lack of agreement is disappointing, but Chan's model is
so crude that it is difficult to assess the reliability of this
result.

The Decay of the gl

We begin by discussing p~ E+E. Under unitary
symmetry G„zIT. is arbitrary and G&zz is zero; thus the
matrix element for g decay is given by

G rrrcs (rise' —Ms)
iM(d —+ EX) i'= . (46)

(1+2e—P') (m, s—~„')
There is an alternative solution to the quadratic equa- Unitary symmetry also tells us that G&zp 4Gp&
tion for the latter two: hence

Gg„———1.0,

Gyp
——7.5. (44')

I'(g ~ EE) 3 (1—2e) (tis~s —Ms)

I"(p ~ inr) 4 (1+2»—3') (m~s —ns„')

"S. Coleman and S. L. Glashow, Phys. Rev. Letters 6, 423
(1961).

"A. Scotti and D. Y. Wong (to be published)."In an earlier version of their work /Phys. Rev. Letters 10,
142 (1963)j, Scotti and Wong find gi, '/4ir=5. 1, gs, '/4ir=49. 0,
g, '/4~=16. 'I. R. Bryan, C. Dismukes, and W. Ramsey, Nucl.
Phys. 45, 353 (1963), using a different approach, find gi„'/4r
+gq „2/4m. =34.0.

Xl —
I

—=0.027. (47)
kq„&m,

Using a p width of 100 MeV, we find I'(~t ~ EE)=2.7

'6 C.-A. Chan, Phys. Rev. Letters 6, 383 (1961).
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MeV. This is in agreement with experiment' and also
on the same order as the predictions of Okubo and
Sakurai, ' who use particle mixing models.

We shall now discuss p-+ p+s. It is known from
experiment that the amplitude for this process is
essentially zero, '" while a good explanation" of co decay
is obtained by assuming it proceeds principally through
o& ~ p+m. . We shall show that it is always possible to
choose the two independent coupling constants G~,
and G„, such that the matrix element for P decay
vanishes while that for or decay does not. Indeed, we
shall show that this may be done not merely in the
vector-mixing approximation but in the more general
propagator approximation.

The matrix element for g decay is the residue of the

g pole in forward p-rr scattering;

~M(P —+ p+s.) ~'= lim (k' —r&s&')
k~my&

XM(p+~~ p+~). (48)

Let us denote the vector (Ge, ,G„, ) as G. Then,
calculating the right-hand side of Eq. (48) in the
propagator approximation, and using Eq. (8) for the
propagator, we 6nd

IM(y~ p+w) Is=a'e, G. (49)

Since y~ is a real symmetric 2&&2 matrix of rank one,
it must always possess an eigenvector with eigenvalue
zero. If we choose G to be proportional to this eigen-
vector, the matrix element for p decay must vanish.

Using the value for ye given by Eq. (38) we find

p br't&i~&a(jp —~ s)—i (51)

Using Eq. (9), we can write this as

Q b e'"&(k' —m„') 'e&"& a. (52)

We may interpret this in the following way: the
physical-particle state, with mass m„ is a superposition
of "bare-particle states" which couple symmetrically
to the incoming and outgoing particles. The expansion
coefficients are the components of the vector e'"). As
we explained in Sec. II, this is a plausible interpretation
for the particle-mixing approximation, in which the
vectors e&"' are an orthonormal set, but for more general
approximations, in which this is not the case, it acquires
more of the aspect of a metaphor. In fact, in our for-
malism, it is never anything but a metaphor; it is clear
from the definition of the et"& in Eq. (10) that they
have very little connection with the coefIicients in the
expansion of physical-particle states in terms of eigen-
states of the symmetric Hamiltonian.

Nevertheless, in order to compare our results with
those of other workers, let us calculate the vectors e~
and e„.From Eq. (38), we find that

at the blob 2 to go into the e possible intermediate
mesons. Let. us assemble these amplitudes into a vector
a. Likewise, let us assemble the e amplitudes at the
blob 8 into a vector b. Then, using Eq. (8) for the
propagator, and retaining only pole terms, we 6nd that
the transition amplitude is

G„pg/Ge p.——Ble'P/ (mqP —Ms)
=~0.52. (50)

e„=(1+2e+P') i(r&i '—m„') i(m '—Ms)
—M„—~ 'P) (53)

IV. ALTERNATIVE FORMALISMS

In this section we discuss the relations between our
techniques and some alternative approaches to the
same problems.

Mixed States

In the calculations of Sec. III we made great use of
the y'"', the residues at the poles of the propagator. We
could also have done our calculation in terms of the
e&"&, the characteristic vectors of the g&"&. We did not
use this alternative method because, for our purposes,
it is computationally inexpedient; however, let us see
what it looks like.

Let us suppose we have a process of the sort shown
in Fig. 1. In the absence of the symmetry-breaking
interactions, there are e amplitudes for the particles

'7L. Bertanza, V. Bisson, P. L. Connolly, E. L. Hart, I. S.
Mittra, et ul. , Phys. Rev. Letters 9, 180 (1962); P. Schlein, W. E.
Slater, L. T. Smith, D. H. Stork, and H. K. Ticho, Phys. Rev.
Letters lp, 368 (1963); P. Conley, E. L. Hart, K. W. Lai, A.
London, G. C. Moneti, et al. , Phys. Rev. Letters 1P, 371 (1963).
The most recent measurement gives F($~ p+~)/F($ ~ EZ)
=0.1+0.1, PG. London (private communication) j.

and e& is of the same form with m& and m„ interchanged.
These vectors are almost orthogonal. This is a coin-
cidence caused by the near equality of M& and M2,
however, it allows us to define a "mixing angle. " It is
approximately &29'. Dashen and Sharp, ' using the
partic1e mixing approximation in which there is always
a well-defined mixing angle, find an angle of 38'. In both
cases, the mixing angle is defined such that, for zero
angle, the P is pure octet.

Subtracted Particle Mixing

In Sec. II we pointed out that naive application of
the particle-mixing approximation leads to violations
of current conservation. Vector mixing is one way of
avoiding this difhculty. Another method that has been
suggested" is to use particle mixing to calculate only
the imaginary part of (for example) electromagnetic
form factors. The real part may then be calculated by
dispersion relations, and the subtraction constants ad-
justed as to guarantee current conservation.

's S. L. Glashow (private communication).
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Method of Dashen and Sharp

Dashen and Sharp' preserve current conservation
for the form factors using a particle-mixing approxi-
Diation without making mixing-dependent subtractions.
They do this by using momentum-depend. ent form
factors for the vector-meson-baryon coupling. To be
precise, they assume that the coupling of a physical
vector meson to baryons is proportional to the vector-
meson mass. This is equivalent to using momentum-
independent couplings and using a propagator of the
form

D = M(k' —M)
—'p-', (55)

where p, is a constant with dimensions of a mass. (The
equivalence is clearly seen if we adopt a set of basis
6elds such that M is diagonal. ) But this may be written

D = (Ze —&~)-' (56)

This is evidently equivalent to making the sub-
traction in the propagator; that is to say, to using 8

propagator of the form

D = (O' —M)—'+M—'—Mo-'. (54)

This vector-meson propagat. or satis6es all the con-
sequences of transversality. Of course, it has a singu-
larity at infinity, where the true propagator is singu-
larity-free, but this need not bother us, since we are
only concerned with low-energy approximations.

Although this is in many ways a reasonable alterna-
tive procedure, we prefer vector mixing. We have
several reasons:

(1) It is possible to construct models (e.g. , quantum
electrodynamics in 2+1 dimensions) in which there is
no subtraction for the electric form factor, although
current is still conserved. It is difficult to justify sub-
tracted particle mixing in this case; vector mixing
encounters no difficulties.

(2) It is plausible that when we examine the electro-
magnetic form factors at high-momentum transfers, we
see the structure of the bare, noninteracting particles.
(However, to our knowledge, there is no rigorous proof
of this. ) This structure should preserve the symmetry
of the original theory. Therefore it is desirable to have
symmetry-breaking eGects do minimal damage to the
high momentum-transfer behavior of the form factors.
In this respect, vector mixing is superior to subtracted
particle mixing.

(3) The current experimental data" on the electric
form factors of the nucleons is fitted well by expressions
that contain no "hard cores, " that is to say, which have
no contributions from distant singularities. If we use
subtracted particle mixing, we find, that distant singu-
larities necessarily play an important role in the form
factors of strange baryons, even though they play a
negligible role in nucleon form factors. Vector mixing
does not disturb us in this way. We consider this to be
its greatest advantage.

where Z is M 'p,'. But, if the masses of the vector
mesons are equal in the absence of the symmetry-
breaking interaction (as is the case for or-p mixing),
then this is nothing but vector mixing.

The results of Dashen and Sharp are not strictly
equivalent to ours because they apply Gell-Mann-
Okubo arguments to M rather than to Z. However,
due to the relatively small magnitude of the mass
splitting, this does not have a large effect.

V. DISCUSSION

We have shown that ordinary particle mixing may
be placed in a field-theoretic context, and that, within
this context, for a large class of interactions, it is a
suitable approximation for treating particles of spin
zero. However, for particles of spin one, again for a
large class of interactions, particle mixing is inferior to
vector mixing.

The most striking deficiency of particle mixing for
particles of spin one is that its naive application to p-~
mixing leads to a violation of the conservation of electric
charge. Vector mixing does not have this difhculty.
There are, of course, other approximations that preserve
the conservation of charge, some of which are closer in
appearance to ordinary particle mixing than is vector
mixing. We have discussed some of these in Sec. IV,
and explained there why we believe them to be not as
satisfactory as vector mixing.

We have left two closely related theoretical problems
unsolved: We do not know how to refound our work on
analytic S-matrix theory. (This is important if we wish
to extend our results, which we have only shown to be
valid for fundamental particles, to composite systems. )
We do not know how to extend our results to systems
of spin other than zero or one. We suspect that the
place of the sum rule (27), which plays such an im-
portant part in our analysis, will be taken by the
condition that the scattering amplitude for the jth
partial wave must go to zero like k'&'+' near threshold.

Our attempts to apply vector mixing to the ~-P
system have not met with much success. The principal
reason for this seems to be the unreliability of our
input data (the residues at the vector-meson poles in
nucleon-nucleon scattering, nucleon-electromagnetic
form factors, and E production). These quantities have
been calculated only on the basis of very crude ynodels,
and the values we possess for them are qute unreliable.
The only quantity we have calculated that is inde-
pendent of these residues, the @-+EX decay rate, is
in good agreement with experiment. However, the
near future should bring far better values; then our
formulas should provide good checks of both unitary
symmetry and vector mixing.
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D(k2) —g ~(r)/(k2 2g 2) (A1)

where the g(") are real symmetric matrices of rank one,

(~) = g(~)e(~)&
7 (A2)

is equivalent to the inverse propagator being a linear
function of k',

D—
&(k2) = Zkp —M (A3)

where M and Z are real, symmetric, positive-definite
matrices. In this Appendix we shall prove this
statement.

First we shall show that (A1) implies (A3). We
assume that the e(") form a complete set of vectors.
Then we may introduce a reciprocal set of vectors f(")

defined by
e(r) Tf (s) —f (s) Te(r) —g

As a consequence of Eq. (A4),

e(r)f(r)T P f(r)e(r)T

Using the f("), it is trivial to construct D ',

(A4)

APPENDIX I: PROOF OF A THEOREM

In the body of the paper we stated the theorem that
the pole approximation for the propagator,

D (k') = (k' —Mp+ fsk2) '. (30)

We want this to have a pole at k'=0; therefore,

detD '(0) =det( —Mp) =0. (A9)

Since Mp is diagonal, this means one of its diagonal
entries must be zero; without loss of generality, we

may choose it to be the first. To obtain a zero physical
mass one must begin with a zero bare mass, at least in
this approximation.

Ke will now determine the residue of the pole at
zero-momentum transfer, which we call gp.

g = 1)m k'[k' —II(k')] ' (A10)

Now,

case properly, we would have to redo our entire analysis,
for the formalism on which it is based, and in particular
the sum rules (27) and (28), are valid only for massive
vector mesons. It is notorious that massless vector
mesons require a quite different treatment. Despite
this, we shall simply apply the results of Sec. II. to
this case; none of our formulas are infrared divergent,
and, with luck, our results may be valid even if our
methods are doubtful.

Ke begin with the formula for the propagator in
the vector-mixing approximation

D—1 p f(r)f(r)T(k2 222 2)

This clearly is equivalent to (A3) if

Z=Q f(r)f(r)T

(A6)

(A7)

(k2 —II)-~= [det(k' —II)] ' adj(k' —II), (A11)

where by adjA we denote the matrix constructed of
the cofactors of A. Det(k' —II) is a polynomial in k',
with a simple zero at k'=0,

M —p f(r) f (r) T222 2 (A8) where
det(k' —ll) = (1+[S]())2)2pk2+0 (k'), (A12)

Now we will show that (A3) implies (A1). A well-

known theorem in matrix theory states that given any
two real symmetric matrices, one of which is positive
definite, there exists a congruence transformation that
reduces the positive-definite matrix to the identity and
diagonalizes the other matrix. Let Z be the positive-
definite matrix and M the other. Then the theorem is
equivalent to saying that there exists a set of vectorsf" such that Eqs. (A7) and (A8) are true. Let us
.define a set of vectors e("' by Eq. (A4). Then it is trivial
to find D from D ' and we obtain Eqs. (A1) and (A2).

APPENDIX II: MASSLESS VECTOR MESONS

In the body of this paper we have followed the
custom in strong interaction physics and have only
treated electromagnetic phenomena to first order in e.
Thus, there has been no need for us to consider the
mixing of the photon with other vector mesons, since
this is an effect of order e'. In this Appendix we will
obtain some results on vector mixing in the case where
one of the vector mesons has zero mass. To treat this

n

2)2o ——P [—Mo]" (A13)

Likewise,
adj [k2—H]2 -o=ad j (—Mp) . (A14)

Since Mp is a diagonal matrix with one diagonal entry
zero, adj (Mp) is zero except for its first diagonal entry,

Thus,
[adj (—M p) ];;= 222o(),oI);o

[yp],;= (1+[5](i) '&;o&;o.

(A15)

(A16)

This means that the photon pole occurs only in the
photon channel, and never in any other channel. (Of
course, this must be the case, if the Coulomb force
between particles is to depend only on their electric
charge and not on their hypercharge or isospin. ) On

the other hand, there is no such constraint on the other
residues, and thus it is possible to have a p-meson pole
in the photon channel. (Of course, this must be the case,
if our analysis of form factors, in the main body of the

paper, certainly valid to first order in e, is not to be
contradicted. )


