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Weak-Coupling Limit for Scattering by Strongly Singular Potentials*
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The validity of certain cutoff procedures, which have lately been employed in the treatment of termwise
divergent perturbative expansions in nonrenormalizeable Beld theories, is investigated in the context of
nonrelativistic scattering from strongly singular repulsive potentials, For the cases considered the heuristic
cutoff prescription indeed yields the correct expression for the weak-coupling limit of the phase shift.

I. INTRODUCTION
"' EURISTIC computational schemes for extracting

meaningful results in the framework of non-
renormalizeable field-theoretic models have come under
considerable discussion recently. ' ' Although the per-
turbative expansions represented by sets of Feynman
graphs are termwise divergent, one supposes that this
is only an artifact introduced by an improper expansion
in powers of a coupling constant g, and that an appro-
priate representation of the sum must exist in which
divergences do not appear. To achieve such a represen-
tation, one introduces a cutoff parameter, A say, in the
Feynman integrals, rendering them termwise con-
vergent. The supposition is that the sum over graphs is
itself finite as A —+~ and that in this limit it represents
the physical answer. In practice, the summation cannot
be fully carried out in closed form. Often, however, one
is content to find the leading term in an asymptotic
expansion for small values of the coupling constant g.
Here the further supposition is then made that the
leading term can be obtained by summing the leading
contributions (as A—+ ~) for each order of g. Even this
sum over leading terms cannot in general be carried out
in closed form; hence, one cannot in general confirm that
it indeed leads to a finite result as A —&~. But on the
assumption that the sum does in fact exist, a power
counting analysis then yields information about the
nature of the leading term in an asymptotic expansion
for small values of g.

Since, as said, the legitimacy of these procedures
cannot be easily investigated in a field-theoretic context,
we propose in this note to study similar improper
perturbative expansions arising in nonrelativistic po-
tential scattering theory.

II. CUTOFF PROCEDURE FOR SINGULAR
POTENTIALS

In this section we describe how the cutoff procedure
would be used in connection with the study of scattering
by a strongly singular repulsive potential. Consider the

radial Schrodinger equation for the /th partial wave

d'p & l (l+1)
+ k' — g—V(r) p=0.

dr'

where

gc~—(k—r) st(kr') V(r') rp(k, r')dr', (2)
k

sg(kr) = (-,'~kr)'~'Jg+;(kr),

c((kr) = —Pvrkr) "'F'g„;(kr) .
The phase shift for the tt'th partial wave is determined by

taunt,
———(g/k) sg(kr) V(r) q (k,r) dr. (3)

Now we shall always suppose that rV —& 0 as r ~~.
But suppose, in addition, that r'V~ 0 as r —+ 0. Then
the Born series solution of (2) will exist and will
converge for small enough values of the coupling
constant g. However, if gV —+ gr s as r~0, P) 2,
g) 0, then the eth interation of (2) will behave near
the origin like

, (n) & gnPt+lrl+I —n(P—2)
)

7'-+P

so that the iteration integrals diverge for order e larger
than (21+1)/(P—2). The Born series does not exist
for any value of g other than zero. This naturally
suggests that there is a branch point at g=0 and we
seek a procedure for obtaining an asymptotic expansion
of the solution in the limit of small g. Let us see how we
can set up a heuristic method for obtaining the leading
term in the asymptotic expansion by use of a cutoff.
We replace the actual potential V by a cutoff potential,
e.g.,

V, (r)=8(r e) V(r). —

The integral equation for the regular solution of (1) is

oo

q&(k, r) =st, (kr) gs~(kr)——c~(kr') V(r') p(k, r')dr'
k
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this procedure leads to the result

tan5, = —keg+-s, g2» '+xgs» '+
and it is easily shown that this series converges to

(4)

tan), = —k(g) / tanh(g / /»). (5)

For finite e this expression is analytic in the coupling
constant g. Passing now to the limit ~ —& 0, we find

tanb= —k(g) "', (6)

i.e., there is now a branch point at the origin of the g
plane. The cutoff procedure for obtaining the leading
term in an asymptotic expansion for small g evidently
works, in the sense that it gives a finite result. We shall
see later on that the result is in fact the correct one.

In the above example, we could explicitly sum the
power series in g for finite cutoff e. Even where this
cannot be done in closed form a power counting
analysis permits one to infer the nature of the leading
term in the asymptotic expansion for small g. Thus, if
we find for finite e the series of leading terms

tan5, =k Q a„g"» "~'

the leading term in the asymptotic expansion for small

g can be obtained by retaining, for every order of g,
only the leading terms for e~ 0.

For example, in the case of S-wave scattering by the
potential

gV=gr '+gV', r4V' —+ 0,
r—b0

III. THE ASYMPTOTIC EXPANSION

We consider repulsive potentials of the form (g=n2)

gV'(y) —tr2y —2—2/v 0(&( oo (10)

With )1=3+-2' the radial equation is

d2q

+ k'—
dy2 y2

~2y 2 2/v +—0

In the limit of zero energy (k=O) this can he reduced
to the Bessel equation, whose regular solution is4

~lvyl/sled (p~r—1/v) (12)

In order to obtain a convergent expression for the
regular solution of (10) when k/0, we set

In both cases the coeKcient u is independent of k and g.
It should be noted that in a formulation of the

scattering problem in momentum space, certain quanti-
ties—as, for example, the matrix elements (k', t~ V

~
k, l)

of the potential operator —may not exist. In particular,
if E(—', (P—3) the Lippman-Schwinger integral equation
for the T matrix cannot be formulated without a cutoff.
A similar situation arises in nonrenormalizeable field-
theoretic models. Thus, the kernel of a Bethe-Salpeter-
type equation may be so singular on the light cone that
its Fourier transform does not exist. ' Nevertheless.
the cutoff technique can in principle always be intro-
duced. In the following we shall investigate the validity
of this cutoff procedure for the problem of scattering
by singular repulsive potentials of a certain class.

we can rewrite this as

n=o
v'(y) =

w (y)Z(y)

so that Z(r) satisfies the equation
—kgl/ b/1 (g» b) 1/ b P /b (g» b) n) (7)

tanb= P a (k)g"+ak"+'g"'+""~ "

If we now suppose that the bracketed expression exists
in the limit e —+0 we infer that tan5~ const&&kg' ',
as g

—+0.
In the example worked out above in connection with

the result (5), all Born terms in the expansion for tanb
were divergent in the limit e —+ 0. In the general case,
with V —+ y & as y —& 0, the cutoff procedure gives the
following results: If (2l+1)/(P —2) is not an integer
and if n is the greatest integer less than (2t+1)/(P —2),
we have the form

dZ—
q p' +k2tep2Z=O.

dy dy

where

r

Z(r) = 1+k' W (r,r') Z(r') dr', (13)

W(r, r') =—
P p2p'(r') /p2p'(t)

ddt�

.

From the asymptotic behavior of the E function we
see that

Imposing the boundary condition Z(r) ~ 1 as r —+ 0,
we obtain the Uolterra equation

m-0

+higher order in g. (8)
(y) ~ r(v+1)/sve —vav —

&/ v.
~0

If (2l+ 1)/(p —2)= 22 is an integer we have

(k)gm+. ak21+lgn lng

+higher order in g. (9)

and it is then as easy matter to show that there exists a

' R. F. Sawyer (to be published).
' In terms of the Be»»el functions Jv, (x) we have

k„(X)=X(2 SinpVV) '(e'"v/ J V(2X) e'"v/'J„(2X)}. —
The factor a~" has been included to ensure a Qnite limit for n ~ 0.
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positive number 8, independent of r, r', ), and g,
such that

fol
(
W'(r, r')

(
&Br'

~argg[ ~&V. (14)

+ k' ——
dr' r2

-2X+1 po' d v—2 r"+&— ~. (15)
r pp- dr r+')

Since the iteration solution of (13) can be differentiated
termwise to yield a uniformly convergent series for
dZ/dr we inay write

Thus, the iteration solution of (13) converges uniformly
in 'A and g in the cut plane defined by (14). From the
fact that Z„(x) is an even entire function of p and
analytic in the x plane cut along the negative real axis,
it follows that Z(r), hence p(r), is analytic in the g
plane cut along the negative real axis and that it is an
entire function of X2 considered as a complex variable.
Since the Jost solution of (11)can be shown by standard
methods to be entire in g and X', we conclude that the
scattering amplitude is meromorphic in the cut g plane
and meromorphic in X' (apart from a factor e' ~ in the
S-matrix element). This generalizes the results an-
nounced by Regge and Predazzi' for a special example
of a singular potential.

Now tan8 has a branch point at g=0 and we are
interested in Gnding the leading term in an asymptotic
expansion for small g, For this purpose, define

v(r) = r"+&Z(r),
so that

It can readily be veriaed that the integrations in (17)
converge if B(n,r') is replaced by rr'lim orr 'B(n, r').
Thus, the first iteration of (17) is proportional to n'
and the remainder is of higher order in n. As expected,
therefore, the leading term of p in an asymptotic
expansion for small g is just given by the erst Born
iteration, which in this case is covergent. For tanb the
leading term for small g is thus proportional to g, being
given by the first Born approximation.

(ii) For Xv(1 we have

qp' 2K+1 (v '""I'(1—gv)
2 — —4Xi

yp r k2 I'(1+Xv)

+terms of higher order in rr.

Again the first iteration of (17) gives the leading term in
the asymptotic expansion for small g. Correspondingly,
the leading term for tanb), is given by

v.) (v) '~" I'(1—Xv) 1
tanbq —+- ~oxvkpx (18)2'" k2) r(1+X.) r'(1+X)

In particular, for the case X=—'„v=1, which corre-
sponds to the example worked out by the cutoff
procedure in Sec. II, we recover the result obtained
there, namely tanb= —nk.

(iii) For Xv=1 we have

d 'v

+ k'—
dr2

y2 pp 2X+1
'0=k 2 rx+~

pp r

po 2~+ 1
(v~o in~) r—i—Px

Pp

+terms of higher order in rr.

Xpo '(r)

=B(n,r) .

top'(r')r' t"+&&v(r')dr', Again the leading term is obtained by the first iteration
of (17) and this leads to a result for tanb which is
proportional to n' inn:

The regular solution satisfies the integral equation

1
v (r) = si,+, (kr) ——si,+;(kr) ci+,*(kr')B(o.,r') dr'

r
—-ci,+1(kr) san+1(kr') B(n,r') dr'. (17)

0

%e now distinguish three cases:
(i) If Xv) 1 we have

pop 2X+ 1
2

pp r
r—1—2/1r

)v —1

+terms of higher order in n.
' F. predazzi and T. Regge, Nnovo Cimento 24, 518 (1962).

tan5i, ~ 2 ' '"(v.k'"/Xi' (1+X))n inn.
g~p

As discussed in Sec. II, the same result is obtained by
the cutoff technique, the present case corresponding to
a situation in which the erst Born term in the iteration
of (2) diverges logarithmically.

Iv. DISCUSSION

It is not dificult to understand the reasons for the
success of the cutoff prescription for the determination
of the leading term of tan8 as g

—& 0. In the case of the
simple power-law potentials gV(r)=gr ' "" which we
have been considering, the cutoff procedure, insofar as
it retains only the most singular terms in e ' for every
order, in effect amounts to a replacement of the integral
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equation (2) by the equation'

/k) "+&

q, (k,r) =
~

—
(

r)+&

I'(X+1) k2)

g—r"+'— r' "+: '—2/"q, (k r') 0(r' 2—)dr'
2X

hm(ek)'"f(g2 '/")
e-+0

(21)

exists, it must coincide with

lim tanb), ,

g
~1/2 (k) 1+,

k r (X+ 1) E2)
r"+~ ' '/"@ (k r)dr (22)

where p()(k, r) is the properly normalized zero-energy
solution of (1). )The normalization is determined by
the first term on the right han-d side of (20).$

But the expression (22) is nothing other than the
leading term (for g~ 0) of (3), which we rewrite here

s)+.(kr)r ' ""y(k r)dr.

Indeed, in this integral the contribution from the range
outside any neighborhood of the origin is proportional
to g=e~. Being interested in the leading term, which
vanishes more slowly than this as g~0, we may
replace s)+~(kr) and p(k, r) by their asymptotic forms
for r~0. But from (13) we have seen that y(k, r)~ y2(k, r) as r —+0, where p() is the zero-energy solu-

tion. It can be directly veri6ed that the expressions for
tan5), which one obtains from (22) on use of the true
zero-energy solution agree with the results obtained in
the preceding section.

It should be remarked that this argument does not
depend on the form of cuto6 function which is employed,
provided that for positive values of the cuto6 parameter

' For simplicity, we consider only the case P u &1, where already
the first Born term is divergent for e ~ 0.

The solution, apart from a k-dependent normaliza-

tion, is just the regular solution of (1) for k=0 and
V=gr ' ' "8(r e).—For dimensional reasons, the corre-
sponding expression for tan5), , obtained from Eq. (3)
is necessarily of the form

(~k) 21f(g~
—2/v)

where f(x) is analytic at x= 0. Therefore, if the limit

e the potential is regular enough to ensure the existence
of the Born series for small enough g and provided that
the limii, (21) exists.

In summary, we can argue apart from the considera-
tions of Sec. III that the leading term in the asymptotic
expansion of tan8), is given by the approximation (22)
/recall that we are now discussing for simplicity the
most serious case, where the first Born iteration of (2)
is already divergentj. In (22), +2(k,r) is the zero-energy
solution of the Schrodinger equation, properly normal-
ized. We have argued that it must be correctly given by
the cutoff procedure, at least for the class of potentials
under discussion. The direct results of Sec. III con6rm
this and also con6rm that no delicacy has been over-
looked in these plausibility remarks, i.e., they con6rm
that the limit (21) indeed exists. That the limit (21) is
not analytic in g should not be surprising, since the
limiting process e —+ 0 is not uniform with respect to g.
A simple illustration of this phenomenon has already
been provided by the example of Sec. II, where for
V=gr, l=0& wefoundtanl= —lim ()(g)' ' tank(g'"/~)

(g) 1/2k

In our discussion so far, we have considered simple
potentials of the form gV= gr ' '~". For the more general
case,

gV' —gLr
—2—2/v+ V' j

where r'+""V~ —+ 0 as r ~ 0 and where V~ is independ-
ent of g, we would expect that the weak-coupling limit
for tanb is unaffected by the presence of the less singular
addition V&. It would certainly be ignored in the cutoB
procedure. This expectation would in fact be justi6ed if
one could show that the integral in (22) in fact converges
(it is only convergence at the lower limit that would be
in question). In (22) po is the zero-energy solution of
the full Schrodinger equation. Since the integral in fact
converges when V~=0 there can be little doubt that it
exists when V~ is present. That convergence is enough,
we can argue dimensionally. Consider, for example,
the case

V(r)=gr ' '/"(1+yr/'), X) &1, p)0,
where y is a 6xed parameter independent of g. For
dimensional reasons, the existence of (22) implies that

«» ~ (kg"")""f(g~"')~ (kg"")""f(o),
p-+0

independent of y. As to the convergence of (22), this
can be inferred in every particular case from the
asymptotic form of q 0 for small r. For example, if p= 1
and p=-', we 6nd

0(1r/21+ar 1/2) 1+$(g)1/222/1+0( 1/2) j
t-+0

and (22) indeed converges.


