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laboratory using the linear accelerator as a pulsed source
of neutrons.
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Quantum numbers which may possibly be identified with strangeness S, baryon number 8, and isospin I
are found to be natural consequences of the generalized field theory of a spinning particle developed in earlier
papers, the theory requiring that S+2I+2J is even, as observed. The generalized Dirac equation for
fermions leads to the correct values of B,S, I3, and J, and approximately the correct masses for the states n,
p. . . ¹3*+,¹3*,the lowest known states of I=-', , J=q, or $. The generalized Dirac equation for
bosons similarly describes these quantities for the X and E* mesons. The generalized Kemmer equation
for fermions yields the correct values of 8, S, I3, J, and the masses for the A. , Yo*, and Y03* if the spin of
the Yo* is ~, and the generalized Kemmer equation for bosons similarly leads to the correct masses, spins, and
isospins for the S=O states @, f, or, q, p, and predicts 1=1,S=O states at 1-BeV spin 1 (&i?), 1.24-BeV
spin 2(B?), 450-MeV spin 0(i?), and I=O states at 965 MeV (spin 1) and 926 MeV (spin 0). The only
arbitrariness in the theory lies in the choice of the two mass parameters for each equation, and in the choice
of which combination of two independently conserved currents allowed by each equation is identified with
the electric current. The theory satisfies a correspondence principle with the classical relativistic equation
of motion of a symmetric top, and yields a prescription for describing states of higher quantum numbers. It
then predicts the spin of the Yo**state as —',, correctly describes the spin and mass of the X»* state, predicts
a series of S*states 166 MeV apart of progressively increasing spin, and describes other states, the prop-
erties of which have not yet been investigated.

1. INTRODUCTION
'

N our attempts to understand elementary particles
- - and nuclear forces, for several decades we have been
making an assumption that is not forced on us either by
the principles of relativity theory or by the requirements
of quantum theory. This assumption ultimately has to
do with the shape of an elementary particle, but in the
relativistic quantum theory of a point-particle, a con-
cept such as shape does not enter. It is therefore neces-
sary to examine the classical limit of relativistic 6eld
theory —the relativistic classical mechanics of a spinning
particle -where the motion of the spin of even a point-
particle can be described only when we know its mo-
ments of inertia about axes along, and perpendicular to,
its spin axis. In the absence of any information about
the structure of the particles it is necessary to treat the
particle as a point with, however, a finite amount of
spin-angular momentum associated with it, This re-
quires nonzero moments of inertia if the angular

*Research Supported by the Company Independent Research
Program of TRW Space Technology Laboratories and by the
U. S. Ofhce of Naval Research.

velocity is to remain finite, and these may be prescribed
as parameters which are a measure of the "shape" of
the particle.

In the corresponding quantum theory we have ignored
these questions, arguing that the angular velocity is not
an observable and that it is sufhcient to associate a spin-
angular momentum with the particle, and look for
equations of motion which lead to irreducible representa-
tions of the Lorentz group for different spin values.
These equations, in particular those of Dirac and
Kemmer, are also based on the assumption that the spin
and rest mass of a particle are always constant
parameters.

In view of the well-established correspondence be-
tween classical and quantum physics it seems surprising
that dynamical variables and parameters such as angu-
lar velocity and moment of inertia, so important in
classical mechanics, play no role in quantum theory. It
has, therefore, seemed reasonable to conduct a rein-

vestigation of the relation between the Dirac equation
and the classical equations of motion to see at what

point the correspondence was lost. For many years it has
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J=I~+ (E/c) (~X (dpp/dt) ),

E being a parameter proportional to the moment of
inertia of the particle about any axis at right angles to ~
(assuming axial symmetry). In fact, for a free particle,
Eq. (1.1) has a solution in which ro precesses around the
constant vector J with angular velocity ro'= (c/KoP) J
according to Euler's equations

I'(d~/dt)+ra x s=O, (1.2)

where I'=Kcu'/c is the moment of inertia about axes
orthogonal to ~.

For v/0, the corresponding relativistic classical equa-

been recognized that the classical equations of motion
reflect, in an imperfect way, the essential properties that
make the Dirac equation such an accurate description
of nature. In particular, pair production 2itterbem egleg,
and the gyromagnetic ratio of the electron all appear in
the classical theory if we do not inhibit the free exchange
of angular momentum between spin and orbital modes,
as some incomplete statements of the classical equations
are prone to do.

Further investigation has revealed that the operator
which corresponds to the angular velocity ~ in the
classical theory does in fact have its counterpart in the
Dirac theory. It is nothing but a constant times the
Pauli spin operator e, and the equation J=-',Ae for the
spin has as its classical limit J=Ipp, where I is the
moment of inertia about the spin axis. Quantum me-
chanically, there seems to be no need to break J up into
factors of dimension I and ~, and we have become
accustomed to thinking of the Pauli spin operator as the
spin itself, apart from the factor —,'A. Angular velocity
and angular momentum are thereby assumed to be
parallel to each other, and indistinguishable apart from
a constant factor.

The nonrelativistic classical equations of motion of
course do not require that the angular momentum and
angular velocity of a body should be parallel to each
other, unless the body is rotating about a principal axis.
The relativistic classical equations of a point-particle
with spin lead to the surprising result that, the angular
momentum and angular velocity are not required to be
parallel even if the particle is rotating around a prin-
cipal axis. The reason for this is essentially the same as
the reason why the ordinary momentum and velocity of
a spinning particle are not required to be parallel in
classical theory, and are represented by quite different
operators in the Dirac theory. A distribution of matter
rotating about a principal axis will acquire products of
inertia from relativistic effects if the axis itself rotates,
and in the limit of a point-particle at rest this leads to
the relation between spin-angular momentum J and

angular velocity ~

and
v„p„+Mc=0, (u„„v„=0

M =m —(K/4c)(o„„oi„„,

(1 4)

(1.5)

where m is a constant. Thus, even for v=0, there are
extra contributions to the mass and spin given by

oM= —(K/2c') pp (d'pp/dt'), 3J= (K/c) ppXdpp/dt,

which, for the motion described by Eq. (1.2) give

J=J +Ja,
where

8M = (Jn/A)mp, n'= 2m pc'/A,

and I„is the component of Iro in the direction of J.
If we set E=O, the classical equations reduce to

or
esps+mc=0, Jsv=Ippsv

&
~sv&v=O

W= v p+mc'(1 —P')'I' J=Ips.

It follows as a consequence of the equations of motion,
that m is a constant of the motion. These equations are
to be compared with the Dirac or Kemmer equations, in
which m is also a constant.

where
(ic„P„+mc)/ =0, I„„= iA—e„

6ttv=Q GP76v

(esv~en) ep3va ev3se ~

(1.8)

and n is a constant. [The Dirac equation is given by the
choice

and the Kemmer equation by the choice

e„=P„, n= 1, I„„= iAP„„,— (1.10)

where y„, P„are the Dirac and Kemmer operators, re-
spectively, and y„„—= (y„,y„), P„„=(P„,P„).] Fro—m (1.8),
it follows that

(e&v&ear) (epe3vr+evrhpa e&r5vn evrr3sr) ~

As shown in Ref. 2, the basic wave equation which
we adopt for a free particle is suggested by the classical
equations (1.4) and (1.5).

(is„p„+Mc)/=0,

'H. J. Bhabha and H. C. Corben, Proc. Roy. Soc. (London)
A178, 273 (1941); S. Shanmngadhasan, Can. J. Phys. 30, 226
(1952).' I. H. C. Corben, Proc. Natl. Acad. Sci. U. S. 48, 1559 (1962);
II. H. C. Corben, Proc. Natl. Acad. Sci. U. S. 48, 1746 (1962);
III. H. C. Corben, Nuovo Cimento 28, 202 {1963);IV. H. C.
Corben, Phys. Rev. Letters 10, 555 {1963);V. H. C. Corben, Phys.
Rev. 131, 2219 (1963).

tions of motion for a symmetrical top are'

esp= ('vip 'vpPs) = Itsy K(—M s~M~p cpy~Ã~s) ) (1 3)
3II= (K/2Ic) oI„j„„,

where
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TABLE I. Il, S, Iz, I and mass values for solutions of Eq. (1.17).For a, states the values of S and Iz are for the limit in which mass
differences are neglected. The theoretical values for the mass levels are based on the choice m = 1328 MeV= 8m0. Antiparticles of all those
listed appear when the signs of both e and y4g4 are reversed. Each state occurs twice, with the same values of g5, 8, S, I3, J but with
T= &1.

Represen-
tation
of P„

10X10

%454

1—1—1—1

1
1—1—1—1

—2—2
0
0

0—2
0
0
0
0
0

1
1
2I
2
1
2

1
2
1
2
1
2
1
2

2
1
2
1
2

Mass
(units ta)

a+ (1—2a —2a')"'
a—(1—2a —2a')'I'
—(1+a)

(1+2a)'i'
a+ (1—2a —2a')'I'

(1—4a)'i'
(1 4a) 1/2

a—(1—2a —2a') 'i'
—(1+2a) 'i'
—(1+a)

Mass
(MeV)

1328

1328
1292—959—1494

1485
1292
939—939—959—1485

—1494

SpinJ Particle
MH

M
va

MO

f?/

%3*O

g g+
MO

p
p
n
%3*

Mass
(MeV)
experi-
mental

1321

1321
1316—940—1517

1517
1316
938—938—940—1517

—1517

where'
M =as—moo„„X„„.

The X„„satisfy among themselves the same commuta-
tion relations as do the e„„'.

ICOII,P
= Zktyy ~

AXE„„=—2' ocA.„„,
(1.13)

V~ =Z6p.

The correspondence between these quantum equations
(1.12) of motion and the classical equations (1.3) is established

by writing

so that

()ivvv~or)= 9'pa~vr+)ivrfiva )iprfiva )ivafillr) ~

In addition, we postulate that

Independently of the choice (1.9) or (1.10) for the e»
we may choose

f In —4 ) )„„—~Zn7„„
or

(e„,) „)=0, (1.14) X„=P„', n= 1, i7ip„„', —
so that

(e„„,).)=0.
where the y„', p„' commute with the y„, p„. We are

( ",&-)=o, (.,&-)=o, therefore led to the four following possibilities: two
equations for fermions (with e„=y„, )I „=P„or with

The spin operator of the particle described by Eq. e„=P„, )I„=p„) and two equations for bosons (with
(1.11) is now e&=y&, )&=y&', or with e&=P„X&=P„).Each of the

(1.15) fermion equations

since it follows from (1.11) that the components of

J„„+x„p„—x„p„

are constants of the motion.
Apart from the superficial similarity between Eqs.

(1.11), (1.12), and the classical equations (1.4), (1.5),
we note that, if ii'iX is defined as (X,H), where P is the
invariant operator on the left-hand side of Eq. (1.11), it
follows that

J„„=—i(e„p„—e„p„)
i~epv+2mpc(epa~av eva)iap) r

3II= —(imp/A) X„J„„.
(1.16)

3 Readers unimpressed by classical limits and the correspond-
ence principle may think of the extra term in Eq. (1.12) as an
interaction that we are "guessing, " a term which splits the
otherwise degenerate mass levels.

[iY„P„+mc ,'m pcy„„P„„ji—P=—0, (1.17)

$iy„p„+m"c ~rp m p"cy„,y„„')P=0, —

fiP„P„+m'"c mp"'cP„,P—„,'jiP= 0,

(1.19)

(1.20)

the 6rst describing particles of spin

J=—',A(a+ o'),

fiP„P„+m'c simp'cP„„y„„)P—=0, (1.18)

describes states of spin J„„= i@I sr y„„—+P„„j, i.e.,
J=ALse+&] (with Ap, Ai, Jis= J, Vsp, ysi, yi, ——2ze,

pp3 psi pip iX). The spin of a particle state described

by either (1.17) or (1.18) is therefore —', (for e 2=0 or
—2) or-', (for e.z=i).

Similarly the two boson equations obtained from
(1.11) and (1.12) are
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i.e., spin zero or unity, and the second describing parti-
cles of spin

J=A(x+x'),
i.e., spin 0,A

In the following sections we examine in turn e
properties of the solutions of these four equations in the
rest systems of the various particle states.

1.0,
'

( 1,0,-1/2, 3/2) N13

( I sOi1/2@3/2} N13

l

( 1,-2,-1/2, 1/2) 8

2. BARYONS OF STRANGENESS 0, &2

The solutions of Eq. (1.17) in the rest system have
been given in Ref. 2 (III and V) and are reproduced here
in Table I and Fig. 1.Equation (1.17) describes particle

-'. The six lowest states known to fall into
these categories are P, e. . . Xis, is

together with their antiparticles.
The conserved probability density four-vector is

given by

0.5

0
0 0.05 0.1 0.15 0.2 0.25

s„=iap*y4g4y„p (2.1)

( „=2p„'—1) so that the probability density f*t)4$ isW~=
not positive de6nite and may be normalized to +1.

Fio. 1. Positive mass levels of Eq. (1.17) ij..17 in units mc' and as
of a=m0, m. The quantum numbers represent B,S, 3,

1 d hed line indicates the value of arespectively. The vertica as e ine
'

used in Table I.

%e now deFine

Pet)4/d V= &1. (2.2)
F=B+S= ,'e /*{1—-iis+t)4(1+if s) }PdV, (2.6)

F articular state the sign of 7 is automaticallyor any par ic
determined. The independently conserved charge-cur-
rent density may be taken to be I,= 4 e Pe{i)s—1+i)4(1+ifs) }fdV, (2,7)

j„=siepcef 'r4'g4(1+t)s)rsvp,

where eo is the proton charge and e= ~1.The choice of
the sign of e is discussed below. Neutral s

the total charge in units of eo being given by

so that, from Eq. (2.4),

Q=-', (B+S)+Is.

Is——-', (B+S)t)s,

(2 8)

(2 9)

eoc

The quantity

jgd V=-', e P*q4(1+res)gdV. (2.4)

(2.5)

where g5 now represents the eigenva ue of for the
Th I =i(B+5) for charged states andstate P. us,

ent with the—-'(B+S) for neutral states, in agreement wi2

usual assignments.
For charged states (ifs ——+1) we have

Q= B+S=e P*t)ad V

is foun 0 e p 1f d to be ositive for positive-energy states and
s stemnega ive or negt' f egative-energy states. In the rest sys em,

h eigenstates may be characterize y e
for sucheigenvalues +1 of the operator y4g4. Hence, for suc

sacs wi

Eq. (2.2), we have B=&1, the sign being tha
rest energy. Thus, B t Eq. (2.5)) may be interpreted as
the baryon number.

4The notation is that of M. Roos, Rev. . y .Mod. Ph s. 35, 314
(1963).

P(eV4n4)4d V (2.10)

for eigenstates of the operator cy4g4, which has eigen-
values X=&1.Thus, charged states ) = 1 characterizes

=&1 whereas) = —1states of charge Q = F'= B, with B=&,w
= I'= —8.Ke there-characterizes states of 5=—
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fore see how strangeness appears as a natural conse-
quence of the basic equation (1.17).

In the classical Dirac theory of the electron, the
electric charge is given by

Q=o P*fdV,

where c= —1 for positive energy states and c=+1 for
negative energy states. In the present theory, however,
the choice of the sign of e is more subtle. Each repre-
sentation of the P„gives rise to a set of states for one
sign of y4g4 and to the corresponding antiparticle states
for the opposite sign of y4g4. In addition, each state
occurs in two different representations of the P„. We
therefore choose the sign of o(o=+1) for the one posi-
tive energy state (p4

——1, p4 ———1, po=+1) that occurs
in the 1&&1 representation of the P„. The spin of this
state is ~„and since ) = —1 it. follows immediately from
the definitions (2.4), (2.5), (2.6), and (2.7) that Q= —1,
8=+1, 5=—2, Io ———i2. Since these quantum numbers
characterize the ™state, we therefore choose the mass
m of this state to be approximately the mass of the
particle. This same state also occurs in the SXS repre-
sentation of the P„, with y4q4 ——+1, qo +1. I——n order
that this should describe the same particle, it is then
necessary to choose e= —1. This choice automatically
causes not only Q, but also 8, 5, and Io to assume the
same values for ™~as before. However, in this repre-
sentation there are three other states, all neutral, with
masses 1292 MeV, —959 MeV (spin —,'), and —1494
MeV (spin oo) for the choice moc'= 166 MeV. Since o has
been fixed as —1 in this representation, it follows that,
with qo ———1, 5+8=: —1 for all three states, the ap-
proximate value becoming an equality when mass
diA'erences are neglected (see below). Since 8= 1, —1,—1 for these three states respectively, it follows that
S=: —2 for the first state and zero for the other two. The
isospin component I3 then assumes values appropriate
to the particles ', n, N~3*' with which these states are
identified.

These same three states now appear in the 10&10
representation with y4g4= —1. Ke must, therefore,
choose e= —1 in this case so that the quantum numbers
of each state will be the same as before. However, this
representation also includes the charged states at ~1485
MeV (spin —',) and +939 MeV (spin -', ). Since o has been
already Axed as equal to —1 in this representation, it
follows that X=+1, so that 5=0, Q=8=2Io for these
states. These states of positive baryon numbers there-
fore have a positive charge, and those of negative baryon
numbers a negative charge. In addition, the spins,
masses, iso spin, and strangeness of these states are
appropriate for the description of the proton and the
charged component of the %~3~+ resonance, together
with their antiparticles. States which appear as a
charged particle together with its neutral counterpart in
the same representation are characterized by v = 1

[Eq. (2.2)] and states which appear with the other
member of the isospin doublet in a diGerent repre-
sentation are characterized by 7 = —1.

The Dirac equation for the particle implies the
existence of the ™+particle, and no other particle states.
In this generalized theory the same equation (since in
the 1X1. representation the extra term in the Dirac
equation is zero) implies the existence of a number of
other states which have the correct values of 8, S, I3,
and J and approximately the correct masses to describe
the particles listed in Table I. The + similarly leads to
the corresponding antiparticles.

For neutral states (go
———1) we have, from (2.6),

8+5= —2I,=o P*gdV (2.11)

so that 8+5 has the same sign as c. However, from
Eq. (2.2), 8+5 is not strictly equal to &1unless P is
an eigenstate of q4. Such is the case for the X~3* states,
but for the n and ' states this is true only in the limit
mp ~ 0, i.e., in the limit in which mass differences of an
isospin doublet are neglected. This is in agreement with
the fact that in the current phenomenological descrip-
tion of isospin, such mass differences are in fact neg-
lected, the integral values of 2I3 and, consequently, of S,
being only approximations, valid in this limit. However,
5+2Io is required to be strictly equal to the integer
2Q 8, and t—his result follows from the dejinitions (2.5),
(2.6), and (2.7). If such mass differences are neglected,
the definitions (2.6) and (2.7) reduce to Io ogoF', with-—
e= e for r= 1, F= —eg5 for 7-= —l.

To examine the values of S and I3 when mass diBer-
ences are not neglected, we note that the neutron wave
function was given in' Ref. 2 [IV, Eq. (3.19)j as

(v'V) (3P' 9)'" P— —
(2.12)

np 2p+3=—0, go= —1,

n=(m —m„)/mo, p= —(m„+m)/mo.

For m p(&m, the first three components, for which
q4=+1, are large compared with the last component,
for which g4= —1.The multiplying factor normalizes P
according to Eq. (2.2). However, since in this case
o =+1 (see Table I) 5+8 is now

V=5+8= (P'+3)/(P' 3)—
the neutron mass being given by

m„= —mo+ (m' 2mmo 2—mo')'~o. —

5 m in this reference is here replaced by ~m, and mo by —2~o.
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For the values of m, mp chosen in Table I, (5+B)
= 1.03. To terms of order (mp/m)2, this may be written

(5+B)„=:1+3(m„—m„)/m.

1600
I I I I

MEV Q SPIN S I3 STATE

1494 0 3/ 0
- 1/2 N131485 + ~ 1/2

1328 - 1/2
1292 0 1/2 2 1/2

However, mass differences are not accurately described
at the present level of this classical field theory.

Similarly, for the ', which appears in the same
representation as the other solution of (2.12),

1000— 959 0
939 + 0

- 1/2 n

1/2 p

m=„. o =—mp —(m' 2—mm p 2—m p')'" (m= m-. -) REST

ENERGY 0
MEV

0!= m m o mp, = —m —m0 mp,

it follows that P2(&1, and S+B,which has the same sign
as e, is now given by

I'=5+B= (3+P')/(3 —P').

The fourth component of p(214 ———1) is now large com-

pared with the other three. In this case

F=5+B=: 1+(2/3mp2) (mg- —m„-.o)',
.Igg I, I I I

'
Q - 0 +

939 - 1/2 p
959 0 1/2 0 1/2 n.

~0
1292 0 - 1/2
1328 + / 1/2

1485
3/2 0

- 1/2 N13
1494 0 . 1/2

which again reduces to the correct integer when the
' mass difference is neglected. In Table I the

values listed for 5 are in the limit in which such mass
differences are neglected. We note how just the right
states are picked out automatically as having a strange-
ness equal to +2.

As noted earlier, the third component I3 of the isospin
is given from (2.9) as -', (B+5) for charged states and

', (B+5) fo—r -neutral states. For neutral states, it has
the values &—, only in the limit in which mass differences
are neglected. This consequence is borne out by noting
that, in the 10)&10 representation (y4114

——+1) for ex-

ample, the proton state has six components, three large
(214

——+1) and three small (214
———1) LRef. 2, IV Eq.

(3.19)j.
m~+m
2m' m

—(m, +m)
Z(m„—m)
(m„—m)
z(m„.m—)—

aP+2n —2P =0, 21 =+1, m„= I m(m —4mp))'1',

P= —(m„+m)/mp, P+2=2(m„+m)/(m m). —

Again, the last three components vanish in the limit
mp ——0. To complete the verification that I3 is indeed the
third component of the isospin, at least in this limit, we
find that, if we neglect the three small components of P„
and the one small component of P„ it follows that, on
examination of the components in this representation,

P44'~= ~V, P44' =z4'~, P4'=1.
Since also

plpp4+p4114= o,

we may write the usual components of the isospin for the

Fio. 2. Calculated properties of rest-energy states of Eq. (1.1'7)
for m=1328 MeV, m0=166 MeV. Experimental values for I= 2,
J=-,', or —,

' are indicated by dashed lines. For negative energy
states Q denotes the charge of the antiparticle.

2m +m o= m~+2mzrqp~p. (2.14)

Kxperilnentally, the left-hand side has the value 3958
MeV and the right-hand side the value 3974 MeV, an
agreement of better than 0.5% accuracy. For the par-
ticular choice mc'=1328 MeV, mpc'=166 MeV= Smc',
the mass levels are as given in the table, and in Fig. 2.

The six mass levels are given by the formula

W/mc2 = -', a (51—52)

+{p+ 2144(51+52)]2 442(ir, 3)2) 1/2 (2.15)

where S~, S2 are the eigenvalues of e X given in Table
II. The spin of a state is —2'A(4r+2X) so that for spin- —',

states o"X=0 or —2, and for spin-23 states e X= 1. The
allowed eigenvalues of (42 3)2 have been given in Ref.
2 II, Table I.

It was pointed out in Ref. 1 III that a generalization
of Eq. (1.17) of the form

fzv„P„+mc pm pcy„„(P—„„+P„„))P—0,

proton and neutron thus: Icf. Eq. (2.9) with B=1,
5=0j

Ii= szp4rlp, I2= 2p4,—Ip= 2214

Thus, Ii+zI2 —'2zP4(——rip
—1), and hence gives zero when

applied to the proton state, and similarly (Ii—zI2)$„=0.
As shown in Table I, it follows from the above

analysis that the spins, charges, strangeness, baryon
number, and isospin of every one of the states that occur
as solutions of Eq. (1.17) are in agreement with experi-
ment. Without any assumption about the values of the
parameters m, mp, the following relation between the
masses of these states may be derived directly from the
table.
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TABLE II. Eigenvalues of 4r X and (4r 2)'.

Particle SI

0
0—2—2
1
1

S2

0—2
0—2
1
1

(e 2)'
0
3
3

0
1

where P»' are Kemmer operators that commute with the

y» and P», includes all of the states discussed above, but
also leads to other states of spin -'„—'„-,'. The highest
state to which this leads has a spin -', and mass mc'(1+ 2a),
i.e., with the choice mac'=ense'=166 MeV used in
Table I this spin--,' state lies 166 MeV above the spin-2
N~3*' state of Table I. There is, in fact, a spin-~ state
N»* lying 166 MeV above the observed N»* resonance,
although both calculated levels lie 23 MeV below those
observed. Similar extension to include states of spin up
to —,

' leads to a spin--,' state at @ac'(1+3a), i.e., 166 MeV
above the ~5 resonance. Experimentally, this energy
difference is 217 MeV, although the broad width of the
N37* resonance makes this uncertain. Extension of this
analysis to higher spins would lead to a series of states of
increasing spin, 166 MeV apart, i.e., a spin- —, resonance
at 1992 MeV, a spin-11/2 resonance at 2158 MeV (see
X4* at 2190+25 MeV), a spin-13/2 resonance at 2324
MeV (cf. 1V4* at 2360&25 MeV) etc. These states, and
the N~~*' state considered above have rest energies and
spins

W= mc'+ (Jn/A)mac',

J=-',A+Jn,

A vector field B„coupled in this manner would cause
transitions between charged and neutral states in the
same representation (since p» anticommutes with 4f5),

but would not couple states with opposite signs of r. In
the 5)&5 representation this interaction would couple
the ™»only to the ™0,and in the 10X10 representation
it would couple charged and neutral nucleon and N~3*

states. No interaction conserving s„and derived from
the y» and P» would couple the to the other states,
since they occur in diferent representations.

s» =icf*rI4yp»p, (3.1)

leading to a probability density which is normalizable as
in Eq. (2.2).

s4d U= P*P4y4fd U= &1, (3.2)

since 4f484 ——p4. For a given state, the sign is unambigu-

ously determined. As in the last section, states may be
characterized by the eigenvalues &1 of y4g4. For either
eigenvalue, and mo'&m', it is found that

(3.3)

3. BARYONS OF STRANGENESS +1

It is found that Eq. (1.18) describes only three differ-

ent mass levels, and that these states are neutral, with
zero isospin.

According to Eq. (1.18), the conserved probability
current is

and correspond to the classical result (1.6). However,
the isospins and strangeness of these states, and of
lower ones that occur in this generalization, remain to be
calculated.

In addition to electromagnetic interactions, which
would occur in this theory from an interaction of the
form

has the same sign as the rest energy, and, if P is nor-
malized according to (3.2), ~B~ =1.We may, therefore,
interpret 8 as the baryon number.

In addition to (3.1) the four-vector

(3.4)

or, in the case of an explicit magnetic moment,

is conserved, and we identify it with the charge-current
density. The electric charge is then given in units of eo

by
4'V»v4'J»v, Q= —i W*n4 Y4r4P44'd U' (3.5)

it is possible to construct invariant interactions of the
form

igfP»QB»

g'gP„pPB„„, etc. ,

(2.16)

(2.17)

which, if the 8;, 8;; are real and the 84, 84; are imagi-

nary, do not destroy the conservation of s» [Eq. (2.1)j.
From (2.16), for example, one obtains the wave
equation

[7»8»+ (mc/A) —(mec/4h) y»„P»„+igP»B»]g =0.

For an eigenstate of y4g4 this is zero, since y4g4 and y5
anticommute. The states are therefore characterized by
p4p4

——~1 and by two independently conserved quanti-
ties, Q and B, which assume the values 0 and &1,
respectively, the sign being that of the rest energy. If, as
usual, one writes

it follows that S=—8, 8=&1, for all eigenstates
of 74$4.
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In the rest system, Eq. (1.7) may be written thus: where

where

"Yi=P2+) 'Y4=P3) 'Ys= P1)

E= W/mo'C', 2I =m'/mp'.

[ p4E—+r/+43. X+p142 Xjp=0,

(P28 P31 P12) 8+ (014 P24 P84)

(3.7)

and b=r/ '=mo'/m'.
This solution occurs both with y44I4=+1, r =+1,and

with y4r/4 ———1, r= —1. In either case B=W/~W~.
Similar solutions occur with the opposite value of J,.

In the 10&(10 representation there are two solutions

(3 6) W =m p'c'E= &m'c'[(1+b) (1—3b)/(1 —2b)11/2 (3 9)

As before, spin-~3 states are characterized by o"X=1,
and spin-+~ states by e X=0 or —2.

Equation (3.6) has no solutions in the 1&&1 repre-
sentation of the P„. In the 5&(5 representation, there is
only one solution, of spin 2,

W= ~m'c'(1+. 2b)" spin 2. (3.11)

W= +m'c [(1+b)(1 3b) (—1—4b)/(1 —2b) j'/,
spin +2, (3.10)

and

z

.—iE

1 —2 1 iE '
(2—2I)E

i —1 0 E
—i g —i 0 iE
—1 i g 0 E
0 0 0 2Ii(3 , r/)(—r/+1) g

The six spin states, two signs of 5', and two signs of
y4g4 correspond to the 24 times the energy occurs in the
40)(40 matrix, which represents the operator of Eq.

=0, (3.8) (3.6) in this representation. As before, for normalized
solutions, 8= W/~ W~.

Explicitly, the spin-2 state is given by

Z

1
0
1

—iE
0
0
0

z

—1 —z

0
1 0
0 0

—iE 0
0 —iE
0 0

0
—1

1 i
0 1

0
—2 1

Z

Z

0 0
0 0
0 0
0 0

iE 0
0 iE
0 0
0 0
0 0
0 0

Z

z

1 i
1 i

0 0
0 0 iP—

iE 0
0 0
0 0
0 0
1. 1. x

z zx
—x—1

(3.12)

so that
(~ 2)4 24+i—Ex=o—,

»7+(n —2)e=O,
—i'+�(2I—2)x+'A=0,

3x+8)X=0,

(3.13)

ip
0

which leads to the eigenvalues (3.10). Spin-2 states
(J,=ap, —12) are characterized by

The three lowest known states4 with 8= 1, 5= —1,
I=O, Q=O are Ao (1115-MeV, spin 2.) Fp* (1405 MeV,
spin?) I'38* (1520 MeV, spin —,'). If the spin of the Yp*is
2, the masses and spins of these states are adequately
described by the choice m'c'=1428 MeV, mo'c'=132
MeV, which fit the A' and I'o~, and lead to a spin-~ state
at 1554 MeV. A prediction of this theory, then, is that
the Vp~, which occurs in the 5)&5 representation [Eq.
(3.9)j has a spin of —,'.

The generalization of Eq. (1.7) to include states of
spin up to —,

' is

['&.P.+ ' 'o' P..b..+4—P-..')34=0 (315)

with

Z
4'3 , /22 8/0

x
zx
0
0

P 3/2, —1/2

x
zx

2x
0

The conserved probability current is now

s„= iqk*r/4y4r/4'P„f, — (3.16)

leading to a probability density which is norlnalizable to
&1 as before.

(~+1)S+'~+ 'Ex=0,
—@+(iI+1)&=0,
i'+ (iI+1)x=—O,

which yields the eigenvalues (3.11).

(3 14)

z
r = $4dV= lP74r/4 P4$dV= ~ 1 . (3.17)

c

States are now characterized by the eigenvalues &1 of
p4q4g4', and by the eigenvalues &1 of p&'. We now And



B840 H. C. CORB EN

that
j„=ze,c4*g,p,g, '(zy, +,'(-1 —q3'))P„P

which is conserved. The charge in units of eo is then

is conserved, so that Q= ~ 4*V3Vd U. (4 4.)

where

8+S=2 z P*g4p4q4'y3P4gdU, (3.18)

The states may be characterized by the eigenvalues
&1 of p4p4' or by the eigenvalues &1 of p&'. We define

S= /*gad U= &1, (4.5)

I3= 2 Pn4V3n4'(1 n3')—p4dU (3 19)

4. K PARTICLES

Bosons of strangeness &1 are described in this theory
by Eq. (1.19), which in the rest system may be written
thus:

(4 1)@4=jP3+212(P3+zP2P1)ir ir )4

where we have written

8'= m "c'E, mo" = am" )

y;=p2o', y; =p2e; 1=1,2, 3.
74 P3 ) 7& P'i) 74 P3 p 75 P& ~

On squaring Eq. (4.1) we obtain

E2$= (1+am e')P,

the spin being —2,5(e+e'). Hence,

For P„'=0 (so that g4' ———1, 213'=+1) Eq. (3.18) re-
duces to Eq. (3.5), I3——0 and the solutions of Eq. (3.15)
reduce to those already discussed. However, for wave
functions normalized according to (3.17), we have in
general I3 +1 or——0, with 8+S=O as before. Thus,
Eq. (3.15) describes states of spin —'„2, —',, and of isospin
0 or 1. Detailed properties of these solutions have not
yet been investigated, but the highest energy level is
easily seen to be characterized by Z'=Z"=2, e X
= o X'= X X'= 1, and to have a spin ~. To first order
in b, its rest energy is 223'c2(1+2b)=1690 MeV for the
same values of m' and b as before. The next highest
observed level V()**is, in fact, at 1680 MeV, but its spin
is unknown at present. Since Eq. (3.15) yields rest-
energy levels not yet investigated, this identification is
not certain. If the Z particle appears at all in this
theory, the simplest equation which could describe it is
Eq. (3.15).

we have
Q= -,'S+I3,

I3= 2S(c74&4%=+4')
2S(V3V—= +0)

It is not difficult to choose the two parameters m"c'
= 808 MeV, neo"c'= 166 MeV to fit the masses of the E
and E*mesons! However, it may be significant that this
value of mo", chosen to give the best fit to these experi-
mental masses, is indistinguishable from the value of
2233, used in the other extended Dirac equation (1.6). In
addition, the strangeness, spins and conjugate doublet
structure of the EC, E*particles are seen to emerge from
this analysis. The states S= 1, I3——-'„Q= 1, and the
states S= —1, I3 ——,', Q= —1 have ——also the correct
spins and masses for the E+, E~*+, and E,E~* states,
respectively, and the states S= 1, J3= —-'„and S= —1,
I3= ~ correctly describe the E', E&*'. In the classical
field theory, the

twelvemo*

states of spin 1 (I,= jz, 0, —5)
and the four E states of spin 0 correspond to the sixteen
components of f in Eq. (4.1).

5. BOSONS OF ZERO STRANGENESS

We complete this analysis by examining the eigen-
functions and rest-energy eigenvalues of Eq. (1.20).
With the notation

which is found to be normalizable to +1 for positive
energy states and to —1 for negative energy states. We
choose e in Eq. (4.4) so that, if P is an eigenstate of
'r474 E+4+4 = +1. This is necessary in order to ensure
that the electric charge associated with a given state has
the same sign in the two subspaces y374'=+1 and
y4y4'= —1 in which this state occurs. Hence, for either
eigenvalue of y4y4' we have Q=S. If, however, P is an
eigenstate of ys', we have S=&1 as before, since y4, y5'

commute, but Q= 0, since y4', yz' anticommute. Thus, if

(P23)P31rP12) ZX
q (P14)P24)P34) ZX

W= &m"c2(1+a)'~' (e e'= 1, spin 1) &

(4.2)
pr = ~zzz ~c2(1—312)1/2 (ir 32~= —3 spin 0)

'
and similarly for p„„', the equation in the rest system
may be written

We postulate that the charge-current density associated
with Eq. (1.19) is

where
(5.1)

g„=zce3cg*y4y4'y„f, (4 3) W= 2m3"'c2E, zl= zzz"'/22223'".
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The conserved probability current is now'

s„=icg*q4rI4'3„$,

and the electric charge-current density is

i .= lieo4*n n '(I+~ ')PA,
with

rI„=2P„' 1,—rI„'=2P„" 1,—go' =pi'rlo'rlo'rIo'.

The electric charge in units of eo is then

(5.2)

correspond in this manner always diGer by terms of
order (mo"'/m'")'.

We now de6ne the operators

(5.9)

Using (5.5) and other properties of the P algebra it may
be shown that

1
Q=- Fn4'(1+no')P4d~

2
(5.3)

The solutions are simultaneously characterized by the
eigenvalues &1 of the commuting operators g4g4' and
qo'. As in Sec. 2, charged states correspond to qo' ——+1
and neutral states to g~'= —1.

In each representation, each solution occurs with both
signs of the energy and with the same eigenvalues of
q4r14' and of g5'. In what follows, we restrict our attention
to the positive energy solutions, normalized according to

IXI=jI, (5.10)

i.e., that the operators (5.9) satisfy the commutation
relations for angular momentum. However, they are not
related to the spin; for wave functions normalized
according to (5.4) the charge Q $Eq. (5.3)$ is given by

(5.11)

where I3 has the eigenvalues 0, &1. To further verify
that I is indeed the isospin we note that, in the space of
the wave functions

P*P4$d V= 1, (5.4)
as related by Eqs. (5.6), (5.7), and (5.8), we have

so that rI4oI4'=+1, qo' ——+ 1 denotes states of charge +eo,
and q4oI4'= —1, oIo'=+1 states of charge —eo.

We may define an operator Po', such that, as with the
ot.her P',

Polo ='rIoPo =Po rIo =2Po' 1 rI4Po+Por14 =0 (55)

In the 10X10representation, as defined by Kemmer,

0 —i 0
P4'= i 0 0

0 0 0.
1 0 0

g4'= 0 1 0
.0 0 —1.

0 0
Po'= 0 0 0.1 0 0.

1 0 0
»'=0 —1 0

.0 0

~ ~

so that, from

0 1

(5.9),

0 0 —i 0

0 i 0..0 1 0.

Ij=—1 0 1 ) I2———i 0 —i
v2 v2

0 0

I3—— 0 0 0

We find that, for any two states P+, P which occur in
the same representation with the same rest-energy
eigenvalue, but with opposite signs of the charge,

PoV+= 0 , PoV =4+-- (5.6)

Hence
P4V+ =4'o, P4Vo = —@'+

P4'Po'P = Vo, Po'P4'go= —i'

(5.7)

(5.8)

The masses of the neutral and charged states which

Such states are always accompanied by a neutral state
Po(go' ———1, q4q4' ——+1) such that, if small components
are neglected as in Sec. 2,

0 0 —1

the familiar matrices which represent isospin unity.
Quantum numbers which characterize the eigenstates

of Eq. (5.1) in the rest system are shown in Table III.
States of isospin unity, the components of which are
linked together by Eqs. (5.7) and (5.8), occur only in
the 10X10representation of the P„' Lthree times (with
spin 0, 1, 2) in the 10X10 representation of the P„, and
once (with spin 1) in the 5X5 representation of the P„).
In each case the neutral component is slightly heavier
than the charged components. Each neutral component
of a state with I=1 is accompanied in another repre-
sentation by a state I=0 with the same mass and spin
but with the opposite sign of g4g4'. At least in the case of
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TABLE III. Eigenstates of Eq. (5.1) for bosons with S=O. The bracketed levels are components of isospin triplets according to Eqs.
(5.7) and (5.8). The parameters pa'", mo'" ——am'" have been chosen as 1041 and 106 MeV, respectively, i.e., a=.'0.1.

Representations
p„ p I

IX1
'g4'g4 (W/m"'c')'

Possible W {MeV)
identi6- experi-

W (MeV) cation ment~

1041

5X5

10X10

10X10 1X1

5X5

10X10

1—1
1—1

1

1

1—1
1
1—1
1

1
1—1

1
1—1
1
1—1

+
0
0

+
0

0

0
+
0
0
0

+
0

0
+
0

+
0

1
1—4u'

(1—6a) (1+2u) (1—4a) '

(1—4u) (1+2o) (1—2a) '
1—4u'

(1—4a) (1+2a) (1—2a) '
(1—6a) (1+2a) (1—4a) '

(1+2u)'
1

(I+2a)'(1—4o)
(1—4a) (1—4a')
(1—4a) (1—6g) (1+2u)

1+4u
(1+2a)'
1+4u

(1+2a)'(1—4o)
(1 4)'(—a1+2a) (1—2o) '
{1—4u) (1—4u')
(1—4a)'(1+2a) (1—2a) '

1—8u
(1—4a) (1—6a) (1+2a)

1—8u

1041
1019
926

926

1253
1041
965
785
548

1235
1253
1235
965
759
785
759
449
549
449

A, B

1019
922

1000

922

1253

958
783
548

1220

958
757

754, 770

& Data from M. Roos, Phys. Letters 8, 1 (1964) and recent experiments.

Equation
number

(1.17)
(1.18)
(1.19)
(1.20)

j;
4+Is V

Pf.v
1
4VP V

PPV

P„V
1
4VPV
1
4++V

PI V'

0, ~2
&1
&1
0

mc' moc'
I I (MeV) (MeV)

1328 166
0 & —,' 1428 132

0, 1 808 166
0, 1 0, 1, 2 1041 106

(p,ep), and with less certainty in the cases O', r)), (x&,P)
and (B,f) there is some evidence to support this con-
clusion. In Table III and Fig. 3, the bare masses pre-
dicted by the theory for the various states are shown for
the choice no= 1040 MeV, a= nzs'"/m'" =0.1.'T—he agree-
ment with observation is much better than one would
expect, not only with respect to the structure of the
states, the various spin values and the automatic
grouping of most of the levels into states with I=0 and
with I=i, but also with respect to the mass levels
themselves.

A state of J=2, S=O, I= 1 is predicted around 1.24
BeV (the B s.—co resonance P) in addition to the ob-
served I=O f state at this energy. A J=O, S=O, I=1
state also appears around 450 MeV, together with I=0
states at 965 MeV (spin 1) and 926 MeV (spin 0).
(ps 7) Each of these latter resonances exists in two states
with g4g4'=&1 according to this picture. There also
exists in this theory charged resonances of spin 0 and 1

TABLE IV. Values of S, I, I allowed by Eq. (1.11), and values of
m, m0 used in the text.

around 1 BeV, which do not possess neutral counter-
parts in the sense of Eqs. (5.7) and (5.8).

To terms of first order in a= ms"'/m"' we note from
Table III that

7s(y, 75p) 5$f+w(y, 25$$ p 5$e1rwv~ 215~ ~

Experimentally, the last two equations are accurate to
better than 0.3%, since these states form part of the
equally spaced I=0 series f, P, co, rf, coABQ.

6. SUMMARY

The values of S, I, J to which the four equations
(1.17), (1.18), (1.19), and (1.20) give rise are surn-
rnarized in Table IV. In each case S+2I+2J is an even
integer, a result which is valid for every particle and
resonance state so far observed. The values of m and mo
chosen in the text to fit the experimental mass values are
also listed in Table IV. It is a weakness of this theory
that these values differ from one equation to the next.

Each equation gives rise to two independently con-
served currents, and the particular linear combination
of these which is identihed with the electric current is
arbitrary. The electric charge is related to 8, S, and I3
in the usual way. The baryon number 8 for the fermion
states fEqs. (2.5) and (3.3)) is always conserved for
eigenstates of &4ti4 and is equal to + 1 for positive-energy
states and —1 for negative-energy states. The strange-
ness and isospin are separately conserved only in the
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5X5 10 X 10

P~ 1 X 1 5X5 10X10 1X1 '5X5 10X10

~& + 0 —. J '
State + 0 —J State + 0 —J 'State + 0 —J I State + 0 —J State + 0 —J State

1300

1200

sea 2 f
2 8

1100

900 0

700

0

Fio. 3. Mass, spin, and charge eigenstates in diGerent repre-
sentations of the generalized Kemmer equation for bosons of zero
strangeness (full lines) and experhnental values (dashed lines).
The ~ and ABC states do not appear in this analysis. Data from
Ref. 4.

limit in which mass differences are neglected, although
sS+Is is exactly conserved. The values of S, 1's, J, 8,
which are derived for the various states described by the
four equations are all correct with the possible excep-
tions of Ye* (spin rs) and the s.—ei resonance (1=2),and
Xi (J=1). Extensions of these equations to describe
higher values of 5, I, and J have so far led to the correct
mass and spin for the X~5*resonance, and to the correct
mass for the I'0**, with a prediction that the spin of
this state is ~5.

The spins of the individual states appearing in this
analysis are given in Eq. (1.15) as the sum of two

operators, one of which is the spin operator of the
unmodified Dirac or Kemmer equation. Thus, the states
described by Eq. (1.17) and analyzed in Sec. 2 may be
denoted by (-,',1) or (~r,0) the first number referring to
the usual spin, and the second to the additional spin
component which is the basis of this theory. Ke notice
that particles of even strangeness are described when
this additional spin component is integral, and particles
of odd strangeness when it is half-integral. While it is
generally required in an interaction that the total spin
should be conserved, reactions in which the sum of the
components of each spin should be separately conserved
would allow particles of type (~s, 1) or (~s 0) to transform
into states of type (1,+) or (OP) only by the emission or
absorption of states of type (-,',zr). Similarly, states of
type (rs, 1) etc. , could then transform into themselves, or
other states of the same type, only by the emission or
absorption of states of type (1,1) etc. , as described by
Eq. (1.20). When supplemented by the requirements of
charge and baryon number conservation, this ap-
proximate rule would lead to the conservation of
strangeness in the production of the bosons described by
Eqs. (1.19) and (1.20) by interactions between the
fermions described by Eqs. (1.1'7) and (1.18).

There is ample evidence in the literature that it is
relatively easy to invent schemes which yield the correct
values for the quantum numbers. and mass values for a
number of elementary particle states. The theory de-
scribed in this paper differs from most of these attempts
in that it is related through the correspondence principle
to the classical equations of motion of a spinning point-
particle, equations which one has no hesitation in using
to describe the motion of an elementary particle under
conditions in which quantum e6ects may be neglected.
In addition, the existence of quantum numbers which
may possibly be identified with isospin and strangeness
is deduced from the Geld equations, these dynamical
variables assuming their correct integral or half-integral
values in the limit in which mass differences are neg-
lected. However, it has yet to be shown that 5 and I as
they emerge from these equations are in fact conserved
when interactions which are known experimentally to
conserve them are introduced into the field equations,
or that these encouraging consequences of a classical
field theory will stand the test of second quantization.


