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A variational calculation is performed to determine the upper and lower bound of the eigenvalue of the
ground state of a three-body system with two types of two-body, central potential without hard core.
The trial wave function used is a function which is a product of the solution of the two-nucleon Schrodinger
equation up to a certain internucleon separation, which goes over into a variation function for larger dis-
tances. The calculation is done by a Monte Carlo method. The results show that with this type of trial wave
function, the upper and lower bound are rather close to each other, with the difference between the values
of the two bounds equal to only about 3% of the magnitude of the upper bound.
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~HEN a two-body potential with a hard core is
used in a variational calculation to determine

the binding energy of a few-body system, it is necessary
to choose a trial wave function which can allow for a
faithful reproduction of the behavior of the exact wave
function immediately outside the region of the hard

.core, where the attractive potential has a large depth.
If the trial wave function fails to meet this requirement,
the upper bound obtained will, in general, be rather far
away from the eigenvalue. To deal with calculations of
this kind in which a hard-core potential is involved,
Austern and Iano' have recently proposed a type of
trial wave function which focuses particular attention
on the region of strong attractive interaction. In this
type, the trial wave function is chosen as a product of
the solution of the two-body Schrodinger equation up
to a certain internucleon separation which goes over
into a variational function for larger distances. To test
the usefulness of this type of trial function, calculations
have been made to determine the binding energy of a
two-body system with a square-well potential contain-
ing a hard core' and to find the energy of the "So state
in Li'.' In the former case, an upper bound of —3.92
MeU is obtained, which is to be compared with the
eigenvalue of —4.13 MeU. The fact that there is still a
comparatively large difference of 0.21 MeU between the
upper bound and the eigenvalue arises as a consequence
of the choice of a square well as the shape of the two-
body potential. The discontinuity in this potential
necessitates choosing the separation distance in the
trial wave function to be at the edge of the square-well
potential, ' which was purposely not done by Austern
and Iano. However, the advantage of this type of trial

wave function was still clearly demonstrated over many
other types of trial functions. ' In the case of I.i', it was
also found that the determination of the energy of the
"So state can be made more reliable with this type of
trial wave function. However, due to some approxi-
mations made in their calculation, it was not possible
to discuss how close the upper bound is to the energy of
this state. In our opinion, therefore, these two examples
show quite impressively the promise of this type of
wave function in variational calculations on few-body
problems, but do not demonstrate the degree of accu-
racy which one can hope to achieve with this wave
function.

In this investigation, we shall calculate with this type
of wave function both the upper and the lower bound of
the energy eigenvalue of a three-body system. The two-
body potentials used will not contain a hard core; they
will be those which have been utilized in accurate
calculations performed by other investigators. From the
values of these two bounds, we will gain some informa-
tion about how good this trial wave function is. It is
true, of course, that from this study, no definitive state-
ment can be made concerning the accuracy of this type
of trial function in the case where a hard-core two-body
potential is involved. However, if the two bounds
should turn out to be close to each other, then this
calculation would at least serve to give the indication
that further calculation with hard-core potential using
this trial function may also yield upper bound which is
fairly close to the eigenvalue.

The method of calculation is discussed in the next
section. In Sec. III, the numerical results will be pre-
sented and in Sec. IV, a discussion of the results will be
made.

II. METHOD OF CALCULATION
*Work supported by the U. S. Atomic Energy Commission. The upper bound will be computed by the usual' N. Austern and P. Iano, Nucl. Phys. 18, 672 (1960).' P. H. Wackman and N. Austern, Nucl. Phys. 30, 329 (1962). Rayleigh-Ritz method, i.e.,' E. W. Schmid, Y. C. Tang, and R. C. Herndon, Nucl. Phys.

42, 247 (1963). gs(g = g 1
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where Eo is the lowest eigenvalue of the Hamiltoniai1.
For the lower bound, we adopt a method of Temple'
which gives

Ep) Er, =(H) ((H ) (H) )/(Ei (H)) (2)

with E& being the exact energy of the first excited state
having the same symmetry property as the ground state.
The choice of the two-body potentials used in this
investigation will insure that E& denotes the energy of
the configuration in which two particles form a bound
state and the third particle is far away. Thus, E& can be
obtained quite easily by a numerical solution of the
two-body Schrodinger equation.

It might be appropriate to mention here that if a
trial wave function is capable of reproducing faithfully
the behavior of the exact wave function in the region of
small internucleon separation and has enough flexibility
at larger distances, the computation of the lower bound
can be very fruitful. In a previous calculation, 4 we have
demonstrated this point by a calculation on a two-body
system using a potential of the Yukawa shape and a
Hulthen-type trial wave function. For an eigenvalue of
—2.3071 MeV, the upper and lower bound obtained
were —2.3054 and —2.3640 MeV, respectively. Thus,
in this particular instance, the gap between the two
bounds is only 3%%u~ of the eigenvalue, which shows
clearly the usefulness of the lower-bound method.

For convenience, we shall consider our three-body
system as a fictitious triton. Since, in this investigation,
the trial wave function will be assumed to contain only
the configuration in which the two neutrons are in a
space-symnietric state, the spatial part can be written as

4 = f(ris)g(r13)g(r23), (3)

in which 1, 2 denote the neutrons and 3 denotes the
proton. For the function f(r), we use

f(r) = U (r)/r, (r(df)
Affexp( —err)+Br exp( —pfr) j

(r &df) (4)
y1/2

where Ur(r) is a solution of the equation

A2 d2
———U, (r)+ [V,(r) —«]V, (r) =O,

m dr'

with Vr(r) being the effective potential between the
neutron pair. The constants Ar and Bf in Eq. (4) are
adjusted such that the function f(r) and its first
derivative are continuous at the separation distance
df. There are a total number of four variational param-
eters in this function, namely, er, dr, nr, and Pr. The
function g(r) is defined in a similar fashion, except that
the potential function in Eq. (5) is replaced by the
effective potential V, (r) between a neutron-proton

4 E. W. Schmid, Y. C. Tang, and R. C. Herndon, Nucl. Phys.
42, 95 (1963).

3 G. Temple, Proc. Roy. Soc. (London) 119, 276 (1928).

pair. The variational parameters in this latter function
are e„d„rr„and P, .

If the two-body potential used is spin-independent,
the functions f(r) and g(r) are identical. In this case,
the total number of variational parameters will then be
only four, i.e., e, d, n, and p.

The factor r'i' in the functions f(r) and g(r) is chosen
such that the asymptotic behavior is given correctly.
For instance, when the proton is far away from the two
neutrons, the wave function P takes on the asymptotic
foal

f(rip) exp (—2apR)/R, (6)

where R is the distance from the proton to the center of
mass of the two neutrons. The parameter n, is thus
related to the separation energy of the proton. If we
have some idea about the magnitude of this separation
energy, a fairly good guess for the value of n, to start
the variational process can then be obtained. This is
useful in a variational, calculation, since if one can start
with a set of values for the parameters which are close
to the optimum values, the time of computation can be
greatly reduced.

The starting point for the search of the optimum
values of df, d„ef, and e, can also be fixed easily. It has
been pointed out by Austern and Iano' that the upper
bound is rather insensitive to these parameters. In our
actual calculation, we have found that this is indeed so.
Both the upper and the lower bound are especially
insensitive to the variation of df and d, . In fact, in some
of the cases considered in this investigation, we have
merely fixed them at a reasonable value without further
variation. For ef and e„our experience indicates that
they can be set as zero initially. After the best values
for n f erg pj and p, are found, er and e, are then varied
to improve the value of the two bounds. In this manner,
we can usually get the best possible values of the upper
and lower bound obtainable with the type of trial wave
function used in this investigation.

All the integrals which arise from the computation of
the expectation value of the Hamiltonian and of the
square of the Hamiltonian are done by a Monte Carlo
method. As this method has already been discussed in
detail previously, "we shall not discuss it further here.

The numerical calculation was carried out on an
IBM-7094 computer. To insure a high degree of accu-
racy, double-precision arithmetic has been used in the
computation whenever it was felt necessary.

III. NUMERICAL CALCULATIONS

Two types of central potential without hard core have
been considered. These were the potentials used in the
calculations of Rarita and Present' and of Baker et al. '
We choose these potentials in this investigation since we

3 E W. Schmid, N. ucl. Phys. 82, 82 (1962).
7 W. Rarita and R. D. Present, Phys. Rev. 51, 788 (1937).

G. A. Baker, Jr. , J. L. Gammel, B. J. Hill, and J. G. Wills,
Phys. Rev. 125, 1754 (1962).
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feel that the results obtained by these authors are quite
accurate and hence, useful for purpose of comparison
with the upper and lower bound obtained in this
calculation.

of the form

(10)

with

V, (r) = —Vp exp( —sr),
V, (r) =0.57 Vi(r),

Vp= 123.56 MeV, z= 1.156 F ~,

(7)

in the triplet-even and singlet-even state, respectively.
This potential was used by Rarita and Present in a
study of the two-, three-, and four-body problems. ~ '

To test the accuracy of the Monte Carlo method, we
have first computed with the potential given by Eq. (7)
and a trial wave function which has a spatial part of the
form

f= expL —V(&12+ris+r28)$.

With this wave function, the expectation value of the
Hamiltonian can be calculated analytically and the
result is —7.470 MeV with y=0.39F—'. With our
Monte Carlo method, we get E„=—7.47&0.11 MeV
with 40 000 estimates. The amount of computing time
needed on the IBM 7094 computer was 15 min.

For a two-body potential with spin dependence, the
wave function for the triton has the form

O'= P,X,+P,X, , (9)

where iP, and P, are spatial wave functions which are
symmetrical and antisymmetrical in the space coordi-
nates of the tw'o neutrons, respectively. The functions
I and X, are spin functions, with I antisymmetrical
and X, symmetrical in the spin coordinates of the two
neutrons. Since the main purpose of this investigation
is to examine how appropriate our trial wave function
described by Eqs. (3)—(5) is as 11„we shall ignore the
part P,X,. Due to this simplification, our upper bound
will be at least about 0.22 MeV different from the exact
eigenvalue, as was found by Rarita and Present. ~

The fact that we ignore the part g, X, in Eq. (9) makes
it necessary to compute the lower bound with effective
potentials Vf(r) of the neutron-neutron pair and V, (r)
of the neutron-proton pair instead of the two-body
potential given by Eq. (7). This is so, since otherwise,
the gap between the two bounds would arise mainly as
a consequence of our omission of the part f,X, rather
than from the inaccuracy of our trial wave function as
against the best possible form of f,. These effective
potentials will also have a Majorana character and be

9 Rarita and Present (Ref. 7) used A'/m=41. j.2 MeV —F' in
their calculation, while we use A2/m=41. 47 MeV —F2. However,
all their results quoted here have been adjusted for this difference,

A. Calculation with an Exponential Potential

The two-body potential used here is a potential with
purely Majorana space-exchange character. It has

in the even orbital-angular-momentum states.
The search for optimum values in the 8-parameter

space is done with 4000 estimates. After the search is
over, more estimates are then taken to achieve the
desired degree of statistical accuracy for both the upper
and the lower bound. In total, the amount of computing
time spent is about 3 h on the IBM 7094 computer.

With 35 000 estimates, we obtain

E„=—7.81&0.07 MeV,

EI.= —8.31&0.16 MeV,

with the uncertainty representing the standard devi-
ation calculated by our Monte Carlo method. In the
calculation of EI,, a value of E~ equal to —1.06 MeV
determined by solving the two-body Schrodinger
equation with an effective potential V, (r) is used.

The optimum values of the parameters are nf=0.23
F—', pf ——1.35 F ', dr ——1.2 F, ef——4.0 MeV, n, =0.27 F ',
P,= 1.65 F ', d, = 1.2 F, e,=0 for the upper bound and
nr ——0.24F ', Pr=1.30F ', df=1.2F, er=4 OMeV, .
n, = 0.26 F ', p, = 1.65 F ', d, = 1.2 F, eg= —4.0 Mev
for the lower bound. As is expected, both the upper
bound and the lower bound are insensitive to the
parameters d~ and d, . In fact, any value between 1.0
and 1.5 F seems to be appropriate.

The gap between the two bounds is only 0.5 MeV in
this case. Since we know from our previous study on the
deuteron' and from the calculation on the helium atom"
that the eigenvalue is usually much closer to the upper
bound than to the lower bound, " we are inclined to
believe that the eigenvalue is probably not more than
0.05 MeV away from the upper bound. This shows that
the trial wave function used here is a good approxi-
mation to the exact eigenfunction, which is also mani-
fested by the fact that the optimum parameters for the
upper bound are very nearly the same as those for the
lower bound.

Rarita and Present' have examined the three-body
problem using a Hylleraas-type variational function
with a large number of parameters. The result they
obtained with f,X part alone of Eq. (9) was —7.79
MeV for the upper bound, which is in very good agree-
ment with our value given in Eq. (11).

We have also calculated with a two-body potential
which is the same in the even state as that described by
Eq. (7), but has no space-exchange dependence. With
this potential, E„ is found to be —7.89 MeV, which
is only 0.08 MeV more than that obtained with a
Majorana-type force. This shows that the exact nature
of the two-body potential in the odd orbital-angular-

IT. Kinoshita, Phys. Rev. 115, 366 (1959); 105, 1490 (1957).
» G. L. Caldow' g,nd C. A, Coulson, Proc, Qarqbridge Phil, Soc.

57, 341 (1961).
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momentum state is not too important as far as its
influence on the binding energy of the triton is con-
cerned, which is of course to be expected from physical
grounds.

Also, we have examined this problem with a trial
wave function which is totally space syrrimetric, i.e.,
j(r)=g(r). The purpose is to see how much worse the
upper bound will be if such a simplified trial function is
used. For the same reason as explained in a previous
paragraph, the lower bound will again be calculated
with effective potentials which have the form

case; it is —6.907 MeV with X=0.10 F '. With the
Monte Carlo method, we obtain E„=—6.89&0.06 MeV
after 60 000 estimates. The closeness of these two values
again indicates that our Monte Carlo method yields
accurate results.

Since with a spin-independent potential there are
only four parameters in the trial wave function, the
search for optimum values of the parameters can be
done with a comparatively small amount of computing
time. The results for the two bounds with 80000
estimates are

V~(r) = V, (r) =
2 V, (r)+ 2 V,(r), (12)

in this case. The results we get with 40 000 estimates are

E„=—9.74+0.05 MeV,

Er,=—10.04&0.07 MeV. (16)

E„=—7.65+0.05 MeV,

El.= —7.84+0.11 MeV. (13)

B. Calculation with a Gaussian Potential

Here, El, is calculated with E~= —0.35 MeV obtained
with the effective potential V, (r). The optimum param-
eters are n= 0.26 F ', P= 1.60 F ', d = 1.2 F, e= 0 for the
upper bound and n=0.25 F ', P= 1.60 F—', d=1.2 F,
e= —1.0 MeV for the lower bound. The closeness
between the two bounds indicates that not much
further improvement in the upper bound can be ex-
pected as a result of improving the function f(r). If one
wishes to obtain a value for the upper bound closer to
the eigenvalue of the triton, then one should rather
include the f,X, part of Eq. (9) and make the function

f(r) not identical to g(r).
From Eqs. (11) and (13), we see that the improve-

ment in E„, by using a function which is not totally
space symmetric, is only 0.16 MeV. Thus, in a calcu-
lation where an improvement of this magnitude is not
considered as important, one should certainly use a
totally space-symmetric trial wave function, since the
amount of computing time saved by reducing the
number of variational parameters from eight to four
will usually be substantial.

where
P—(1,2)1Pg, +y~

(O',A)= o,
(&'4')=1

(17)

(18)

and Po represents the normalized ground-stage eigen-
function. The quantity e is thus a parameter to measure
the deviation of iP from i/0. It is quite easy to show that"

The value of E~ in this case is —0.40 MeV.
The values of the optimum parameters are n=0.288

F—', P=5.15 F—', 0= 1.5 F, e= —2.0 MeV at the upper
bound and n= 0292 F ' P=255 F ' d= 1.8 F, e= —06
MeV at the lower bound. Although the values of P at
the two bounds seem to be quite difIerent, the wave
functions do not differ by more than 2% at all values of
internucleon distances which are of interest.

The gap in this case is 0.30 MeV, which is only about
3% of the value of the upper bound. This indicates
again that the type of trial wave function described by
Eqs. (3)—(5) is capable of yielding an upper bound very
close to the eigenvalue. In this particular example, we
think that the difference between the upper bound and
the eigenvalue is in all likelihood less than 0.05 MeV.

It might also be interesting to estimate the accuracy
of our trial function directly. For this purpose, let us
write

The two-body potential used by Baker er a/. ' will be
considered next. It has the form

"~& (~- &i)j(R &i).— —(19)

V, (r) = V, (r)= —51.5 expL —(r/b)')MeV, (14)

P = exPL —& (2'12'+r 12'+ r22 )3 ~ (15)

The upper bound can be calculated analytically in this

with b= 1.60 F. The interaction in the odd states does
not need to be specified, since the lack of spin depend-
ence insures the eigenfunction to be totally space
symmetric.

We have also tested the Monte Carlo method with
this two-body potential and a trial wave function which
has a spatial part

With optimum parameters of the lower bound, E„and
EI. are —9.71 MeV and —10.04 MeV, respectively.
Using these values, we get

which in turn gives
e'&0.04,

(~,e.)&098.

(20)

(21)

This shows that the trial function P is a good repre-
sentation of the eigenfunction Po in this particular case.

With the same two-body potential but a different
method of calculation, Baker et al. ' obtained a value of—9.42 MeV for the energy of the three-body system,
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while Kalos's obtained a value of —9.47 MeV. In corn-
paring with our value of the upper bound, there is a
difference of about 0.3 MeV."Normally, a difference of
this magnitude will not be considered as substantial, but
since we consider the methods of both Baker et al. and
Kalos as quite accurate, the fact that such a difference
exists is somewhat astonishing. It is possible that the
numerical accuracy of the result of Baker et a/. may be
impaired to a certain degree by their use of a rather
large mesh spacing. In their numerical calculation, they
used a mesh spacing of about 0.1 F, while we use a much
smaller spacing of 0.005 F. In our code, such a small
spacing is admissible, since double-precision arithmetic
is employed whenever necessary to avoid error by
truncation.

"M. H. Kalos, Phys. Rev. 128, 1791 (1962).
'3 It is interesting to point out that already for a simpler trial

wave function

lp = II [exp (—ar ') + C exp (—prt, ')j
with three variational parameters, the upper bound is —9.63
&0.04 MeV with 50 000 estimates.

Iv. CONCLUSION

This investigation shows that the type of trial wave
function used here is capable of yielding very accurate
results. For both types of two-body potential consid-
ered, the gap between the upper and the lower bound is
so small as to allow us to make a good estimate of the
eigenvalue. Also, it is quite easy to employ this wave
function in a numerical calculation. Although it may
sometimes contain as many as eight parameters, at
least four of them, namely, the separation distances d
and the energy parameters e, can be assigned good
starting values and need very little subsequent variation.

At present, we are using this type of trial wave func-
tion to investigate the binding energies of the alpha
particle, the hypernuclei and the helium molecules.
From the closeness of the upper and lower bound found
in this calculation, we believe that reliable estimates of
the binding energies will be obtained in all these cases.
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Mossbauer Effect in Trnts' and Total Internal Conversion
of the 8.42-keV Transition*
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The absolute yield of the Mossbauer absorption of the 8.42-keV transition in Tm'69 was determined for a
thulium oxide and a thulium metal absorber. The 8.42-keV gamma ray was resolved from the L x rays of
erbium by means of a flat lithium fluoride crystal diffraction spectrometer. From the observed Mossbauer
absorption eifect the total conversion coefiicient nt, t =325+35 and the magnetic transition rate of B(M1,
se -+ —,') =5.1&&10 ' (eh/2Mc)' was derived.

INTRODUCTION

HE total cross section for nuclear resonance
scattering and, in particular, for Mossbauer

scattering or absorption depends directly on the internal
conversion coeScient of the gamma transition involved.
It is important to have a knowledge of this coeScient
if the aim of an experiment is to determine the Debye-
Waller factors or to find the optimum conditions for a
Mossbauer experiment. Conversely, the conversion
coefficient can be deduced from a Mossbauer experiment
if all the other conditions are known.

The present work deals with the determination of the
conversion coefficient from studies of the Mossbauer
effect in Tm" . The 8.42-keV transition from the ~ state
to the ~~ ground state has been employed in several

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

Mossbauer experiments. This transition has pre-
dominantly magnetic-dipole character, and the state
from which it originates is well understood' from the
point of view of nuclear structure being a member of a
rotational band. Its energy, however, is so low that a
theoretical conversion coeKcient can only be estimated
from extreme extrapolations of Rose's' tables. Such an
estimate is probably good to a factor of 2 only.

There is, however, an indirect way of estimating the
value of the conversion coefficient. The lifetime of the

I M. Kalvius, W. Wiedemann, R. Koch, P. Kienle, and H.
Richer, Z. Physik 170, 267 (1962); M. Kalvius, P. Kienle, H.
Eicher, and W. Wiedemann, ibid. 172, 231 (1963); R. G. Barnes,
E. Kankeleit, R. L, Mossbauer, and J. M. Poindexter, Phys. Rev.
Letters 11, 253 (1963); R. L. Cohen, Phys. Letters 5, 177 (1963).

~ E. N. Hatch, F. Boehm, P. Marmier, and J. W. M. DuMond,
Phys. Rev. 104, 745 (1956); P. Alexander and F. Boehm, Nucl.
Phys. 46, 108 (1963).

& M. E. Rose, Internal Conversion Coegcients (North-Holland
Publishing Company, Amsterdam, 1958).


