
P HYSI GAL REVIEW VOLUM E 134, NUM B ER 4B 25 MAY 1964

Symmetry Energy and the Isotoyic Spin Dependence of the Single-Particle
Potential in Nuclear Matter
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Nuclear matter with a given neutron excess is treated within the frame of the E-matrix theory. General
expressions for the symmetry energy e,y and the single-particle potential are obtained with the help of the
reaction matrix which depends on two different Fermi momenta for neutrons and protons. In particular, an
expression for the isotopic spin-dependent part U1 of the single-particle potential is obtained, and then
specialized for single particles at the Fermi surface. With suitable approximations numerical values of e,~
and U1 at the Fermi surface are obtained with the help of the Bruckner-Gammel solution for nuclear matter.
The results are: e., =64 MeV, U~(4) =126 MeV.

I. INTRODUCTION
'

N the case of nuclear matter with a given neutron ex-
- - cess, characterized by the parameter n= (1V—Z)/2,
the energy per nucleon can be written in the following
form:

+/+ = evo1+ 2 esym&

There have been many attempts to calculate the
volume energy e,& and the symmetry energy &,~ as
well as the equilibrium density of nuclear matter, start-
ing with the nucleon forces determined in the free
nucleon-scattering experiments. Because of the singular
character of the nucleon-nucleon forces, the problem
could not have been solved before the E-matrix theory
was formulated. The most complete calculation' based
on the E-matrix theory produced a remarkable agree-
ment between the calculated and empirically determined
values of the parameters of nuclear matter.

This agreement includes also the symmetry energy,
although the situation here is not quite simple, as some
of the empirical estimates of this quantity give different
results. One can only say that the value of e,~ obtained
in BG in the most realistic case of the Gammel-Thaler
nuclear forces' ' is well within the range of the different
empirical estimates of this parameter.

The symmetry energy has been calculated in BG in
an approximate way, namely, with the help of the reac-
tion matrix E determined in the case of X=Z=2A.
This means the intrinsic dependence of E on the neutron
excess has not been taken into account. However, in a
similar calculation4 of the spin symmetry energy of
liquid He' at low temperature, it was found that the
"rearrangement" term, i.e., the term resulting from the
dependence of the E matrix on the spin excess, was very
big and essential to achieving the spin stability of the
system.
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B

In the present paper the rearrangement contribution
to the symmetry energy of nuclear matter is calculated.
The general formulas of the symmetry energy are
derived in Sec. IIA.

The symmetry energy is closely related to the isotopic
spin dependence of the single-particle potential. The
interest in the isotopic spin dependence of the single-
particle potential has increased considerably since the
observation of the excitation of the analog state in the
(P,ss) reaction by Anderson et al. s

In Sec. IIB of the present paper, general formulas for
the isotopic spin-dependent part of the single-particle
potential U&(rN) are derived for an arbitrary value of
the single-particle momentum m.

In Sec. IIC, the general formulas for the single-
particle potential are used to get the value of the single-
particle potential for particles at the top of the Fermi
sea. The expressions thus obtained show the connection
between U&(k&) and the symmetry energy.

Similar approximations to those which have been
used in Ref. 4 are applied in Sec. III to calculate the
rearrangement contribution to the symmetry energy
and the isotopic spin-dependent part of the single-
particle potential.

In Sec. IV numerical results are presented, based on
the BG solution of the nuclear-matter problem. The
results show that the rearrangement terms increase the
symmetry energy by an appreciable amount, which,
however, can be considered to be a correction only when
compared to the other terms calculated in BG. At the
same time the rearrangement terms produce the most
important part of U&. Only by including the rearrange-
ment terms in the calculation of U~ does one get a
satisfactory agreement with the experimental estimates.

II. GENERAL FORMULAS

A. The Symmetry Energy

We consider here the case of nuclear matter with a
given neutron excess. On the other hand, we assume
that there is no spin excess, i.e., every momentum state

5 J. D. Anderson, C. Wong, and J. W. McClure, Phys. Rev.
126, 2170 (1962).
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is occupied by two neutrons with spin up and down,
and/or by two protons with spin up and down, or
otherwise the momentum state is empty.

To calculate the symmetry energy e,~, we have to
expand the total energy E=E(n) of nuclear rnatter in
power series of n, neglecting terms of higher order
than n'.

Let us divide the total energy E into the kinetic and
potential part.

E(n) =Eg;.(n)+E...(n) . (2)

The expansion of Ei,;„gives the well-known expression

Eg;„(n)=Eg; (0)+-',e„""n'A,

Let us notice that E does not depend on the sign of
m, and is diagonal in m, for zero-angle scattering.
Furthermore, K is diagonal in s, T, and T3. The exchange
term contributes a factor 2 in the T, s representation.

Because of the charge independence of the intersec-
tion, we obviously have

K(sm, TT3, kp+k p ) =K(sm, T T3, k—p kg+) . (11)

With the help of Eqs. (10) and (11) we get for V,
Eq. (6), the expressions

V(m+)=P +(mm'~Ki(kp+kF ) ~mm')

+P .—(mm'~KO(k~+kp
—

) ~mm'), (12a)

where
e., " =3(hkp)'/2M .

V(iii —)=Q (mm'~ Ki(kp —kp+)
~

mm')

+P +( '~K, (k -k,+)~ '), (12b)

(t» (7)

where the plus (ininus) sign is to be used for 33———',(——,')
and means that ~m~ &kp+(kp ). By k&+(kp ) we denote
the Fermi momentum of neutrons (protons)

where
k +=k (1&m)"'

-'ir 'kp' ——A/0= (-'m-ro') '

(8)

In Eq. (6) we have indicated the dependence of the
E matrix on the two Fermi momenta by writing ex-
plicitly K=K(kz+kz ). The first argument of K indi-
cates the Fermi momentum of neutrons, and the second
one the Fermi momentum of protons. Thus, e.g.,
K(ki k~+) is the K matrix for neutron excess " o. —

Now we must change the spin and isotopic spin wave
functions in Eq. (6) with the help of the known relations

)
s3= a-,' s3' = W-', )= ) s = 1 m, = &1),

I
s3= ~-,' s3'= w-', )

=2 '~'{)s=1m,=O)& (s=Om =0)}, (10a)

(t,=a-,'t3' ——a-', ) =
~

T=1 T3——w1),

~
~,=~-,' ~,'= ~-', )

=2 "'{[T=1 T3=0)&
~

T=O T3=0)}. (10b)

The potential energy is in the E-matrix theory given

by the expression

Ei,i(n) =-', P„gi,P ' 'V(ms3t3), (5)
where

V(ms3t3)=p. , gi, p
X (msst, m's3't3' ~K(kp+kF

—
) ~

ms3t, m'sq'f3')

—exchange . (6)

By t3 we denote the third component of the isotopic
spin of the nucleons. We use the convention t3 ——2(—~)
for neutrons (protons). The third component of the
ordinary spin of the nucleons is denoted by s3. By g &'»

we denote the sum over all momenta states occupied by
nucleons with the third component of the isotopic spin
equal to $3. That means we have

where V(m+) = V(ms3t3= +-,'). Notice that V does not
depend either on s3 or on the direction of m. In Eq. (12)
the following notation has been introduced:

Ki(kp+ki )=Q, ,p TK(sm, TTg 1;ki+ki ), ——
Ko(ki+kp ) =-,' p,„,rK(sm, TT8=0; kp+kp ) .

Let us notice that Eq. (11) implies that

Ko(kp+kp )=Ko(kp kp+).

(13)

S,=-;W(4~)-' dk, (kk, ~g, (T——',)K(T)~11~), (17)

where

K(T)=P, , K(sm. T; kp) . (18)

Let us notice that K(T) is defined for E=Z= A/2 and
does not depend on T3.

The second part of $8'E„i(n)/Bn'j o consists of
terms which result from the intrinsic dependence of E
on kg+ and k~ . The contribution of this second part to
$py~

' we shall denote by h, 6sy~ and shall call it the

Inserting V of Eq. (12) into Eq. (5) we get for E~„

E"()=2 +2-'( 'IK(k 'k )I ')

+P Q (mm'~Ki(kp kg+) ~mm')

+2+ +P . (mm'~KO(k&+k& ) ~mm'). (15)

Now we have to calculate the second derivative of
E~,i(n) with respect to n, for n=0, taking into account
the dependence of kz+ on n as given by Eq. (8). (The
first derivative vanishes. )

The second derivative consists of two parts.
The first part comes from the dependence on n of the

limits of the sums in Eq. (15). Its contribution to
68y~ ~

which we denote by 6sy~ "»", can be easily
calculated, and the result is

e,i, '+i'"= 3kp/BV p(m)/Bm j i,~+2Si,~, (16)

where Vo(m) = V(m(8) in the case X=Z=A/2 and does
not depend on t3. The general definition of SI, is
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r . This re-t art of the symmetry ene gy.

b th folloarrangement part g'rt is iven y e

(19Ae= Ape+ AIe,

where

1Doe= —
4

/ B B)
i
mnk,

i

—+—
i

EB~ B7

&&i Z, (~7,)+E',(.7)g mn i,

Age=-, A
kB B7)m

B2 B2 B2

BX2 BIIBXIB~'

&&La',(.x)+E,(~x)$ mn
i

~ should
'

atives with respect to X anhere a t d
be calculated at the point x=X= g, an
app ielied the notation

=(4Irkp') ' IEm=-', A P (22)

h th help of the identityNow with t e e

i

——iL& ( l)+&o( l )j
EB~ Bl~)

LE I(k pk p)+Re(k pk p) $
dkJ;

iE(T), (23)

. (20) in the simpler formwe can rewrite Eq.

1Doc= —
4

r
i

mnkp
dkp

sinE . 25) are those whichhaveThe first three terms in Eq. a ave
BG for computation o ebeen used in

energy.

iE(T) mn i. (24)

e et the followingCollecting a t ell he terms together we ge
expression orf the symmetry energy:

'kpfB Ve(m-)/Bm5

2Sp +Bee+hie. (25)

U(ma) = Ue(m) a-,'uUI(m), (26)
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e(m)+ U(m) =BE/BII(ma), (27)

ber of the stateis the occupation number
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U(~+) = BE.../B~(m+)
—1 Z) (»)=Ep,I(cVZ) —En, I(1V—

U(m —) = BE,.I/Be(m-
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t k + and kg,roton Fermi momenta,dpoo
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Here we consider the case m(kp. Eventually we shall
put m=k~ and thus obtain the value of the single-
particle potential at the top of the Fermi sea. This can
be compared directly with the value of the optical-
model potential at the Fermi surface, since it has been
shown in Ref. 9 that U defined by Eq. (27) for a particle
added to the system (es)kp) is the properly defined
optical-model potential.

The potential U as defined in Eqs. (28) and (29)
differs from V of Eq. (12) by the rearrangement
potential Vg.

U(ma) = V(era)+ Vit(ma) . (31)

With the help of the expression (15) for Ep,~(XZ), one
can easily calculate Vz. For instance, to get Vz(esp+)
one has to write first an expression for E~,t(X—1,Z),
which can be obtained from Eq. (15) by including a
factor (1—s 8 p) in each of the P + summations, "and
by changing properly (iV~ iV—1,) the arguments of
the E matrices. By subtracting Ep,„(X—1,Z) from
E„&(1VZ), one gets

V&(et+ ) =P,+P,+(m,m, I K,(iVZ)
—Kt(X—1 Z) I

mtms)

+g,—P,—
(m,ms

I
Et(ZE)

—K,(zcV—1 ) lm, m, )
+2 +,+ P, (m,mslKp(XZ)

Kp(Ã 1 Z)
I
mims) . (32)

The expression for Vii(m —) can be obtained from
Eq. (32) by changing

Kt(/V 1Z) ~ Kt(N—Z 1), —
Kt(Z/V 1)—+ Kt(Z —1 —Ã),
Kp(X—1 Z) ~ Kp(iVZ 1) . —

With the help of the decomposition (31) of U(te+),
we get, according to Eq. (26),

Up(m) = Vp(m) +Vpii(m), (33)

Ut(es) = Vi(es)+ Vtii(es), (34)

where Vp(es) and Vpit(m) are the single-particle "model"
and rearrangement potentials in the case S=Z=-,'A.
In our notation they have the forms Lwhich can be
obtained by putting iV=Z= —',A in Eqs. (12) and (32)]

Vp(m) =Q,(mmi
I Qz —',(2T+ 1)K(T) Immi), (35)

Vpii(es)

=P„,P,(mtmpI [G(XZ) G(JV 1Z)]. pl m—,ms),—
(36)

where

G(1VZ) =Et(XZ)+K,(Z1V)+2Kp(XZ) . (37)

' K. A. Brueckner, Phys. Rev. 110, 597 (1958).
' The factor —,

' has to be included because there are two neu-
trons (with spin up and down) in each momentum state.

B B)
Vi(m)=4 25 +4A mn k~ ———

I

B~ B))

XK,(~)) mn I, (40)

Vtg(m) =-',A'
I

k~n LKi(rZ) —K,(X—1 Z)]

LK1(Z&)—Ki(Z1V—1 )]I
ks'n)

I
m,m, ~.

l

——
I

2 „, , k EB~ BV

XLG(EZ) —G(1V—1 Z)] mtms I
. (41)

The right-hand side of Eqs. (40) and (41) is to be
calculated for +=0. This means that all the derivatives
are to be evaluated at the point ~=) =kg. It also means
that, e.g., LKi(SZ) —Ki($—1 Z)] in the first part of
Eq. (41) is the change in K,(A) caused by the removal
from the system of one neutron of momentum m.
Hence, we could have written instead of

I Ki(XZ)—Ki(1V—1 Z)] simply BKt(A)/Be(m+). " However,
the notation applied in Eq. (40) is more suitable for
the discussion which follows.

The form of Vi and Vtir given by Eqs. (40) and (41),
although a bit involved, can be readily evaluated. The
change in the K matrices caused by the removal of one

"Similarly, the second term in the Grst part of Eq. (40) is
simply BIC&(A)/Be(m —), and is obviously different from BE&(A)/
se(m+). Namely, E&, de6ned in Eq. (13), describes the scattering
of two neutrons (T3——1). And for the scattering of two neutrons,
it makes a difference whether we remove from the system a
neutron or proton, although they have the same momentum m
and in the initial system the numbers of neutrons and protons
are equal.

In Eqs. (35), (36), as well as in the remaining part of
our considerations, sums over I, I;, m', n, etc. , run
over es(k~ if no special indication (like +, —) is
attached to the corresponding P symbol.

The definitions of Vi and VIg are

V,(es) =4LBV(es+)/Bn]. =p

4/—BV(m )/—Bn]. p, (38)

V,ii(es) =4LBVis(m+)/Bn]. p

4—/BVir(es )/—Bn].=p. (39)

The dependence on n of V and V~ enters through the
dependence of V and V~ on kg+ and k~—.There are
two kinds of dependence of V and V~ on k~+: the first
one through the limits of the sums in Eqs. (12) and (32),
and the second one through the intrinsic dependence of
the E matrices on k~+. Taking both of them into
account, one easily can calculate V& and V&& according
to Eqs. (38) and (39). To simplify the equations we
again use the notation: I(:=kg+, P =kg . The result is
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nucleon has been calculated by Brueckner and Gold-
man' in a very good approximation. The expressions of
Ref. 7 can be easily generalized for the case of N/Z.
After differentiating these generalized expressions with
respect to ~ and X one gets formulas which seem to be
capable of being computed or estimated.

In the present paper, however, we shall restrict our-
selves to investigating the values of V~ and V~g at the
Fermi surface where Eqs. (40) and (41) simplify
essentially.

C. Connection between U at the Fermi
Surface and c„

To get the value of U(ks) we have to put m=ks in
the equations obtained in B. This is trivial in the case
of Ve(m), Eq. (35), and we get simply

l(2T+ I)
Vo(k~)=Z-

(
1 ~mr Er( IE(T) k~mr

I
(4-')

'E 4 2

we take the liberty of switching from the XZ variables
to the ~X variables. This point has been discussed before
/after Eq. (29)].

The same procedure can be applied in calculating the
first part of Vtir(ks), i.e., the part of the right-hand
side of Eq. (41) with the single integral J . We get

(LEt(NZ) —Et(N —1 Z)]

PEt(ZN) —Ei(ZN 1 )]) —„, —p

(B B'i
tk,

]
—-—)E,(.~). (47)

EBs W.)

In the second part of Vig, i.e., in the part with the
double integral J„,f, there are two terms: the one
containing the derivative with respect to h: and the one
containing the derivative with respect to ).There is no
problem in calculating the latter term, and by applying
the procedure just described, one gets

To calculate Vs+(k&) from Eq. (36) for Vp~(m) let us
notice that

PG(NZ) —G(N —1 Z)]

8—kg LG(NZ) —G(N —1 Z)]
BX m= ff, a=0

B Bs BG(sX)=G(NZ) G(N 1Z)—= G—(NZ) =
8Ã BA 8~

(= -s'A '( —2k p' (LEt(sX)+Es(tel )] . (48)
BsBU

8
Equation (43) has to be evaluated at the point +=0 $G(NZ) G—(N1„Z)]- ' —

(K= X =kp), where BEtP s)/Bs= BE&(Irk)/BX. Wit—h the
help of Eq. (14), we then get

l9—(G(NZ) —G(N —1 Z)]
BK

(G(NZ) —G(N —1 Z)] „,. e

BK 8 In calculating the z derivative we shall use the
LE,(sy)+E, (ys)+2E, („y)] (43) following identity:

8$ BK

Bs /B B)
~

—+—~LE,(.l )yE,(.X)]. (44)
BNkB. Bl/

By using the identity (23) and the value

Bs/BN = ,'s/N— (45)

(which follows from Eq. (30)]we finally get the follow-
ing known expression for the rearrangement potential
at the top of the Fermi sea:

Here and in several other places of our considerations,

"Compare the discussion which follows after Eq. (30).

V»(ks) = s~
I

mn ks
dk~

(2ry1
Xgr~ E(T) mn ~. (46)

2 )

+ LG(NZ) —G(N —I.Z)] . (49)
t91S m~ ft

This is simply the standard rule for calculating a
derivative. To get the physical meaning of Eq. (49), let
us notice that G(NZ) defined in Eq. (37) represents an
effective two-body interaction in the system of X
neutrons and Z protons. G(NZ) —G(N —1„Z) is the
change in this effective interaction caused by the
removal of a neutron from the Fermi surface, i.e., by
creating a hole in the neutron Fermi surface. On the
left-hand side of Eq. (49) we shift the neutron Fermi
surface together with the hole in it, and ask how the
shift eGects this change in the effective interaction. The
right-hand side of Eq. (49) shows that this shift is
equivalent to a sum of two shifts: the first one in which
the neutron Fermi surface is shifted with the hole being
fixed, and the second one in which the hole is shifted
with the Fermi surface being fixed.
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Now the left-hand side of Eq. (49) is simply

8 B BG(NZ) B —B~ BG(~X)-—[G(NZ) —G(N —1Z))=-
8K BK 8S BK BS 8K

With the help of Eq. (25) we can write Eq. (54) in
the form

p,p~= p„~'"+-,'ki[B U p(m)/Bm]„2p+ 42 U, (kp) . (56)

B~ B2G(~X) 2 BG(~) )

BS BK' K BK

where we have used the value

(B/B~) (B~/BN) = (2/~)—(Bii/BN),

(50)

Equation (56) presents the familiar form of the rela-
tion between the symmetry energy and the single-
particle energy at the Fermi surface. This relation can
be obtained directly from the definition of U, Eq. (27),
which for the state (m, ~)=(kp+, &) can be written
in the form

8
k p [G(NZ—) G(N 1—Z))—

BK vn=K, a=0

)[Z',(.X)+Zo(~X))
EBK BX BKBX~

d (2T+1)
l&(2')

dk, &2 i
8—kp — --[G(NZ) —G(N —1 Z)]

881 m=a, a=0
(51)

Inserting Eqs. (47), (48), (51) into Eq. (41) and
making use of Eqs. (36), (46) we finally get

(
I
k»

(

——)& (~~) k n
)

&B~ W.&

( (B2 B2 B2

+2& (
mim2 kp2( +

&B~2 BZ2 B~B),/

8
XPC2(z))+&o(d)] mim2

~

—Voii(kp)i 3

;k [BV—„—(m)/Bm), (52)

The only remaining part of U(kp), namely V&(kp),
presents no problem, and Eq. (40) gives

/B
Vi(kp) =8Spp+A I

kpn kp( ——)K&(~X) kpn
)
.

rEB. Wl
(53)

Comparing Eqs. (52), (53) with Eqs. (19), (21), (23)
we notice that

Ui(kp) = Vi(kp)+ Viz(kp)
=4(2S2p+ 52 ', kp[BVp—p(-m)/Bm) op} . (54)

Let us notice that Eq. (24), when compared with

Eq. (46), gives
(55)hop= ——;Voi2(kp).

which follows from Eq. (45).
With the help of Eqs. (49), (50), and by applying

the procedure described previously, one gets

.(kp+)+ U(k,+, +)= BZ/BN,

p(kp )+U(kp, —)=BE/BZ.

(57a)

(57b)

If we subtract Eq. (57b) from Eq. (57a) and calculate
[BE/BN —BE/BZ] from Eq. (1), we get

22,, n= p(kp+) p(kp )+—U(kp+, +)—U(kp, —). (58)

If we now expand the right-hand side of Eq. (58) in a
power series of o. and keep only terms linear in 0,, and
use the form (26) for U(kp+, &) we get our Eq. (56).

Hence, if one is interested only in the value of Ui(kp),
one does not have to follow all the considerations of
Secs. IIB, C, as e,~ calculated in Sec. IIA, and the rela-
tion (56) supply one directly with the value of Ui(kp).
All the considerations of Secs. IIB, C are, however,
essential for any calculation of Ui(m) for mWkp, a
quantity of considerable importance in problems of
nuclear structure. Furthermore, the considerations of
Secs. IIB, C, enable us to see the origin of the diferent
parts of Ui, even if we are interested only in Ui(m)
for m=ttg.

In the remaining part of this paper we shall present
an actual calculation of p,p and Ui(kp), based on the
BG solution of the nuclear matter problem.

All quantities necessary to calculate p,~, Eq. (25),
except for Aq have been calculated in BG. An approxi-
mate calculation of A~a is presented in Sec. III. As far
as 20& is concerned, we can obtain its value directly
from BG by applying Eq. (55). Namely, the rearrange-
ment potential at the Fermi surface, Vpi2(kp), is the
difference between the single-particle "model" energy
at the Fermi surface and the separation energy, both of
them calculated in the case N =Z= A/2. The separation
energy, however, is at equilibrium density equal to the
mean energy per nucleon. ' Both the mean energy per
nucleon and the single-particle model energy have been
calculated in BG. Hence, one knows from BG the
numerical value of Vpi2(kp) and thus of hop.

To calculate Ui(kp), after we already know the value
of p,p, we shall apply Eq. (56). However, to do it we
still have to know [BVpa(m)/Bm] pp We shall.
evaluate this quantity from the values of Vpz(m) calcu-
lated by Brueckner et al."

» K. A. Brueckner, J.L. Gammel, and J.T. Kubis, Phys. Rev.
118, 1438 (1960).
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III. AN APPROXIMATE CALCULATION OF

We shall follow here an approximate procedure
applied previously' in the calculation of the spin sym-
metry energy of liquid He'. Namely, we introduce two
simplifying assumptions:

repulsion part of the E matrix. According to Refs. 14
and 15,

(r» I K(sn4T; kp) I
r»') = (ri2 IK(sr/2, T)

I
r»'), tt...t; .

+(r, IK(s;k )Ir, '),..., (63)

(i) Ki(kp+kp ) =Ki(kp+),

Ki(kp kp+) =Ki(kp ),
(ii) Kp(kp+kp-) =Kp(kp'),

where E,«„,&,-, was independent of k~ and

(59)
(r12I K(s; kp) I

r12')
= LA s(rp)/42rr, 7'(r12—r,) iI(r12' —r,), (64)

(60)

with

r 2—1/2L(k—+)2+ (k
—)271/2 (61)

where the K matrices on the right-hand side of Eqs. (59)
and (60) are calculated in the case of equal number of
protons and neutrons with the Fermi momentum equal
k&+, k& and k&', respectively.

The assumption (i) says that the effect of the neutron
excess on the scattering of two neutrons (or protons)
is determined by the shift of the Fermi momentum of
neutrons (or protons). This assumption seems to be
physically plausible and it corresponds exactly to the
way in which the action of the exclusion principle is
altered by the neutron excess.

The assumption (ii) applies to the more complicated
case of neutron-proton scattering. One is led to this
assumption by inspecting the way in which the action
of the exclusion principle on neutron-proton scattering
is altered by the neutron excess. Furthermore this
assumption satisfies Eq. (14). Let us also mention that
the assumption (ii) satisfies the K p part of the identity
(23).

We shall come back to this point in Sec. IV.
If we apply the Eqs. (59) and (60) to calculate the

derivatives appearing in Eq. (21), we get

k prp
——(92r/8) '/'= 1.52 . (65)

Since E„„actsonly in the 3=0 state of the relative
motion, we do not have to indicate explicitly the value
of T. We only notice that for T=0: s= 1 (spin triplet),
and for T=1:s=0 (spin singlet).

The short range of E„„in the configuration space
makes the Fourier transofrms, which occur in Eq. (62),
practically independent of m, m'. It is then easy to
calculate all the terms of Eq. (62), and one gets the
following results:

/
dK(1) /r, )' d

I
&pm k, lrpm ——

I

—
I

— ~„„„,(66)
dkp harp& drp

d
mm' kp Pr K(T) mm'

I

dkp

/r )' d
(~tripl. +2~singl. ) q (67)

kr, &

where r, is the hard-core radius of the nucleon-nucleon
interaction (r,=0.4F for the Gammel-Thaler interac-
tion) and rp is connected with kp by Eq. (9), which
implies:

hge=2A
(

kpm kp K(T=1) kpm
I

dkp

+— mn kp Pr K(T) mn
I

8 „dip
d2

I
mn kp' K(T=1) mn

I
. (62)

dk '

mm' kp' K(1) mm'
I

dkp2

1/r)2 d / d
I

"p +1 I~ l. (6g)
3Erp& drp( drp

Notice that because of the relation (65) we have

kpd/dk p = rpd/drp—
and

The expression (62) can be evaluated if we make use
of the density' (or Fermi momentum) dependence of the
E matrix as determined by Brueckner, Gammel, and
Weitzner'4 (compare also Ref. 15). There it was shown
that the variation of K with density couM, to an excel-
lent approximation, be entirely included in the core

'4 K. A. Brueckner, J.L. Gammel, and H. Weitzner, Phys. Rev.
110, 43 i (1958).

"K.A. Brueckner and D. T. Goldman, Phys. Rev. 116, 424
(1959).

kp/pd2pd'k=rp(d/drp) Lr (pd /dr )2+17.

For the sake of completeness, let us also write an
equation for the quantity which appears in Eq. (24) for
Ape and in Eq. (46) for Vp/2(kp).

d /2T+ I)
I

mm' kp PrI IK(T) mm'
I

dkp E 2

/r)' d
2(rf singl. +~tripl. ) (69)

(r& dr,
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However, in accordance with the remarks made in
Sec. IIIC [after Eq. (58)) we shall not need Eq. (69)
as the value of Ape can be directly obtained from the
BG separation energy.

2S~~ ——9.8 MeV,

4 [BVp(m)/Bm) sy =34=1M.eV,

Vpn(kr) = 12.3 MeV.

(70)

In applying the approximate expressions of Sec. III,
we have used the form of the functions A, (rp) given in

Ref. 15.
From the calculated values of Vpit(m) of Ref. 13 we

have obtained the numerical estimate

kr[BV (orna)/Bm) sy= =—28.1 MeV.

The results of our calculation are

(71)

Esynt: 64 MeV
&

Vt(ky) = 70 MeV,

Vier(kp) = 56 MeV,

Ui(kp) = Vi(k p)+ Vtii(kg) = 126 MeV.

(72)

To see the importance of the rearrangement contribu-
tions, resulting from the intrinsic dependence of the
effective interaction K on the neutron and proton
densities, let us write the results obtained without

taking the rearrangement contributions into account.

[eeyra)no rear. =52 MeV r

[V,(k&)]„....,.= [U,(k&)].„....=39 MeV. (73)

Let us notice that the value of [Ut(kr))„, ,„,„.co-
incides very well with the value of Ut(kr) obtained in

Ref. 16 by applying the impluse approximation.
Our results show that the rearrangement contribution

to the symmetry energy, 6&= 12 MeV, is an important
correction. And in the case of the isotopic spin-depend-
ent part of the single-particle potential U~, the re-

arrangement contribution constitutes its major part
and approximately triples its no-rearrangement value.

The empirical estimates of the symmetry energy do
not supply us with a unique value of e,y (see,e.g. , the
discussion in Ref. 17). By assuming a pure volume

symmetry energy Green' finds 68y =47 MeV. By
assuming that there is also a surface part of the

' J. Dgbrowski and A. Sobiczewski, Phys. Letters 5, 87 (1963)."D. S. Falk and L. Wilets, Phys. Rev. 124, 1887 (1961).
"A. E. S. Green, Rev. Mod. Phys. 30, 569 (1958); Phys. Rev.

95, 1006 (1954).

IV. NUMERICAL RESULTS AND DISCUSSION

In the numerical calculations we have used the follow-

ing values of the nuclear matter parameters obtained in
BG with the Gammel-Thaler" nuclear forces:

rp=1.02 F,
6synt

' =30 7 MeV 7

symmetry energy, Green" finds c,y ——61 MeV and
Cameron" finds 6 y

——63 MeV.
The situation with the empirical determination of U~

is much worse. A review of the situation is given in
Refs. 6 and 20 (compare also Ref. 21, where the most
recent estimates of U, are quoted). One can summarize
the results of all these estimates by saying that they
indicate a value of Ui(kr) = 100&50 MeV.

In view of the uncertainty of the empirical estimates
of f y 7 U] 7

and of the approximations in our calcula-
tions, which we shall discuss in a moment, it is difficult
to make a precise comparison between our results and
the experiment. However, one sees that the calculated
values of e,y and Ui given in Eq. (70) are in the range
of the empirical estimates.

I.et us now discuss the approximations of our calcula-
tion. Among the approximations of Sec. III, the approxi-
mation (ii), Eqs. (60) and (61), seems to be not as well

justified as the approximation (i), Eq. (59). However,
the approximation (ii) has been used in calculating only
a small part of e,y~ [4%%u~] and Ui [9/o). Hence the
possible corrections to the approximation (ii) would

have only a small effect on the calculated values of

tsyrrt and U]
Only after more precise experimental values of e,y

and U& are available would a more accurate calculation
of these quantities be desirable. Such a calculation would

require the knowledge of the exact dependence of the
K matrices on both the Fermi momenta kg+ and kp .
For this purpose one would have to solve the equations
of the X-matrix theory with two different Fermi mo-

menta kg+ and kJ; . Or at least one should calculate
the first and second derivatives of X with respect to
4&+ and k&, which enter into the expressions for $ y

and U&. This can be done approximately by applying
the procedure of Brueckner et al.' "in their calculation
of the rearrangement energy.

Much more important for our results is the proper
value of kr[BVpg(nz)/Bnz) pr which, however, enters
only into the calculations of U&, and in our calculation
constitutes about 30%%u~ of Ui. To get the value of
kp[BVprt(m)/Bm] &r given in Eq. (71) we have used
the values of Vote(m) for m= kr and rN =0.1k' calculated
in Ref, 13. This, of course, is only an estimate of
kp[BVpit(m)/Bm] &y, and to get a more accurate result
for Ui, one should calculate kF[BVptt(m)/Bnz) sy more

precisely.
It should be stressed that the calculated values of

and especially of U& are sensitive to the density
dependence of the effective interaction K. Hence, a
better knowledge of the empirical values of e,y and

U& could be helpful in determining the density depend-
ence of X.

We finally make one comment concerning the effective
mass. The effective mass Mp* calculated in BG is

"A. G. W. Cameron, Can. J. Phys. 55, 1021 (1957).
"P.E. Hodgson, Phys. Letters 3, 352 (1963)."J.Dgbrowski, Phys. Letters 8, 90 (1964).
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dined by the equation

kB Vp(k)/c)k = 2e(k) (L3f/3IIp*(k) j—1), (74)

where e(k) =k'k'/2M. In problems, where one is
interested in the real single-particle potential defined in
Eq. (27), more important than the "model" effective
ufo* is the "real" effective mass M* defined by the
equation

kc) Up(k)/c)k =k8)Vp(k)+ Vpn(k) j/ak
=2e(k) {L3II/M*(k)$ 1)

Prom Eqs. (74) and (75) one gets

t M/Mp*(k) j—LM/3II*(k) j
= ——,'ke(k) —'f) Vpn(k)/c)k. (76)

If we insert into Eq. (76) the numerical values given
in Eqs. (70) and (71), we get M*(kz)/M=0. 94 com-

pared to the BG value of Mp*(kp)/M=0. 73. This is
only a rough estimate based on the approximate value
of k@LBVprr(el)/c)107 s& given in Eq. (71). However,
an appreciable increase in the e6'ective-mass results
from the rearrangement eGects.
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The Cd "activity produced by (a,y) reaction on Cd"' was found to decay with a half-life of ~3 h in-
dicating that the possible isomer also has a half-life almost equal to that of the ground state. The presence
of such an isomer was established by beta-gamma coincidence measurements. The highest energy beta
group as studied in the intermediate image beta-ray spectrometer showed an end point of 2250 keV. The
singles gamma spectrum was complex in nature and extended up to 2450 keV. Beta-gamma and gamma-
gamma coincidence studies revealed 29 gamma transitions and eight beta groups belonging to the decay of
both the activities of Cd"'. Based on these and the results of sum coincidence and total absorption studies
a decay scheme with levels in In" at 310, 590, 660, 750, 880, 1070, 1410, 1700, 1890, 1980, 2120, 2320, and
2450 keV has been proposed. Possible spins and parities for these levels have been discussed.

I. INTRODUCTION

' 'HE decay of Cd" was 6rst investigated by Cork
and Lawson. ' They used (d,p) reaction on Cd

and identic. ed the Cd"" activity of 3.75-h half-life
from its daughter In"". Coryell and co-workers' ' ascer-
tained the genetic relationship of Cd" by milking it
from 1.1-min Ag"' produced in the Qssion of uranium.
They reported that the ground state of Cd" decays
v ith a half-life of 50-min and that it has an isomer with
a half-life of 3-h. Gleit' used (n,y) reaction on enriched
Cd"' to produce Cd"'. In his study, he observed various
gamma rays of energies between 90 and 2000 keV. These
were ascribed tp 3-h Cd"7 decaying to 1-h In"~. He
has indicated that about 20 jo of Cdu"m decays to the
50-min ground state by a 440-keV isomeric transition.

*Member of Chemistry Division, Atomic Energy Establish-
ment Trombay, Bombay, India.

' J. M. Cork and J. L. Lawson, Phys. Rev. 56, 291 (1939).' C. D. Coryell, P. Leveque, and H. G. Richter, Phys. Rev. 89,
903 (A) (1953).

3U. Schindewolf, J. M. Alexander, and C. D. Coryell, Phys.
Rev. 111, 228 (1958).

4C. E. Gleit, MIT Laboratory for Nuclear Science, Annual
Progress Report, 1957, p. 35 (unpublished).

According to him, the 50-min ground state of Cd"~
shows little gamma activity and it mainly decays by a
beta transition of end-point energy 2300 keV to the 1.9-h
jspmer pf In11 . The 1.9-h jspmer pf Inuv decays partly
by an isomeric transition of energy 310 keV to the 1-h
ground state and partly by beta emission to various
energy levels of Sn"~. The maximum beta energy in this
decay is 1770 keV. The ground state of In" mainly de-
cays by beta emission to the 726-keV level of Sn"'. lt
has been suggested4 that the 3-h activity of Cd"' is the
h11~2 state and the 50-min activity of Cd" is the s1~2

ground state. The energy levels of In"~ have not been
established so far. Recently, Tang and Coryell' have
reported that the 50-min activity of Cd"~ is not pro-
duced appreciably by (n,v) reaction on enriched Cd"'.

In the present work a systematic study has been
carried out to establish the energy levels of In" . KGorts
have been made to search for the reported isomer of
Cd117

' C. L. McGinnis, Phys. Rev. 97, 93 (1955).
6 C. W. Tang and C. D. Coryell, MIT Laboratory for Nuclear

Science, Progress Report No. NYO-10062, p. 14, 1962 (unpub-
lished).


