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APPENDIX B:UPPER BOUND FOR
G„(s,z) IN izi &1

In this Appendix we estimate the upper bound of
G„(s,z) in zI &1. Using the inequality (48) and Eq.
(23), for Iz &1, we have
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inequality (26).

APPENDIX C: ANALYTICITY AND THE
UPPER BOUND FOR G&„s(s,z)

The difference between Gs„~(s,z) and Gs (s,z) essen-
tial for this argument is the absence of the right-hand
cut in Gs„~(s,z). By virtue of this difference, we have
only b~'(s) and no term corresponding to b~(s) in Eq.
(55). Therefore it is obvious that Gs„(s,z) is analytic in
the domain in which IzI is finite and s —8s/e)argz)—z —8s/e. By the procedure used for the calculation
of the bounds for G„(s,z) in. Appendices A and B, we can
obtain similar upper bounds for Gs„(s,z) on Ci' and Cs'.
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The Khuri-Treiman dispersion representation is applied to the discussion of overlapping resonances
among particles in production and decay final states. The kernel of the dynamical equation following from
the Khuri-Treiman representation has branch points overlapping the integration contour, but recently
reported work permits us to select the correct branch of the kernel. We thus eliminate all restrictions on the
masses of the final-state particles or strengths of the resonances. An iteration procedure is developed for the
solution of the dynamical equation when three spinless particles are present in the final state. There is no
restriction on the angular momentum of the resonances, but for simplicity only s-wave resonances are
considered here. Plausibility arguments are given which indicate that for narrow resonances the once-
iterated approximation to the solution is a good approximation. A detailed study of all higher approximations
supports this assertion. In the once-iterated approximation, one finds a branch point on the second sheet
of the transition amplitude which may cause a characteristic variation of the amplitude near the low-energy
boundaries of the physical region. This variation is studied quantitatively for the kinematically favorable
reaction 1Y'+/ —+ X+S+m, and is found to be of negligible importance. The suppression of the variation
is related to the threshold behavior of two-particle scattering amplitudes.

I. INTRODUCTION

' 'N this paper we discuss the role of resonant final-state
~ - interactions in production and decay reactions
leading to three-particle 6nal states. In particular, we

study what happens when two of the three outgoing
particles are identical and either one (or both) scatters
resonantly with the third. Following Peierls and Tarski, '
we call this the case of overlapping resonances. As is
well known, this class of reactions includes cases of
great current interest, for instance,

*This work is supported in part through funds provided by the
Atomic Energy Commission under Contract AT(30—1)2098. Part
of a thesis submitted to Princeton University in candidacy for the
degree of Doctor of Philosophy, May 1963.

f National Science Foundation Predoctoral Fellow, 1962-1963.
' R. F. Peierls and J.Tarski, Phys. Rev. 129, 981 (1963).

vr+N —+ N*+s. —+ N+s.+z,
N+N —+ N*+N ~N+N+s. ,

vvhere the x-m resonances are excluded kinematically.
The restrictions to two identical particles and only two
resonances are made for convenience. The methods we
use can be extended to study x-x resonances in the
reactions above, or to study

)E*+N
X+N ~

I

—+ N+X+s. ,IN*+K

t'~+ lEr+N
Efo+rr)

The dynamics of our treatment are provided by the
Khuri-Treiman' (KT) dispersion representation of a

' N. N. Khnri and S. B.Treiman, Phys. Rev. 119, 1115 (1960).
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Fio. 1. Final-state scattering diagrams and their KT sum.

decay amplitude. This representation effectively sums a
class of perturbation graphs which contribute to
final-state scattering, but it excludes graphs which give
rise to complex thresholds, and make the "analyticity
and unitarity" treatment of production and decay
amplitudes so dificult. ' We want to emphasize that
here dispersion theory performs much more than its
usual service of relating one strong interaction process
to others. The process at hand is a three-body process,
and any conventional treatment would almost certainly
be very difficult. We have no deep understanding of
why dispersion theory is such a powerful tool here, but
simply point out that it is.

The dynamical integral equation which follows from
the KT representation refiects the three-body compli-
cations by the presence of a kernel with branch points
which overlap the interval of integration. In previous
discussions the problem of determining the physical
branch of the kernel has been bypassed, either by
assuming that the final-state interactions are weak, '
or by doing away with three-body kinematics by going
to a static limit, or by an approximation which simpli-
fies the analytic structure of the kernel. 4 In the present
paper we make use of a recent analysis by Bronzan
and Kacser' to obtain the physical branch of the kernel.
The restriction to resonant final-state interactions is
made after the dynamical equation, valid for any
interaction, is obtained. Our motivation for the restric-
tion is that Anal-state interactions play a most con-
spicuous role when they are resonant.

In Sec. II we write down the KT dispersion relation
and obtain the dynamical integral equation. The
general properties of this equation are discussed, and
the iteration procedure of solution is developed. In
Sec. III the once-iterated solution is presented. A
logarithmic branch point is found which is on the
second Riemann sheet of the transition amplitude, but
is so close to the physical edge of the physical sheet that
it may have observable consequences. The same branch
point has been discussed in perturbation theory by
Aitchison. ' The location and presence of the branch
point are interpreted physically. Singularities present
in all further iterations are located and found to be less
important than the branch point in the first iteration.
In Sec. IV the significance of the branch point is
investigated in a specidc case. It is found that it
produces no visible structure in the square of the
transition amplitude. The reason for this disagreement
with Aitchison is linked to unitarity requirements.

3 See P. V. LandshoB and S. B. Yreiman, Nuovo Cimento 19,
T 249 {1961)for examples of complex thresholds.

' D. R. Harrington, Phys. Rev. 130, 2502 (1963).
5 J. B.Bronzan and C. Kacser, Phys. Rev. 132, 2'l03 {1963).
2 I. J. R. Aitchison, Phys. Rev. 133, 31257 (1964).

$&+sb+$, =3f +trb +2@,2 (2.2)

As was mentioned in the Introduction, it is easy to
6nd perturbation diagrams which give rise to complex
thresholds of the transition amplitude T(s,sb, s,)."
But there exists a class of diagrams, illustrated in Fig. 1,
which have only normal thresholds. The sum of the
amplitudes of this class satisfies the KT dispersion
representation

1 " dsb'C (sb', s,)
T(sg)sb)sg) =-

at (m+&)2 Sy —Sp —ZC

1 ds, 4(s,')sb)
(2.3)

7l (m+ ) 2 Sc Sc $6

where the spectral function is

(22r) 4

c'(sb, s.) = L4p~sp. s)'" 2 &P.If(0) I~)
2 73

&&~l j(0) Ip~)3(p- —P~+Pb) (24)

Here j(0)(f(0)) is the current operator for the source
of the p(222) field. We include only two-particle inter-
mediate states in the summation (2.4), since in our

'8e«. Bar«» and C. Kacser, Nnovo Cirnento 21, 988 (1961)
for another example.

II. THE DYNAMICAL EQUATION AND
ITS PROPERTIES

We consider the inhuence of final-state scattering
on reactions leading to the production of spinless
particles a, b, and c. To be specific, we study the decay
of a particle of mass M into u, b, and c, and assume that
such a decay represents a reasonable model for the
study of final-state scattering in production reactions
as well. For convenience, we assume b and c are identical
particles of mass p, while a has mass m. The generali-
zation to three diRerent masses is straightforward, but
leads to no new insight. Also for simplicity, we assume
b and c scatter resonantly with a, but do not interact
with each other.

In the production reaction case, M is the energy of
the colliding system, and is a parameter at our disposal.
Since the unstable particle is spinless, our model
pertains only to production in s waves, and we forgo
any description of the dependence of the transition
amplitude T on momentum transfers between incoming
and outgoing particles. In addition to M and two
independent momentum transfers, a production reaction
depends upon three variables which specify the con-
figuration of final-state momenta. These are

s = (psr p)' sb=—(pbr pb)', s.=—(psr —p,)',' '
(2.1)

P~2 —~2 p 2 —ttb2 p 2 p2 ~2

These variables are not independent, but satisfy the
equation
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FIG. 2. Mom enta in the
Lorentz frame p~+p, =0. p, is
in the g—g plane with p„&0.

Z

P =P
b

It is convenient to assume that scattering is important
quantitatively in only one partial wave. For simplicity
we take this partial wave to be the s wave. ' Then we
obtain a spectral function which depends on only one

—
y variable.

c'(») =50*(sb) To(»),

model final-state scattering is supposed to play a
dominant role. It is in the spirit of the model to omit
Born terms as well as three or more particle intermediate
states. We note that

p.'p, 'outlj(0)lp )
—

I gpuopao pco ] T(s, ,sb, s, ), 2.5
(p'I y(0) I p.'p '

=4~(P a+OP c)0I2P Pc0aP0c0] "f*,
where f is the scattering amplitude for the process

a c~ a c ~

To evaluate C we go to the Lorentz frame p,+p, =O.
(See Fig. 2.) In this frame, p= Ip2rl =

I pbl, k=
I p I

=
I p, I

=
I p, 'I =

I y, 'I. 'We define the variables

(p p )2 (Lp2+~2]1/2 Lp2+p2]1/2)2

= (I k'+m']'"+ Lk'+/ ']'")',
s, = (p~—p )2= —p' —k' —2pk cos8

+ (Lp2+.~2]1/2 Lk2+p2]1/2)2 (2 6)

s,'= (p~ p, ')'= —p'——k' —2pk cos8'

+ (Lp2+~2]1/2
I

k2+~2]1/2)2

We can now express coso in terms of sq and s,.

cos8=cos8b(sc) =R(sb, sc)/PU(sb)]

R(sb, s,) = —sb'+ (M2+m2+2/12 —2s,)sb

+ (~f' / ') (m—' / ') —(2 7)

U(sb) =Lsb —(m- /2)2]Lsb —(m+/1)2]

XLsb —(M—/1)']fsb —(M+/2)'].

In (2.7), cos8b(s, ) is the angle between y, and pb in the
Lorentz frame p,+p, =O, and s, indicates the variable
which 8b(s,) replaces. Thus cos8 =cos8b(s, ). We note
that L U(sb) ]'"=4kPsb& 0 in the physical decay
interval (m+/2) 2 &~sb & (3E /2)2. —

In the b frame (2.4) becomes

1
41(Sb&sc) =— k dk d8 /7+8(Pa0 +Pc0 Pab Pc0)

4m

Pa0 +Pc0
)( T(sa, sb&sc') f*(sb, cos81) . (2.8)

Pab Pc0

For f we use the angular momentum decomposition

1

T0(sb) =— d cos8b(s, ') T(sa'&sb, sc') . (2.10)
2

where

+G(s, s' —i0, M2), (2.11)
s —s—zE

1

G(sb, s,'—i0, 3f'2) =—
2

d cos8, (s,) . (2.12)
sc sc z6

Substituting from (2.7) for s„

G(sb, s, ' i0, M—2)

Sg R(sb) sc —20)
ds s

LU(»)]'"
(2.13)

sb R(sb s'—i0)+LU(sb)]'"
ln

(U(sb)]'/' R(sb, s,' i0) —
I
—U(sb)]' '

Equations (2.11) and (2.13) define our dynamical
model for studying overlapping 6nal-state interactions.
We can see at this point what is surprising about the
dispersion theoretic treatment. As expected, we get the
transition amplitude T as a functional of the two-body
scattering amplitude f0(s), but the equation we obtain,
(2.11), depends on only one scalar variable.

In order that (2.11) be a well-defined equation, we
must know G throughout the quadrant (m+/2)2&~s,
s'( ~. On the other hand, in performing the unitarity
sum (2.4), we were confined to the physical region
bounded by R(s, s')//I U(s)7'"=a1, which lies in one
corner of the quadrant. (See Fig. 4.) The kernel must
be obtained throughout the rest of the quadrant by
analytic continuation in s and s'. This has been done
in Ref. 5, and the analysis carried out there can be
applied directly to (2.11).We repeat here only the main
conclusions of Ref. 5.

Here T, (sb) is the s-wave projection of T in the frame
p,+p, =O. (2.3) and (2.10) constitute the KT dispersion
representation. We obtain an integral equation for
T0(s) by operating on (2.3) with the s-wave projection
operator. The result is

1
To(s) =— /fs'fo*(s') To(s')

(m+p)

00

f(s, cos8i) =—P(21+1)fi(s)Pi(cos81) .
P l=o

(2.9)

The essential results of this paper have been carried out for
arbitrary angular momentum, J. B. Bronzan, Princeton Uni-
versity thesis (unpublished). The conclusions we present are
unaffected by the value of l.
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There are two types of singularities of (2.13) to
consider: The endpoint singularities R(s,s')/[U(s)]II'
= &1, and the branch points of [U(s)]I~'. The curves
of possible singularity are thus the boundary of the
physical region, which for a decay amplitude lies in the
critical quadrant, and the kinematic or non-I andau
singularities of [U(s)]I~'. In Sec. 2 of Ref. 5 it was
found that with the boundary prescription given
to us by KT, G(s, s' ie—, M') has a branch point at
s= (M+p)' for (m+p)'&~s'&&Mp+ (Mm' p—')/(M p—)
It was observed that simply giving s a negative imagi-
nary part is not suf6cient to prescribe how to pass this
branch point, whose location is independent of s'. The
problem was attacked by analyzing the diagram shown
in Fig. 3 in perturbation theory. This diagram is one
of the diagrams which contributes to the KT sum. Its
transition amplitude, which for point vertices is
identical to the s-wave projection of its transition
amplitude, has a dispersion representation with
G(s,s',M') appearing in its spectral function. As always,
perturbation theory gives an unambiguous specification
of the physical sheet of G(s,s',M'), although in this case
some care is required to extract the speci6cation.

There are several equivalent ways of stating the
implications of perturbation theory. The most concise
is to say that on its physical sheet G(s,s',M') is real for
s, s') (M+p)', and for smaller s and s' one continues in
these variables, in either order, but letting M' ~ M'+i8
rather than s' —+ s' —ie to get the physical sheet of G.
This does not mean that there is a contradiction between
KT and perturbation theory. In the first place, the
negative imaginary part of s' comes from (2.3), where
it speci6es the physical branch of T. Hence, it must be
present. However, we 6nd that in taking the s-wave
projection of T, (2.11), one must also let M2 have a
positive imaginary part which overrides the imaginary
part of s'. We must consider T(s„sb,s„M') to be a
function of the complex variable M', with the physical
decay amplitude de6ned by

T($~, s, bs) M)

=lim lim T(s~, sb ie, s, i—e, M2+—if)) . (2.14)
5—bo e-+0

The crucial point is that the limits are taken in the
order shown. Of course, Khuri and Treiman had no way
of knowing about the M' prescription. We point out
that it is only because the branch points of G overlap
the critical quadrant that the order of taking limits
becomes a sensitive matter.

We can now give the physical branch of G explicitly.
When M' has a positive imaginary part, the bothersome
branch points of [U(s)]«' at (M+p)' move into the
upper half s plane. From (2.13), once the imaginary

L.
' c

S

FIG. 4. The imaginary part of the logarithm in (2.13) on the phys-
ical branch of G(s, s', M'+I'b). On Curve A, R(s,s')+LU(s) J~'= 0,
and the numerator of the logarithm vanishes. On the curve B,
R(s,s') —t'U(s)g«'=0, and the denominator vanishes. Together
A and 8 bound the physical region. C is a segment of the curve
R(s,s') =0. The imaginary part in region K is between —~ and—2~, while in region L it is between 0 and —m. In the shaded
regions the imaginary part is the indicated constant, and elsewhere
it is zero. The points u, b, c and@ are:

S Ql

8 (m+s )'
fI Mp+ (Mm' —p')/(M —p)
c (M—p)'
d rIIp+—(M'm+pa)/(rN+p)

part of the logarithm is given, the branch of G is
defined; and the imaginary part of the logarithm is
shown in Fig. 4. In Fig. 5 we show the trajectory of the
singularities at

R(s,s')

LU( )]'"
1

s =s+(s') = (R(s',0)+[U(s')]«), (2.15)
2$'

as s' moves along the arc (m+p)'~&s'& ~. This shows
the overlap explicitly.

There are two general observations to be made about
Te(s). First, it has a singularity at s= (M—p)'+ih.
This arises because the logarithm has a nonvanishing
imaginary part at s=(M —p)' for (m+p)'~&s'&Mp
+(Mm2 —p,')/(M —p). This branch point replaces the
branch point we initially found at s= (M+p)' when we
followed the boundary prescription s' —ie for G. It
causes T(s„sb,s,) to be singular at sb ——(M—p)' and
s.= (M—p)', but on the unphysical boundary of the
physical sheet. On the physical boundary, T is of course
analytic at sb, s,= (M—p)'.

The second observation is that in general Te(s) has a
branch point at s= —mp+ (M'm+p, ')/(m+p)+i8. This
is an endpoint singularity located at point d in Figs. 4
and 5. Again, 2 has singularities only on the unphysical
boundary of the physical sheet.

The singularities of T() just mentioned are kinematical,
and follow from the vanishing of momenta. To make
further progress one must specify the scattering
amplitude fe(s). We parametrize fe(s) by the J3reit-
YVigner amplitude

FIG. 3. Perturbation diagram studied
by Bronzan and Kacser.

—r[s—(M+ p) ~7«2

fo(s) =
s s,+ir [s —(m+ p)'7«' —'

(2.16)
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which has a resonance at sp, behaves like an s-wave
amplitude at threshold, has its resonance pole in the
lower half plane (so that it corresponds to a decaying
state), and satisfies elastic unitarity,

ImS

b

b

d

ReS

Imfo(s) =
~
fo(s) ~'. (2.17)

ID terms of s'", the invariant mass, the full width of the
resonance at half-maximum is

I'[so—(m+zz)')'"

s 1/2
(2.18)

Thus, we replace the arbitrary scattering amplitude
fo(s) by two parameters, so and I', which remain at our
disposal. If I' is small the resonance in fo(s) is very
narrow. Physically this means that the isobar formed
between m and p is long lived on the time scale of strong
processes, so that m is quite distant from the non-
resonant p, when the isobar decays. In this limit the
overlapping interaction must be unimportant dynamic-
ally, although Bose symmetrization requires the
resonance to appear in both the sq and s, spectra; that
is, as two bands. The symmetrization is performed
automatically by the KT representation (2.3).

We expect the dynamical effect of the overlapping
resonance to become large as F.is increased. We estimate
that its effect will be comparable to that of the primary
resonance when the lifetime of the resonant state, as
given by the uncertainty principle, is equal to the time
it takes light to cross the meson cloud of m or p. This
cloud contains pions as its lightest constituent, so the
overlapping resonance has a large effect by the time

150 MeU. For resonances narrow compared to 150
MeV, these observations suggest an approximation
scheme for the solution of (2.11).The dynamical effect
of the overlapping resonance is given by the term with
kernel G. As a first approximation we solve the integral
equation with this "overlapping" term omitted. The
first approximation is thus the exact solution of the
problem where final-state scattering occurs between
only one pair of final-state particles. If we write To,;(s)
for the ith approximation to To(s), then our approxi-
mation scheme is given by

Fin. 5. Trajectories of the singularities R(s,s')&LU(s)g'I =0
in the complex s plane as s' moves from (m+p)z to ~. Mz has a
small positive imaginary part. The points are identified in Fig. 4,
except e: s= Mzz+(M—m'+zz')/(M+zz), s'=(M+zz)', and f:
s=o, s'= ~.

of (2.11) has not been studied in detail. Following
Omnes, ' we may eliminate the Cauchy singularity from
(2.11),converting the integral equation into a Fredholm-
type equation. By a change of variables, the domain of
the kernel can be made 6nite. Then, for M' having a
finite positive imaginary part, the kernel is square
integrable, and classical Fredholm theory applies. An
arbitrary entire function appears in the process of
converting to a Fredholm equation, but apart from this
the Fredholm equation will in general have just one
solution. However, the Fredholm kernel will not be
square integrable when 3P becomes real because of the
non-Landau singularity of G(s,s',M') at s= (M—zz)'.
We have not followed through the consequences of this
observation, but instead assume that a solution of
(2.11) exists, and on the physical grounds indicated
above that our iteration procedure gives a good approxi-
mation to the solution.

III. THE APPROXIMATE SOLUTION
AND ITS INTERPRETATION

The equation for To,o(s) is of the Omnes type, ' and
up to a multiplicative entire function, which we take to
be a constant,

Too(s) = expu(s),

[s—(m+zz)']
u(s) =—

2%i

ds' in[1 —2ifo*(s')]
(3.1)

1„+„1 [s'—s—ze)[s' —(m+Zz)']

1
To, '+ (&)=-

7r (m+ p, )

1
To,o(s) =-

(~p)

ds' fo*(s') To,o(s')

Is —s—z6

ds'fo*(s') To, ;(s')

s —s—zE.

u(s) =—[s—(m+Zz) z] ds

I' [s'—(m+zz)']'I'
&tan '

Substituting from (2.16),

(3.2)
1

+— ds' fo*(s')
(m+ p)

XG(s, s', M'+i5) To, ;(s') . (2.19)

If this sequence converges, its limit is To(s). Actually,
the question of the existence and uniqueness of solutions

S —Sp

This integral is evaluated in the Appendix, and

To,o(s) =
s so+i I'[s —(m+zz)']-'"

' R. Omnes, Nuovo Cimento 18, 316 (1958).

(3.3)
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We point out that the manipulations above "predict"
that two-body scattering resonances will appear in
multiparticle final states as bumps in mass distributions
when only the two particles in question interact
strongly.

For To, ~ we have

Tp i(s) = Tp, p(s)+ W(s)

rs " ds'[s' —(m+ p)']'"
W(s) =

$U(s)]'i', „, (s' —so)'+I"Ls—(m+y)']

R(s,s')+ PU(s)]'"
gin . (3.4)

R(s,s') —
L U (s)]'"

W(s) is computed exactly in the Appendix. However,
it is in the spirit of our approximation to keep only the
leading part for small I', which is

I's R(s,sp)+PU(s))'Is+iCsr(s)
W(s) = ln, (3.5)

LU(s)]"' R(s, sp) LU(s)]"—'+iCD(s)
where

R(s, (m+y)')&LU(s)]'~' '~'

Csr, D(s) = 2si' (3.6)
2$

where E and D are given by the plus and minus signs,
respectively.

The function of Csr, ii(s) is to remove the branch
points of the logarithm from the real s axis. We need
retain these small terms only near the branch points
of the logarithm, and for so in the physical interval, the
branch points also lie in the physical interval, (m+p)'
~&s&~ (M—p)'. In this interval, CN(s) )0. On the other
hand, the argument of the square root for Cz(s) is
only positive semide6nite. It vanishes at s= —mIJ,

+ (M'm+ps)/(M+@), and the proper branch of Cii(s)
is

Ci)(s))0, (m+p)'&s& mp, —
+ (M'm+Iis)/(m+IJ. ), (3.7)

&0, p.m+ (M'm+p'—)/(m+p)
&s& (M—p)'.

In order to specify the branch of W(s) completely, we
note that the logarithm vanishes when s= (m+p)'.

To locate the logarithmic branch points of W(s) to
lowest order in F, we use

.C(s+(s )) ci

s=4(sp) = s+(sp) —i s+(so) (3 8)
2s+(sp) Bsp

where sz(sp) is defined in (2.15). For sp in the physical
interval, the second term is crucial and gives the
imaginary coordinate of the branch point. Referring to
Fig. 4, let so take the place of s'. Then by inspection
the derivative in (3.8) is positive on arc (ab) of curve A

and arc (cd) of B, and negative on arc (bc) of A and
arc (ad) of B. On curve A, the function C in (3.8) is
C~, while on curve B, C stands for CD. When these
observations are assembled, it turns out that the branch
points of W(s) are in the upper half s plane, except on
arc (ab) of curve A. That is, for —my+(M'm+ps)/
(m+p)&sp&(M —p)', s (sp) is in the lower half s
plane.

The physical signi6cance of this branch point becomes
clear when Tp(s) is substituted into (2.10) to obtain
the spectral function. This spectral function is substi-
tuted into (2.3) to obtain the transition amplitude.
Any singularity of C (s') just below the s' axis will be
almost pinched by the dispersion denominator. Such
singularities are singularities of the transition amplitude
on the second Riemann sheet attached to the physical
boundary of the physical sheet. If they are close enough
to the boundary of the physical sheet they produce
characteristic variations in the transition amplitude.
In our case, the distance onto the second sheet is
proportional to I', and the singularity is logarithmic.
However, since C (s') is also proportional to I' Lthrough
fp*(s')], the effect of the branch point will be greatest
for F neither too large nor too small. We will investigate
the effect of changing I' quantitatively in Sec. IV.

We observe that the branch point s (sp) moves as
M is changed. The range of collision energies M for
which s (sp) is in the lower half-plane is

(sp+ my) (m+ p) —p,
'- 'i'

sp"'+p, &M( (3.9)

As M increases to the threshold for resonance produc-
tion, spt~s+p, the branch point at s (sp) approaches
Mp+(Mm' —ps)//(M —p) from the lower half plane.
As M continues to increase, s (sp) moves towards
threshold just below the s axis, and it curves around
the threshold into the upper half plane when M
= f((sp+my)(m+p) —ps)/m]'". iP If m))p, these equa-
tions show that j/I must lie in a narrow interval, while
s (sp) is close to threshold. For instance, for pion
production by pions, m=0.94 BeV, p, =0.14 BeV,
sP'=1.23 BeV for the (3,3) resonance. Then 1.3700
BeV&M&1.3735 BeV and 1.17 (BeV)'(s (sp) &1.20
(BeV)', while the physical region extends to about
1.51 (BeV)'.

Now consider the alternative of pion production by
nucleons, m=0. 14 BeV, p, =0.94 BeV, so' ' ——1.23 BeV.
Now p,))m, and 2.17(31&2.61 BeV. This is an interval
of 440 MeV for M, as colnpared with 3.5 MeV before.
At the same time, 1.17 (BeV)'(s (sp)(1.40(BeV)'.
Now the branch point occurs as much as halfway from
the threshold to the (3,3) resonance, and it is present

' When N is just above sP'+p, the derivative in l3.8l is
in6nite, and the location 8 (s0) must be replaced by the more
accurate approximation s (s0—ic~(s0)/2s0). For narrow reso-
nances, the qualitative description of the motion of the branch
point is still correct.
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for bombarding nucleon kinetic energies between 0.225
and 1.74 BeV. An optimum energy for observing the
branch point might be 800 MeV. At this energy
s (so) has come close to the real axis, but not yet too
close to threshold.

Now let us examine the causes of our conjectured
"anomaly" at s (so). We want to obtain a simple
physical explanation for the logarithmic singularity
which emerges in the once iterated approximation to
To(s). In Fig. 6 we picture the final-state interaction
in momentum space. We are in the rest system of an
isobar formed by m and one of the p, 's; the other p, is in
flight along the s axis. When the isobar decays, m
comes oR at an angle 0 with respect to the fleeing p,

given by
cos8= R(so,s)/$U(so) J" (3.10)

where s is the energy of the system composed of m and
the fleeing p in their center of mass. In order that m
interact with the fleeing p after the isobar decays, we
naively require that cos8=+1. In Fig. 4, if we identify
s' and so, this means that arcs (ab) and (da) give s in
terms of so for an interaction between m and the fleeing
p. Nowhere else in the quadrant (m+p)'&s, s' & (M—p)'
is cos8=+1.

There is a further requirement. In the Lorentz frame
of Fig. 6, the velocity of the emerging m must be greater
than the velocity of the fleeing p. This requirement leads
to the restriction on so

M'es+p'—my+ &sp& (M—p)'.
m+p

(3.11)

We conclude that the m and the fleeing p. will rescatter
at energy s (so) when (3.11) is satisfied; that is, when
the branch point of W(s) is in the lower half s plane.

This crude classical argument carries no weight in
itself, but in retrospect it provides an appealing
interpretation of the branch point we have found, and
the structure the branch point induces in the KT
amplitude. It also sheds some light on a question which
survives from the earliest days of resonance physics.
When resonance bands cross in the physical region, an
augmentation of the resonance is observed at the
intersection of the bands. The question arises of whether
this augmentation is due solely to symmetrization of
the transition amplitude, or is partly due to dynamical
eRects. In our terms the question is whether T,(s) is
additionally augmented at so by the presence of the
overlapping resonance. Mathematically, the answer is
that To(s) has no such augmentation within the frame-
work of the KT representation and our approximation
to its solution. In addition, the success of the classical
argument suggests that it may be generally indicative,
even though it ignores the quantum-mechanical nature
of the process. Insofar as the argument is valid, it shows
that one is looking in the wrong place in expecting
an augmentation at so. Angle and velocity requirements

FIG. 6. Final-state interaction in
momentum space.

place the most striking contribution from the over-
lapping resonance at s (so). Of course, the KT represen-
tation cannot give anything as strong as a multiplicative
augmentation where the bands cross. The point we
stress is that our classical argument contradicts any
model which postulates a multiplicative augmentation
where bands cross.

We can also discuss singularities which arise in
further iterative approximations to To(s). These will
be analogous to the logarithmic singularity which
appears at 8 (so) in To,i(s). We are interested only in
singularities which appear in the lower half s plane,
because only these can produce observable bumps in T.
We first state our conclusions, and then give arguments.
We will 6nd that higher iterative approximations have
singularities in addition to those below so and s (so)
only if M is such that s (so) is in the lower half plane;
that is, M is in the range (3.9). At each iteration we get
at most one new singularity in the lower half plane, and
at each step the new singularity lies closer to threshold
than any singularity found previously. Thus, as we
have seen, s (so)&so and all further singularities
appearing in T0,2(s), T0,3(s), ~ will be closer to
threshold than s (so). Each singularity is "weaker"
than any singularity found previously. For instance,
there is a pole in To,o(s) at so, and a new logarithmic
singularity in To, i(s) at s (so). The further singularity
of Tp, 2(s) is at s (s (so)) (if it exists), and is a finite
singularity. For m/0 only a 6nite number of singu-
larities appear. After some step in the iteration pro-
cedure we find only singularities which appeared before.
For pion production by pions there are at most two
singularities, the pole at so, and the logarithmic branch
point which appears for M in range (3.9). For pion
production by nucleons, there are at most three singu-
larities —the two we have found plus a new one TO, 2(s)
at s (s (so)), which is a finite singularity. As m/p, —+ 0
the maximum number of singularities increases to
infinity, but as we can see, m/p must be quite small
before the number of singularities is large. Finally, we
note that while (3.9) gives the range of M for which the
logarithmic singularity is present, the upper limits of
the ranges for which the weaker singularities are present
are successively closer and closer to so'~'+p. What this
means is that as 3f increases above threshold for
production of a resonance, the singularities move one
after another around the threshold into the upper half
s plane. The weakest and lowest lying singularity goes
first, followed by all the rest, with s (so) moving to the
upper half plane last.

Now fot. the arguments. We go back to Fig. 5, and
observe that the same diagram is obtained if we
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(ln
~

x
~

)'dx & ~ . (3.12)

Clearly, sp must lie in range (3.11) for evens (sp) to be a
singularity; then s (sp) must lie in range (3.11) for
s (s (sp)) to be a singularity, and so on. In general, the
new singularity of Tp, (s) is at

s„=s "(sp), if s„ i& —my+(M'm+p')/(m+p). (3.13)

At some step s„& does not satisfy the inequality
(3.13), and we find no further singularities. The only
alternative is that there be a point of accumulation of
the s„above —my+(M'm+p')/(m+p). Since the s„
accumulate at threshold if there is an infinite number
of them, we must have —my+ (M'm+p')/(m+ p)
= (m+p)', or m=0, for there to be an infinite number
of singularities. This can be understood from our

interchange the roles of s and s'. At the same time we
must interchange the point labels a and d, and b and c
so that Figs. 4 and 5 observe consistent notation. Then
Fig. 5 displays the trajectories of the logarithmic branch
points of G(s, s', M'+ib) in the complex s' plane as s
increases from (m+ p)' to pp . We see that curves A and
B of Fig. 4 map singularities of Tp, ,(s ) into (pinch)
singularities of Tp +i(s). However, arcs (ab) (bc) aild
(ad) of Fig. 4 locate new singularities in Tp ~i(s) only
from singularities in Tp, ;(s') slightly below the real s'

axis, since a pinch of the integration contour must
occur. Conversely, are (cd) maps singularities in
Tp;+i(s) from singularities in Tp, ;(s') above the real s'
axis. The location of the new singularities of Tp;+i(s)
can be found by examining the derivatives Bs~(s')/Bs'
in Fig. 4. One sees that arcs (bc) and (cd) map singu-
larities of Tp, ,(s ) in the lower half plane into singu-
larities of Tp, ,+i(s) in the upper half plane. Arc (c'd)

aps upper half plane to upper half plane, and arc (ab)
maps lower half plane to lower half plane. Hence, only
arc (ab) is functional in locating physically significant
new singularities at each step of iteration. We need not
keep track of singularities in the upper half plane; they
do not give rise to singularities in the lower half plane
in any subsequent iteration.

From examination of Fig. 4 one sees that each, new

singularity, s„, lies at a lower energy than its prede-
cessors. The progressive weakening of the singularities
is due to the logarithmic character of G. For instance,
the new singularity of Tp, p(s) is finite because

classical argument. A singularity s„corresponds to
the formation of at least (v+1) successive isobars prior
to the exit of the final-state particles from the volume
of interaction. As e increases it becomes more and more
dificult to satisfy the velocity requirement. Only if
m=0—that is, only if the "chasing" particle ns moves
with the speed of light —can we satisfy the velocity
requirement for any e.

The maximum number of singularities in practical
cases is easily calculated. As M increases above sp'"+p,
point a in Fig. 4 moves to the right. On the other hand,
as (sp)/aM&0. Thus, the greatest number of singu-
larities is present when M= sp'"+p, that is, at threshold
for resonance production. s (sp) is then always a
logarithmic singularity of Tp, i(s). For s '(sp) to be
a singularity of Tp, p(s) we require s (sp) & —mp

+ (M'm+p')/(m+p), or

M'm+y' 3Im' —IJ,
'

—my+ —&My+ (M =sp'"+ p),
m+p M —p

or
sp'"+ p &p'/m

(3.14)

Since sp'~'& m+p, , (3.14) can be satisfied only if

m/p, & 2'"—1. (3.15)

Equation (3.15) is not satisfied for pion production by
pions, so Tp, i(s) contains all physically significant
singularities of Tp(s) found in any order of iteration.
On the other hand, (3.15) is satisfied for pion production
by nucleons, and Tp, p(s) has a singularity at s '(sp)
for a small range of M. But s '(sp)=1.22 (BeV)',
while —my+ (M'm+ p')/(m+ p) = 1.25 (BeV)' for M
= sp +p, . Tlllls Tp p(s) has no new singularities for any
M. In general, our discussion shows that only refine-
ments emerge from a continuation of the iteration
procedure. No striking structure of To is present in the
exact solution of (2.11) which is not already present in
TD, ~. To be sure, the overlapping resonance produces a
smooth background augmentation to T which may
change as we improve the solution of (2.11). But this
smooth background is relatively uninteresting.

IV. EVALUATION OF THE TRANSITION AMPLITUDE

From (2.3), (2.10), and (2.19), the successive approxi-
mations to Tp(s) produce a sequence of approximations
to T.

T;(s„sp, s,) =1.,( )+sLp, (s,),
1

J,(s) =—
ds'Tp „(s')fp*(s')

s —s—ze

I,( ) =I;(s)+rF(s), I-p(s) = To(s) =
s—sp+ir[s —(m+ p)']'"

(4.1)

ds's'[s' —(m+ p)']'~' R (s',sp)+ [U (s)]'i'+iC~ (s')
F(s) = —— ln

7r
& +»~ [U(s')]'i'[s' —s—ip](s' —sp —zr[s' —(m+p)']'~') R(s', sp) [U(s)]"'+iC—ii(s')
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The integral F(s) cannot be obtained in terms of elementary functions. However, we can extract the information
we want by a simple approximation. Let k'= fs' —(m+zz)']'". Then

2 " dk'k'(k" +kiz) R(k"+k ' sp)+k'fV(k")]'"+iC(k')

LV(k")]'Iz[k"—k '])k"—k' —zp] R(k"+k ' so) —O'LV(k")]'"+zC(—k')
(4.2)

where
ki ——m+zz,

k,={s,—zrLso —(m+z )']' '}'~',

k = {s—(m+zz)'}'",
k'L V(k")]'"=LU(k"+kP)]'"

C(k') =Czz(k"+kiz),

C(—k') =CD(k"+ki');

the argument of the logarithm and expressing the
integral as a sum of two integrals, one with a cut only
in the upper half plane, and the other with a cut only
in the lower half plane. These integrals may be worked
out by closing the contour in the half plane where only
poles are present.

2i
F(s) =H(s)—

A C (s—sp —iysp"')

k' 8+Ck+—zyD
7

k' 8—Ck+iyD—
A =M'+m'+2(zz' —sp —s (sp)),

B=k '(sp)+Ck (sp),

LV(k z(so))]z~z=AC

C(k (sp)) =yAD,

R(k"+kiz, so)=A(k" —8).

(4.3)

and we have made the numerically unimportant
approximation of taking kp to be independent of k.
The integrand of (4.2) is an even function of k, so we

may extend the lower limit of the integration to —~
and divide by 2.

If we are content to obtain only the variation of F(s)
near s (sp), we may replace the argument of the
logarithm in (4.2) by a function which is a good
approximation near k (so)=ts (sp) —(m+zz)z]'~', and
hence near k=0, but which may be inaccurate farther
away. Thus, we want a function which has zeros of the
numerator and denominator at the proper points and
goes to 1 at k= 0. Such a function is

Ls —(m+zz)']'~' —k,
X sin + (so+zVso'")

Ls—(m+zz)']'" —kz

Lso —(m+zz)'+i esp'~' j'~' k, —
Xln (4.5)

Lsp —(m+zz)'+i ysoP ']'~' —kz

C
ki = ——+-,'PC'+48 —4iyD]"z

2

kz= C+ki.

In this expression the arguments of the logarithms are
negative.

Now let us look at an example. We study the reaction
X+1V~Z+E+zr, where as always our particles and
"(3,3)" resonance are spinless. We take M=2.25 BeV,
which corresponds to a bombarding kinetic energy of
820 MeU; m= 0.14 BeV, zz=0.94 BeV, so= 1.518 (BeV)'.
The physical interval runs from 1.16 to 1.72 (BeV)',
and s (sp) = 1.23 (BeV)'. For narrow resonances,
ReLo(s)))ImLp(s) near s (so), and likewise the varia-
tion of F(s) occurs mostly in its real part. )The argu-
ment of the logarithm in (4.5) changes by zr as the
branch point is passed. ) Thus, for small y

sp
II(s)

sp —(m+zz)'

1+12y+3.2y
s—sp-

Here, A must be large compared with k '(sp) for the
approximation to R to be good. In the example pre- ReLi(s)=Rey
sented below this criterion is satisfied. We insert (4.3)
into (4.2), at the same time removing the factor
L V(k")]i", which varies slowly near k (sp), from under
the integral sign. Then

1 " dk'k'(k"+kiz)
F(s) =H(s)—

zrAC „(k"—koz) (k"—k' —zp)

k" 8+Ck'+iyD-
&&1n, (4.4) ImLi(s) = Imp

k" 8 Ck'+iyD— —

0.75'
Xtan—' (4 6)

Ls—(m+zz)']'" —0.266

sp
H(s),

sp —(m+zz)'

where H(s) varies slowly with s uzzd I' (or y) near where the arctangent is negative. We have computed
s=s (sp). The remaining integral, which contains the {sp/Lsp —(m+zz)z]}'~'H(s (sp)) by hand; it is 33—i26.
variation of interest, may be evaluated by factoring When the factor (s—so) ' of the variation is taken into
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(s)=-
A [s—(srb+ts)']'"

I+iA [s (srb+q)']'~'—
I' [s—(nb+ts)']"'

l S—Sp+iI'[S —(Srb+ts)']'I'

account, the contribution of H(s) to F(s) in (4.4) is of
the same order of magnitude as the integral contributing
the variation. Thus, we obtain Table I, which gives
ReLi(s) for two resonance widths.

We observe from Table I that the eGect of the
negative step in the arctangent in (4.6) is largely
masked by the rising factor (s—sp)

—'. We might hope
that by increasing p we could overcome this cancel-
lation. We observe that this is happening as we increase
p from 25 to 50 MeV. Of course, we are getting away
from the narrow resonance limit we have assumed, but
apart from this there is a fundamental difhculty in
trying to obtain an observable effect by increasing p.
The difficult is that ImLp(s), which we can ignore for
small y, rises like [s—(m+ts)']i ' from threshold. When

p gets much above 50 MeV this rapidly rising imaginary
part offsets the falling real part, and

~
T(s„sb,s,) ~

' still
rises for fixed s, as sb passes s (sp). We note that this
cancellation arises because fp(s) is unitary and rises
like [s—(m+ts)']' ' at threshold.

There are two other possibilities we can think of for
making the branch point observable. One is to increase
sp so that (s—sp) ' is flatter near threshold. Then we
might get a variation for small y. To do this we must
also increase M, so that s (sp) is in the lower half
plane. But this increases the factor AC in (4.5). As a
result, in order that ReLi(s) fall significantly as we
pass s (sp) we must again increase y to the point that
the rise in ImLi(s) masks the effect.

Finally, one might try to make the scattering length
of f(s) near threshold independent of the location and
width of the resonance. That is, one might take for
fp(s) the unitary parametrization

TABLE I. Real part of L&(s) near threshold

1.17
1.19
1.21
1.23
1.25
1.27
1.29

7=0.025 BeV
ReLg (s)

—2.99—3.08—3.31
3031—3.25—3.49—3.82

(ImLo = —33 at s = so)

&=0.05 Bey
ReL& (s)

—2.86—3.03—3.16—3.10—3.01—3.14—3.47
(Im Lo ———16 at s = so)

APPENDIX

We 6rst compute

u(s) =—[S—(rrb+ts)']

27ri

dS

(~„i [s'—s—ie][s'—(rrb+ts)']

s' sp+iI'[s' (rrb+t—s)']"'—
Xln (AI)

s' sp ir [s' (orb+ts—)']'~—'—
Introduce the variables

k = [s'—(m+ts)']" k= [s—(rrb+tb)'+ie]'"

kp
——[sp—(rrb+to)']Us.

for the weaker singularity in Tp, &(s). These conclusions
disagree with Aitchison' because the triangle amplitude
which he considers, and which Grst appears in our L~,
is swamped by the much larger pole amplitude present
in Lp and L&. As we have indicated, the unitarity and
threshold behavior of fp(s) govern the relative strength
of these amplitudes near the logarithmic branch point
of Lj.
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1—iA [s—(rrb+ts) ']'~'

1+ZA[s —(trbyts) ]'" (4 7)
u(s) =—

gran p k'(k" —k')

[s—(m+p, )'] " dk'

When Li(s) is computed using this scattering amplitude,
the results are again disappointing. For small scattering
length A the variation in ReLi(s) is small, while for k"—kp' —iI'k'
large A the rise in ImLr(s) masks the variation.

We conclude that it is unlikely that we can detect The integrand of (4.2) is even in k. We extend the
a variation in T due to the branch point of Tp i(s). lowerlimit to —oo and divide by 2, factor the argument
The same conclusion can be drawn, srbutatis rlutarbdis, of the logarithm, and split u(s) into two terms.

[s—(srb+t )']
u(s) =—

27ri
ln(k' —[k,'—I"/4]'I'+ it) (k'+ [kp' —F'/4]'I'+iF)

„k'(k"—k')

[s—(srb+ts)']

27ri
ln(k' —[kps —r'/4]" —ir) (k'y [kp —r'/4y' —ir) . (A3)„k'(k"—k')
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The erst term has a cut only in the lower half k' plane, and the second term has a cut only in the upper half k'

plane. They may be evaluated easily, and

u(s) = —ln(s —so+iI'[s —(nz+ p)']'~') —iver,

where the argument of the logarithm is —ir when s = (m+p)'.
Next we compute

I's " js'[s' —(m+ p)qui g (s,s')+ [U(s)]'i'

~[U(s)]"' ( +„& (s' —so)'+I"[s'—(m+p)'] R(s,s') —[U(s)]'"

00 k"—k+'(s)
W(s) = 1

~[U(s)]ii, (k'i —kg)+r~k'~ V~—k ~(s)

2I's

Again, let k'= [s'—(m+p)'] ko ——[so—(m+p)']i~' k+(s) = fR(s, (m+p)')&[U(s)]' '}' '

(A4)

(A5)

(A6)

The integrand is again an even function of k . We factor the denominator and split the integral into two terms.

I's
W(s) =

ir[U (s)]'i'

k' —k+(s)
ln

~ (k' —ki) (k' —4) (k' —ki*) (k' —kg*) k' —k (s)

dk'k"

rs 00 dk'k" k'+k~(s)ln, (A7)
ir[U(s)]'i' „(k'—k ) (k' —k,) (k' —k,*)(k' —k *) k'+k (s)

s R(s,so)+[U(s)]if'+iC~(s) iT' [ki' —k+(s)][ki+k (s)]
W(s) = ln ln

[U(s)]'" P(s, so) [U(s—)]"'+iC&(s) [ko' —I"/4]'i' [ki*—k (s)][ki+k+(s)]
(AS)

vrhere

ki ——a[ko' —I"/ ]4' 'i+ir/2.
2

The first integrand in (A7) has a cut only in the upper half plane, while the second integrand has a cut only in the
lower half plane. The integrals may be evaluated by closing the contour in the half plane where only poles are
present.

C~ ii(s)=21'sk~(s). (A9)

When s= (m+p)', k+——k )0. By following k+(s) we find that (3.7) holds. For small I' we can drop the second term
of (AS), which has the same singularities as the first term. Finally, W(s) does not have the singularity which is
generally found at s=-mp+(M'm+p, ')/(m+p)+z5 [endpoint singularity of (A6) at (k=0)]. This is because
the integrand of (A6) is an even function of k.


