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Pion-Nucleon Scattering in the Boundary Condition ModeL
II. The Second Resonance*f
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Good agreement is obtained with experimental information on the second pion-nucleon resonance by
considering an explicit coupling to the p-nucleon channel. The dynamics are represented by the boundary-
condition model, satisfying analytic and unitarity requirements. The main effect is due to the coupling to
virtual p mesons, in contrast to the S-state coupling effects. All the isotopic splitting of the J=-, D states
can be explained by the coupling to the p-nucleon channel. By altering the coupling in accordance with the
one-pion exchange diagram the T= —,

' 850-MeV "shoulder" is obtained. The boundary-condition radius
agrees with the relevant Feynman diagrams of the strip approximation.

I. INTRODUCTION

~ 'HE introduction of .inelastic unitarity to the
problem of the scattering of two particles has

been attempted by several authors in several different
dynamical schemes for both x-S' ' and X-S' scattering.
In most cases the hope has been that the unitarity con-
ditions combined with reasonable causality and dynami-
cal assumptions (analyticity, zero-range boundary
conditions, etc.) would be sufficient to introduce a
maximum in the (sr-X or K-S) cross section. In previ-
ous work'' we have explored the effects on S-wave
&-S scattering of including production channels in the
unitarity dynamical approximation of the boundary-
condition model. This scheme assumes independent
homogeneous boundary conditions on the various two-
particle-channel wave functions at a boundary radius
suggested by a consideration of the dominantly con-
tributing diagrams. The results in the 5-wave case have
been in good agreement with experiment from 0—700
MeV and have explained the isotopic splitting of the
T=-,' and T=-,' waves at threshold. In the 5-wave
case, the 2 pions in the inelastic channel are considered
to be strongly correlated in the T=O, J=0+ state at a
low kinetic energy in their c.m. In that case the second
channel causes strong energy dependence mainly above
its threshold. In this paper we shall apply the unitary
model to the problem of the second resonance of the
+-X system. Here we shall demonstrate that a reso-
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nance may be produced in the T=-,', J=-,' D state far
below the threshold of the second channel, casting doubt
on the validity of using elastic unitarity for low-energy
calculations. ' Even then energies above inelastic thresh-
old are of such importance to the dispersion integrals
as to bring in inelastic unitarity in an important way.

It is shown that, as in the 5 states, ' all the isotopic
splitting of the J=~ D states can be attributed to the
difference in coupling to the p-nucleon intermediate
state. If the ratio of the couplings is taken to be the
same as that of the one-pion exchange graphs, the
T=-'„J=-,' D state is compatible with experiment,
including the T= 2, 850-MeV "shoulder. "

II. THE SECOND RESONANCE

General Considerations

The first observed maximum in the x-E total cross
section occurs at 7 = 190 MeV (where T =lab kinetic
energy of the pion). It has been known for some time,
with little ambiguity, that this is essentially an elastic
"dynamic" resonance in which the E» phase shift goes
through 90' at the cross-section maximum with negli-
gible absorption. The force due to the exchange of a
nucleon supplemented by the requirement of a right-
hand unitary cut in the amplitude including the re-
scattering is adequate to predict a resonance in this
state. '

However, when we come to the second maximum at
T =600 MeV, no such clear situation exists. From ex-
periment we know that the maximum occurs not only
in the total T=-,'cross section, but also separately in
the T=-', elastic and inelastic cross sections at this
energy. ' "No amplitude analysis yet points definitely

8 G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957).
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Annual International Conference on High Energy Physics at
Rochester (Interscience Publishers, Inc. , New York, 1960).
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the singularities (torces) responsible for inelastic events
also give rise to an elastic maximum at the same time,
the general driving agent being inelastic intermediate
states acting through unitarity in the physical channel.
Thus it is very important to maintain unitarity while
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Fro. 1. The total D~s cross section P"(a)" part of figure and
S, e p" (b)" part) obtained from the coupled-channel B.C.M.
equations as derived in Sec. 4 with r0=0.50 p '. The experimental
points are from Ref. 10 with 30+1 mb subtracted as nonresonant
background. Parameters for the various curves are found in
Table I.
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to any particular partial wave as being responsible for
these maxima although the assumption that the a~3
state goes through resonance is consistent with all
results.

Most attempts to explain the maximum require that

Fzo. 2. The total D~g cross section L"(a)" part of figure7 and
S, g L"(b)" part7 obtained from the coupled-channel B.C.M.
equations as derived in Sec. 4 with ro ——0.50' . The experi-
mental points are from Ref. 10 with 30&1 mb subtracted as
nonresonant background. Parameters for the various curves are
found in Table I.
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prescribing the forces to be used. Ball, Frazer, and
Nauenberg' point out in detail the difhculties involved
in doing this. In G.I . we saw how by using the unitary
coupling forces generated by the simple boundary-
condition model (B.C.M.) we could generate ampli-
tudes which have the correct general nature, and whose
particular character depends on the m-m interaction. As
pointed out in the discussion in Ref. 7, the elastic ampli-
tude in the S» case was driven mostly by "ABC"
pairs on the mass shell, and thus the major rise in cross
section came above threshold. In the case of D~3 waves
(the component most suspect in forming the second
resonance), Cook and Lee' have inferred that the major
contribution to the amplitude comes from dispersion
over p's produced virtually while Ball and Frazer'
conjecture that on-the-mass-shell production contrib-
uted from the low-energy tail of the p is sufBcient to
give the second resonance. The purpose of this paper is
to show that the unitary forces generated by the B.C.M
can produce a resonance below threshold due solely to
virtual intermediate state effects, and thus unify the
two points of view within a single framework. This will
now be done using much of the formulation in G.I..

Exyerimental Data

Most of the data we use for comparison with our
results is from experiments done at Berkeley. '" At
present more of these are being conducted (such as
~ +P~rr'+n differential cross sections), eventually
enabling one to make a more definite amplitude analy-
sis. In this section we shall describe some of the results
of the aforementioned experiments and the conclusions
that can be drawn from them.
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FIG. 4. Same as 3 for r0=0.60 p fs=0.25.
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(2.1)

Using the total cross sections given in Ref. 10,
together with the experimental errors given there, we
calculate o~,~(s). Subtracting 30+1 mb as nonresonant
background, we obtain the points shown in comparison
to the curves in Figs. 1(a), 2(a), 3, and 4. The errors
which were within 10% of each other, have been
rounded off to an average &3.3 mb over the range of
the measurements. The background subtraction of 30
mb is obtained from the background between resonances
over the range 0.5—1.5 BeV." The error may in fact
be larger than &1 mb.

We now' wish to inquire whether this maximum in
the scattering cross section at 600 MeV arises from a
resonance in a single state of total angular momentum
J and orbital angular momentum /.

The total and elastic cross sections for such a state
(for given isospin) are given by

where

og.g(l,J)= (kr/k')(J+-', ) ImAig,

, (l,J)=(4 /k')(J'+-,')id' i',
(2.2)

(2 3)

(a) Total Cross Section

By considering the isotopic composition of the in-
coming states, one may derive the formulas

A)J= (2.4)

I I

500 600
Lob Kinetic Energy of Pion ( MeV}

FIG. 3. Total Dg3 cross sections for rp ——0.40tM, ', f2——0.25.
Parameters in Table I.

k is the c.m. momentum, and 0&g~J&1. At resonance
(big ——s./2),

o &'")= (4s./k. ..') (J+-,')L:', (1+re(g)). (2.5)
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Thus
2' 0 tot 4'—( (—.
k' (J+-,') k'

(2.6)

In general, k' is given by

(c)

Fio. 5. (a), (b): Graphs contributing to potential-type elastic
scattering and production, respectively. (c), (d): Graphs con-
tributing to B.C.M.-type elastic scattering and production,
respectively.

ward dispersion relations, Eandi" has obtained a set
of "nonunique but plausible" SPD amplitudes, as-
suming that the D~3 phase shift goes through 90' in
the vicinity of 600 MeV. The phase shift 6 and the in-
elastic parameter g for D~3 scattering are given. as the
experimental points in Figs. 1(b) and 2 (b) as a function
of T„.The allowable variation of the amplitude fit was
not discussed in the above reference. By considering the
experimental accuracy of the differential cross section
and of the inelasticity" we arrived at the error bars
shown in the figures.

Another recent analysis, '4 fitting directly to data
with energy-dependent amplitudes, shows much the
same behavior of the D» amplitude in this energy
range if a D~3 resonance is assumed.

So we shall proceed on the assumption that the D~3
channel is of paramount importance in the scattering.
This choice will be seen to be compatible with our model.

2MT (2MT +4M')
k'=

4[2M T + (M+te)'1
(2.7)

III. INELASTIC CHANNELS

Again as in G.I.. we introduce a production channel

z+E —+ z-+7r+1V

&tot
12 mb& &24 mb.

J+ i (2.8)

From Fig. 6(a)
(res) 30 m (2.9)

Thus we find from (2.8) and (2.9) that all J's but
J=-, are inconsistent with experiment. The q required
for J=-,' leads to (o.,~/o. t,~) =0.64. This considerable
inelasticity is verified by the experiments of Ref. 11.

The analysis of photoproduction experiments by
Peierls" indicates 1=2 for this resonance. If this is so,
then the channel responsible for the resonance is D~3

if we accept the above reasoning. The P» possibility
(also employed in Ref. 13) has not yet been definitely
eliminated by any analysis (although in the analysis
of Roper" it is discouraged, even in combination with a
Dis resonance).

(b) Other Data

Fitting the total or+p cross sections, diRerential cross
sections for the processes z.++p —+ z.++p and z. +p ~
z +p, polarization measurement and using the for-

"R.F. Peierls, Phys. Rev. 118, 325 (1.960).
'3 R. Fandi, University of California, Lawrence Radiation

Laboratory Report No. UCRL-10629 (unpublished)
'4 L. D. Roper, private communication and Ph. D. thesis,

Massachusetts Institute of Technology (unpublished); Phys. Rev.
Letters 12, 340 (1964).

For (T,)„,=600 MeV =4.34 p, and M =6.80 te, we

obtain

k„,'= 10.8 p'
=0.53 mb —'.

Therefore,

in which we must decide, as in the S-wave case, how to
correlate two of the three particles in the final state.
We may once more try a m* of T=O, J=O+. But we

are oow 400 MeV above the threshold for the main
contribution from such a process, and it can probably
be safely discounted as a strong structural effect,
although some further exploration is warranted.

According to the latest analyses' the quantum
numbers of the q meson are J~g=O +, where P denotes

parity and G denotes the eigenvalue of the G-parity
operator Cp'~( '+~ ) ' This assignment also fits in

neatly with the "eight-fold way. '"' The J assignment
of 0 prohibits any p

—+2m vertex, while p~3m is

allowed only through a violation of AG=O, since the
G parity of 3 pions is negative. Thus the p is eliminated
from consideration in any peripheral production pro-
cess such as Figs. 5(b), (d).

g versus N»*

Now we shall give arguments for considering the
coupling of the two pions into T=1, J=1 (p meson)
as of more importance than the coupling of one of the
pions and the nucleon into T=—,', J= ss+ (E*).

(a) Let us picture the nucleon as consisting of a
pion (T=1) bound to a core (T=-,') in a p state so

"H. Goldberg, Ph. D. thesis, Massachusetts Institute of Tech-
nology, 1963 (unpublished)."P. L. Bastein, J. P. Berge, 0. I. Dahl, M. Ferro-Luzzi, D. H.
Miller, et al. , Phys. Rev. Letters 8, 114 (1962); M. Chretien,
F. Bulos, H. R. Crouch, Jr., R. E. I.anou, Jr. , J.T. Massimo, et al. ,
ibid. 9, 127 (1962).

'r P. Roman, Theory of Flememtary Parteeles (North-Holland
Publishing Company, Amsterdam, 1960).

's M. Gell-Mann, Phys. Rev. 125, 1067 (1962). The v is there
referred to as y0.
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that the isotopic spin of this system (the physical
nucleon) is —', ."The incoming pion has T= 1.

If the production is mainly p+E, we expect Fig.
6(a) to be representative of the process. Here the ex-
changed pion is the bound pion in our model of the
physical nucleon.

If, however, s-+»V* dominates the production channel,
then Fig. 6(b) will presumably play a major role in
the process. The exchanged nucleon in this diagram is
the bare nucleon of our model, while the outgoing
pion is the bound pion which has been released by the
scattering.

Since the resonance occurs in the state of total T=-,'
with no special activity in the T= —, channel at these
energies, there wouM be support for that process which
gives a larger ratio of T=-,'to T= —,'. The coupling of
three isotopic spins with one pair in a definite state
t" can be represented by

where R is a unitary matrix symmetric in t' and t",
and can be chosen real. 4 is a state with particles 1 and
2 coupled to isospin t', whereas 4 has particles 2 and 3
coupled to t". Independent of all magnetic quantum
numbers, E is related to the 6-j symbol through the
relation

Fro. 6. (a) Peripheral pro-
duction of p meson: Model
discussed in text has exchanged
pion coupled to nucleon core
(in exit channel) in P»& state.
{b) Short-range E*production:
Here the exchanged nucleon
is core bound to pion (in exit
channel) in P»» state.
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(b) The model of the physical nucleon proposed in

(a), in which a pion is bound to a nucleon core in a
P~~ state, has some other interesting consequences con-
cerning the total energies of the lab x-bound x and lab
~-bare Ã systems in their respective centers of mass.
From the relation kr l, when the angular momentum
barrier is overcome, we find for the p state (/= 1) that
for r 11' ' (one-pion exchange), we have k 1i=140
Mev/c for the average magnitude of the momentum
of the bound pion (or bare nucleon), in the lab system.

From this very crude assumption one may deduce"
that at 600 MeV the average energy in the ~-x center
of mass is down about 3 half-widths from the peak of
the p, while the average energy in the incoming m-ex-

changed S center of mass is up about 6 half-widths
from E* energy. Thus again we favor the p meson.

(c) From the invariance property of E'—P' where
E= total energy, P= total momentum, we find that the
threshold lab kinetic energy for the creation of mass nz

in the c.m. system in m-Ã scattering is given by

X . (3.2)
T t"

For process 6(a): 1» ——-,'(the bare nucleon); 1s 1(the-—
bound pion); 1s 1(the incom——ing pion); 1'=-,' (the
physical nucleon); t"=1 (the p meson). Hence from
the known values of the 6-j symboP' the ratio of
probabilities is

(3.5)

(T ),s,——6.131i=846 MeV.

For an S*of mass 8.96 p

(3.6)

If w'e take the p as a zero-width particle of mass
5.21 p, we find

(3.3) (T,)t»„=389 MeV. (3.7)

On the other hand, we have for E*production through
process 6(b): 1» 1(the bound pion); ——ts ———,

' (the bare
nucleon); ts ——1 (the incoming pion); 1'=-', (the physical
nucleon); 1"=-,s (the»V*). The resulting ratio in this
case is

(3.4)

Thus we find that the p mechanism, Fig. 6(a), favors
T=2 production much more than the E* process,
Fig. 6(b), if indeed these diagrams dominate the
mechanisms.

"J.Hamilton and T. D. Spearman, Ann. Phys. (N. Y.) 12, 172
(1961).

"M. Rotenherg, R. Bivins, N. Metropolis, and J. K. Wooten
Jr. , The 3-j and 6-j Synsbols {Technology Press, Cambridge,
Massachusetts, 1959).

The erst of these is up 150 from T =600 MeV, the
second is down 210 MeV. In the case of the p we shall
demonstrate the strong iriAuence of producing p's virtu-
ally at energies far below' threshold. We have seen,
however, that in the case of the ABC, which has its
inQuence mainly through the Ball-Frazer effect of
producing particles on the mass shell, the major effects
appear at or slightly above threshold. Thus, at least
in our model, the»V* mechanism (whose effects would
be of the ABC or Ball-Frazer genre) would probably
play little part at 600 MeV.

(d) The fact that the resonance is probably /=2
suggests that the long-range peripheral model [Fig.
6(a)) dominates rather than the very short-range
nucleon exchange force [Fig. 6(b)$ or other multipion
exchange diagrams which could lead to an X3~*.

(e) The isobar-production model agrees quite well

with the Q(»V»s.)[= (E~ '—Ply ')'I' —(M+1i)j values
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found in the reactions rr++ p ~ ir++rr'+ p and s++p ~
pr++pr++I, but is not very convincing in the s +p -+
2rr+E values. "The results in this latter case suggest
the dominance of the p meson.

However, in spite of all these arguments, there can
be no doubt that, even if the primary mechanism is
the peripheral production of the p meson, the final-state
rescattering of one of the pions and the nucleons through
the (3.3) isobar will be of great importance in predicting
the Q values of the final-state particles. The coupling
of the S*into the problem is feasible in this model and
will be attempted in future w'ork. Meanwhile, w'e adopt
p-S as the inelastic channel of primary importance.

The p-X, 5-state channel presumably also couples
strongly to the T= » J=-,' and ~ E-state m-X channels.
Because of the importance of the pole term and short-
range exchange potential in these states we do not
treat them in the present context. Furthermore it is
possible to use crossing properties to relate the even
and odd angular momentum x-S states. Work is now
in progress using these connections.

The Boundary Condition

Let the reduced radial wave functions in the m-S
channel be u(W, r), where W is the total energy in the
x-S c.m. system. If the reduced radial wave function
in the p-N system is w(m, W, r) for a p meson of mass m,
then the dynamical B.C.M. equations are

rp(du/dr)„„, = fiu(rp)+P f, (m)w(m, rp),
4.1

rp(dw/dr) „„,=f, (m)u(rp)+ fsw(m, rp) .

We attempt to allow for the short lifetime of the

p meson by coupling to channels of varying p mass. Here

fi, f„and fs are real and independent of W. Note the
approximation made. in neglecting (1) the coupling of
various p-1V channels to each other and (2) the variation
of fs with m.

By conservation of angular momentum and parity,
if the incoming state is D~3, the outgoing p-S state can
have 1.=0 or 2, where I.= the orbital angular momentum
in the p-X c.m. system. The production cross section
~ 1—q'. From the Appendix and an equation for arbi-
trary I. analogous to (4.23) one can show from the
properties of the Hankel functions that

(1 ~2) ep +2L+1 (4.2)

for E~O (where E is the outgoing c.m. momentum).
This, of course, is a result of assumptions far more
general than those of the B.C.M. Thus the small L's

"M. Olsson and G. B.Yodh, Phys. Rev. Letters 10, 353 (1963).

IV. DETAILS OF THE MODEL AND THE
FITTING OF THE DATA

Here we proceed in much the same way as in the S~~
case of G.L.

[(W2 (M+ m) 2) (W2 (M m) 2)]1/2

E= (4 4)

where %=total energy in the vr-E c.m. and m=mass
of the p meson produced. 8' is given in terms of the
pion lab kinetic energy T by

W'= 2MT + (M+/a)'. (4.5)

For W&M+m (or equivalently T &[(M+m)'
—(M+p)']/2M) we are below threshold for production
of a mass m meson. Then we let E~ia, and the out-
going (decaying) wave function is given, for r& r p, by

where
w(m, W, r) =B(m,W)e "", (4.6)

[((M+m) 2 W2) (W2 (M m) 2)$1/s
K= (4 7)

2W

We must be very careful in using this formula, since
when m and W are such that m' —W'&M', (4.l) pre-
dicts decreasing binding with increasing m for a given
W. Even worse, at m —S')M, rc again becomes imagi-
nary. A definition of ~ which has the required properties
for such conditions and which is consistent with a
2-body Klein-Gordon equation (neglecting relative
time dependence) has been worked out, but in this
paper the values of m' —t&t/" entering the computation
will always be less than M', and we do not consider
this effect which is related to the anomalous threshold.

Thus, using the coupled B.C.M. equations (4.1), and
carrying through the calculations with the above wave
function w letting P f, (m) ~J's„"dmp(m), we obtain

(du)
~0 1

(dr& „„,
1

dmp(m)l . I u(rp), (4 8)
kix- fs

where u(r) is the pr-1V Dip-state reduced radial wave
function and

pp= Ere, W& M+m,
x=isrp, W & M+m.

The l0 Function: The 7=1, J=1—
~-~ Interaction

Again, as in the 5-wave case, we take p(m) propor-
tional to the ~-m T=1, J=1 cross section at total
energy m in the c.m. system. The unitary elastic w-m.

partial-wave amplitude is

)

q cotb —iq

will manifest themselves first, and so we shall restrict
ourselves to the 5-wave production of p's. Thus we
take as the reduced radial p-1V w'ave function for r&ro

W(m, W,r) =B(m,W)e'~". (43)

E is the outgoing momentum in the p-S c.m. and is
given by



PION —NUCLEON SCATTERING IN BOUNDARV CONDITION MODEL B66S

where
q= momentum in the m-~ c.m.
—1 (m2 4~2)1/2

The results of the model in the x-X channel are in-
sensitive to the details of the x-m cross section. It is
sufhcient to have a relativistic form that yields the cor-
rect position and width. The use of the following simple
model for the amplitude allows us to satisfy those condi-
tions and also gives us an effective value for the porn

coupling constant. However this application of the
B.C.M. in no way requires the dominance of Fig. 7 in
the two pion interaction.

If one introduces a p~m coupling Lagrangian, one
obtains from the nonunitary Born (pole) term'

q' cotb..=m (m' m*2)/—y,
where y is a constant proportional to the pew coupling
constant and m* is the position of the resonance. The
resultant x-m T=1, J=1 amplitude is

yq2/m

fm(m2 m*)2—/yq27 iq
—(m' m*'—) iy (—q'/m)

1.0-

.5-

l l

0 l.0 2.0 50 4.0 5.0 6.0 70 8.0
m(Total energy in the Vt-7T Center of Nioss)

Fro. 8. The function p(ffs) for the T=1, J=1 sr-rr resonance.

23(kr) =@*(kr)+S(k)st (kr), (4.11)

most general case (with no potential tail), and from
there proceed to give formulas for 8, g, r, etc., in terms
of the amplitude.

For scattering in any channel (specified by T, J,
etc.) the reduced radial wave function. is given by

&res =

so that

(m' —4/32)'/m'
dent

(m2 me2) 2+72 (m2 4~2) 3/m2

(m' —4/32) '/m'
~ '. p (m) = XresD

(m2 m&2)2+~2(m2 4p2)3/m2

where

(4 9) where the channel subscripts on S and the orbital
angular momentum subscript t on @ will be henceforth
understood. Also the asterisk denotes complex
conjugation.

g is the outgoing irregular solution of the reduced
radial Schrodinger equation for angular momentum /.

We will normalize p so that

p(m)dm=D
@(s)=shff'~(s), (4.12)

2' where hf&'&(s) is the outgoing spherical Hankel function

p is related to the full width at half-maximum I' by
of order l. Then

the relation
(4.12')

(4.10)
7= I'.

(me 2 4p2) 3/2

A curve of p(m) versus m for this case is shown in Fig. 8.

where x(s) is a complex polynomial in s ', and y -+ 1
as 8 ~'x».

From the general relationship [e.g. , Eq. (4.8)7

Derivation of the Phase Shift and
Inelastic Parameter

/dN)
rsvp I f ff( k)22(3rp)

&dr& „„ (4.13)

Rather than proceeding directly, as in G.L., we shall
outline a method of dertvfng the amplttude 1n the and (4.11) we obtain the relation between S and f,ff

pyer5=-
f.«4 Pft'—(4.14)

FIG. 7. p pole diagram in ~-x interaction. I p
where the prime denotes differentiation with respect to
P= krp. The partial-wave amplitude is then given by

A = (S—1)/2i. (4.15)

Ke now give formulas for the pertinent quantities
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in terms of the amplitude 3:
(a)

Imf~ff =— amp(m)l
(sz+y 2)

' (4.23)

(b)
(4.16)

(1) (1—g)+2iA

I, i& (1+g)+2zz

—', (1+g)—ImA
(417)

The methods used in programming these expressions
for calculation are outlined in Ref. 15.

using the relation (4.16).
(c) The elastic and total cross sections for ir-X scat-

tering in a state of definite T, J, and parity are given
by Eqs. (2.2) and (2.3).

The formulas here so far are perfectly general. To
use them it is only necessary to specify the incoming
orbital angular momentum (and hence the function

x) and f,ii For /=.2, we have

p(m) is given by Eq. (4.9).
Again we see that Imf, ii&0. In the Appendix we shall

prove that this follows in general from the unitarity of
the S matrix, which in turn is equivalent to the Hermi-
ticity of the f matrix.

Care must be taken in evaluating these integrals for
fr&0. This choice of f2 corresponds to a possible p-S
bound state and will be discussed in greater detail in
the conclusions.

To end this section, we shall briefly discuss the be-
havior of the scattering with f2 The. major contribu-
tion to Ref,ii at energies below threshold for producing
the peak of the p comes from the second integral in
Eq. (4.22). Since p(m) is a function peaked at m"'=5.2 p,

with total area D, we may take the value of the integral
as approximately —D/l y(m*, W)+ f2].

As y and D are positive for W& 35+m*, we shall
have Ref, ii decreasing as we approach threshold, at a
rate determined by D and f, The de. crease of Ref,ff

increases the effective attraction in the x-X channel and
will bring the phase shift up through ir/2 when it be-
comes sufficiently negative at a given energy. If f&)0
there is no binding in the p-S channel, but the closer

fi is to zero, the more rapidly we decrease Ref, ii and
hence increase the phase shift. Hence for a narrow reso-
nance we would require fi small and positive, for a wide
resonance fi repulsiv. e (i.e., f2) 1).

The last step in deriving the D~3 amplitude is to
write explicit expressions from (4.8) for Ref, ii and
Imf, ii in terms of the parameters fi, fi, D, and ro. For
this purpose we define, as in G.L.,

y=I~;rp, s=Erp, (4.19)

Repen= fi

Imf, ii 0——

1
drip (tn)

l

&x+f&
' (4.20)

(4.21)

(ii) For W)M+2p (T )170 MeV)

Ref.n= fi dip(m)
s2+ 2

1
dip(m)l, (4.22)

&y+ f2

where ~ and E are given by (4.7) and (4.4), respectively.
The lowest mass of the p meson occurring in our coup-

ling scheme is 2 p. Threshold for this is W= M+2 p or,
from Eq. (3.5), T =L1+—,'(p/M)jp ——170 MeV. Thus
we have, from Eq. (4.8),

(i) For W~M+2p (T &170 MeV)

8= ak"+'(k —+ 0) . (4.24)

"D.O. Caldwell, E. Bleuler, B. Elsner, L. W, Jones, and B.
Zacharov, Phys. Letters 2, 253 (1962).

Fitting the Data

Four parameters are available to us: fi, fi, D, and
the core radius ro. We fixed the shape of p(m) by letting
the p-meson mass distribution peak" at 720 MeV
(m*=5.21 ') and have a full width at half-maximum
= 100 MeV (I'=0.72 p).

The long-range diagrams for elastic scattering and
production l 5(a) and (b), respectively7 imply an ro

in the vicinity of 1——,
'

p '. However, as the B.C.M. is
based on the assumption that the short range diagrams
5(c) and 5(d) which are of range xi —3 y ', play a domi-
nant role in the elastic scattering, we may expect a
compromise radius somewhere in the region of —,

'
p '.

The unscattered wave function for angular momentum t

peaks at a distance r determined by kr l. At 600 MeV
and for /=2, we obtain r 0.6 p, '. This would make a
radius in the vicinity of —, p

' favorable.
Rather than fi we should like to deal with a quantity

analogous to the scattering length in the S-wave case.
In general the behavior at zero energy of the phase
shift is given by
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For the a~3 channel this becomes

6=uk'. (4.25)

(4.26)

From Ref. 23 we have the general scattering length
formula in terms of fp and rp.

[(2l+1)!!]'a (l+1) fo—
(4.27)

(2l+ j)r o&+' l+ fo

Since there is no absorption at zero energy, we may 6t
the scattering length region with a pure B.C.M.

l'du)
~0 — = ol ~0 1~0.

&dr& „„,s„o FIG. 9. fp versus a
for l =2: See Eq.
(4.29).

le
I

I

I
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I
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I

!
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l

I

for /=2 (the present case)

n = 45a/rp',

3—2 (45a/r o')
0

1+(45a/r o')
(4.29)

A graph of fp versus a in the d-wave case is shown in
Fig. 9.

Then, analogous to Eq. (19) of G.L., we have

3—2 (45a/rp') tf1
1+(45a/r, ')

dip(m)
~ ~, (4.30)
kyo+fs&

where yo is y evaluated at k'=0.
The method of variation of the parameters was as

follows: 3 radii ro were attempted; 0.40 p,
—', 0.50 p ',

and 0.60 p '. For each of these radii, 2fs's were tested:
0.25 and 0.50 [attractive but nonbinding 5-wave p-X
force; see discussion on fs following Eq. (4.23)]. And
for each of these sets (rp, fs) several sets of (a,D) were
found which gave a resonance at 600 MeV.

As in G.I. , all fitting was done by trial and error
on the IBM 7090 and 709 computers at MIT. A cutoff
of no=8 p was used on all integrals over nz with an
infinite upper limit. This allows integration over 8
half-widths of the p function, and while it entails an
error of up to S%%u~ in Ref, rr, we keep m' —W' far below
M' for all values of W considered. [See discussion follow-

ing Eq. (4.7).] Note, however, that the cutoff is not
used because of divergences but as an adequate ap-
proximation to a convergent integral. An ordinary
Simpson integration routine was used. The interval
size 0.1 p gave less than 1%variation in a test run when

halved, and so was used throughout.

"H. Feshbach and E. L. Lornon, Phys. Rev. 102, 891 (1956).

where channel subscripts are understood on a, fp, and
rp. [Note that "a" here is defined through Eq. (4.24).]
Thus if we call the left-hand expression n, we have

(l+1)—ln
(4.28)

V. DISCUSSION OF RESULTS AND CONCLUSIONS

Consistent with theory an ro ——0.50 p,
' gave the best

fit to both the cross section and the amplitudes. Fig.
1(a) shows the fit to total cross section with (rp fs)
= (0.50, 0.25) and two sets of (a,D). In Fig. 1(b) are
given the corresponding amplitudes. Figures 2(a), (b)
contain similar curves for the case (ro, fo) = (0.50,0.50).
The parameters for these curves are given in Table I.
Finally, Figs. 3 and 4 give the total cross sections for
ro ——0.40 and 0.60, respectively, with other parameters
as given in Table I. The variation of these curves with
a change in. fs, a, or D can be deduced from the behavior
of Fl.gs. 1 and. 2.

Curves A of Figs. 1(a) and 1(b) give the best fit and
are good quantitative 6ts to the elastic and inelastic
data from 400 to 700 MeV. The predicted phase shifts
at lower energies are also consistent with the data [see
Sec. 2(c) below).

We now can draw the following conclusions from these
results.

1. General Evaluation

We see that the four variable parameters for the
curves in Figs. 1—4 determine amplitudes which in turn
give: (a) the position of the resonance, (b) the width,

TABLE I. Parameters for curves in Figs. 1-4P

«(i ') fo

0.40 0.25

0.25

0.50

0.00050

0.00065
0.00050

f b

2.50 0.78

5.40 2.74
6.50 3.51

Figs, Set

0.50 0.00065 7.00 3.13
0.00050 - 8.50 4.00

0.00035 11.60 6.090.60 0.25

a For all of these, the p-meson mass distribution is peaked at 720 Mev,
with width 100 Mev.

b-f& is given by Eq. (4.30) in terms of a and D.
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Curve A: total 7f-++p cross sec-
tion from Ref. 10. Curve C: total
D33 cross section using parameter
of Fig. 1, curve A with the coup-
ling parameter D=1.80 in agree-
ment with peripheral model. Curve
B: result of subtracting curve C
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(c) the asymmetry of the peak, (d) the inelasticity at
resonance; and, (e) the low-energy behavior of b,
consistent with the experimental results.

It is worthwhile to comment at this point on the
perhaps unexpected behavior of the inelasticity j.—g',
which in the Fig. 1(b) has a maximum at 600 MeV
and decreases even as w'e approach the p-peak threshold
(W M+m*). A look. at Eq. (4.23) shows that Imf, «
should attain large values near W-3f+ms. But a
careful evaluation of the value of 1—g' deduced from
Eq. (A11) shows that while 1 rP cc ~Imf, «~

—for ~imf, «~

«~ Ref,«~, it also depends strongly on Ref,« through
the denominator of Eq. (A11).As a matter of fact, it is
characteristic of a resonance that the denominator goes
through a minimum at the resonance. Thus, before the
resonance

~
Imf, «~ and the denominator cooperate to

cause a sharp decrease in y, while above the resonance
they behave oppositely and p levels off. As in the
Breit-Wigner case the resonance in the elastic channel
induces a maximum in the inelastic cross section. The
model makes no prediction as to the energy of maximum
total p production in s-+p scattering, since presumably
many channels other than the D» are instrumental in

p production. The analysis of the experimental data into
partial waves shows that g does not decrease above
resonance in the D~3 channel, and we reproduce this
behavior.

2. Discussion of the Parameters

Let us examine the set of 4 parameters giving the
curves A in Fig. i.

(a) The value of r (=s0 50' ') wa.s surmised theo-

retically before any fitting began, and is consistent with
all the considerations in Sec. IV.

(b) The value 0.25 for fs suggests that the p-N force
is strongly attractive in the state T=—,', J=~, but non-
binding. Note that the results are fairly insensitive to
fs in the range 0.25 to 0.50. The effects of a negative
fs have not been tested but it is likely to give too narrow
a resonance for the correct inelasticity. This case cor-
responds to the driving of a resonance by the decay of a
quasibound state in an inelastic channel24 and has been
proposed previously for the case of the I 0.* It is being
applied now to the case of E-S scattering by the use of
the B.C.M.25

(c) The values of a in this case predict the phase
shifts at low'er energies. For example, at 3/0 MeV the
prediction is for a D~3 phase shift of 45 . This is in agree-
ment with the analysis of Walker et al."Looking now
at fi, which is calculated from a, D, rs, and fs, we find
it to have a value of around 3. The condition for the
phase shift to be zero at any given energy in the m-X
channel when D —+0, is that the reduced radial wave
function be krjs(kr), or that fi ——kreis js'(krs)/js(krs) j+1.
For r, =0.50 and k=3.26 (T =600 MeV), this implies
fr=2.62. It is interesting that the curves A have
fr=2.74, which corresponds therefore to almost no
scattering in the resonance region except that caused

~' By this we mean that the second channel would have a bound
state if uncoupled from the first channel.

'~ E. L. Lomon and C. Yen Liu, Bull. Am. Phys. Soc. 8, 21
(1963). C. Yen Liu, Ph.D. thesis, Massuchusetts Institute of
Technology, 1964 (unpublished) .' W. D. Walker, J.Davis, and W. D. Shephard, Phys. Rev. 118,
1612 (1960).
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by the coupling to the p-X channel. If now we look at
the Dss phase-shift behavior" over the first 700 MeV,
we find that it is consistent with this hypothesis. As in
the S-wave case' the experimental difference between
the D~3 and D33 states is due to the inelastic channel.

However it is expected that the D33 channel is coupled
to the S-state p-nucleon channel, although more weakly
than the D~3 channel. The one-pion exchange diagram
for production of a p meson LFig. 5(a)] leads to a pro-
duction ratio from the T=-,' state relative to the T= —,

'
state of rs [Eq. (3.3)]. As the production L~ (1—rp)]
is approximately proportional to our coupling param-
eter D, reducing D from the T=—,

' case by approximately
a factor of 4 would correspond to the prediction of the
peripheral mechanism. Choosing one of our best T=-',
fits, that of Figs. 1(a), (b), curves A] (rs ——0.5li ',
f,=0.25, fi 2.74, a——nd D=5.40) we find that reducing
D to 1.80 (keeping atl other parameters fixed) gives the
following excellent results: The D33 phase shift is small
((2') and positive, and there is no inelasticity in that
channel, up to 550 MeV. This is consistent with the
phase-shift analyses available over that energy range.
Above 550 MeV, as shown in Fig. 10, the total and
inelastic cross sections rise quickly to a maximum (of
5.7 and 4.5 mb, respectively) at 850 MeV. The elastic
cross section also attains a small maximum (1.3 mb)
at 820 MeV. This explains all the known characteristics
of the 850 MeV, T=-,' "shoulder, "which has long been
attributed to the D» state by Carruthers. '~ We see that
subtracting the D33 contribution from the experimental
total cross section" removes the "shoulder. " The posi-
tion and width predicted by our model for this structure
adequately corresponds to the experimental knowledge
of it. In addition it is known that the "shoulder" is
highly inelastic, hardly appearing in elastic data. In
our result the peak is only 19%%u~ elastic. The large in-
elasticity is only possible because the peak is not at a
resonance. At a resonance Eqs. (2.2) and (2.3) show
that a maximum of 50% inelasticity is possible.

3. Comparison with Other Models

Let us compare in more detail our fit to the data with
a typical previous attempt. Cook and Lee,4 using the
same inelastic channel, have iterated the peripheral
production diagram via the coupled N/D equations. In
addition to the parameters describing the p meson, they
have taken as given the x-E coupling constant and as-
sumed that only the pion exchange is of importance,
giving the mass of the exchanged particle. In addition
they have replaced the discontinuity across the complex
cut (the "strength" of the coupling) with a single pole,
using two parameters. With this they do not attempt a
fit to all available data, but are successful in obtaining
the correct position and a reasonable width. A 6t for the
D» data would have required a further parameter. When
we examine our four parameters, we find that (1) rs

'r P. Carruthers, Phys. Rev. Letters 4, 303 (1960).
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FIG. 11.Total cross section for same r0, a, D, f2 of Fig. 1 Set 8,
but in limit of zero width, to the mass distribution of the p meson,
still peaked at 720 MeV I i.e., p(m) =DS(m —m~) g.

corresponds to the choice of diagram iterated and to the
position of the pole mentioned above; (2) D corresponds
to a combination of their I' (the "strength" parameter)
and the s-N coupling constant; (3) fi corresponds to a
parametrization of all the direct scattering in the
elastic channel (which they assgme to be negligible as a
driving force). We have foulard this to be the case Lsee
paragraph (c) of the preceding section]. This parameter
allows m. Npredictions -far from resonance. (4) fs cor-
responds to a parametrization of pS —+ pS scattering.
Scattering in this channel is omitted in Ref. 4 and in
most other similar approaches because of the lack of
knowledge of the analyticity of this amplitude. Because
of the small sensitivity of our results to fs a similar
approach could have been taken in the B.C.M. , but
having left fs in as a free parameter has given us an
indication that the J=—'„T=~ p-S S-wave force is
attractive, a prediction which may play a role in other
experiments.

We have chosen the Cook-Lee paper as an example
to elucidate our parametrization. Similar arguments can
be given for the other attempts referred to. Lastly, it
should be pointed out that the four parameters not only
give a good quantitative fit to the D» data, but with a
hint from the peripheral diagram, to the D33 data as
well. This connection of the D~3 and D33 behavior has
not been quantitatively established in previous work. '~

4. The Cook-Lee Nfechanism

If we examine the two integrals in Eq. (4.22), we can
see that for T =600 MeV (W —M=4.20 p), the main
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contribution to Ref, ir comes from the second one, since
the peak of p(m), lying at m*=5.21 ', is well over
8'—3l. Thus in the case presented here unlike in the
S-wave case examined in G.L., the production of virtual
pions plays the major role in the scattering. Here, as
indicated by Cook and Lee, who use the 1V/D method
and approximations for the cut discontinuities, the
resonance occurs quite far below threshold. In fact, Fig.
11 shows the results of using the parameters of Fig. 1
(curve B) but reducing the width of the p to zero. There
is a shift of only 30 MeV in the resonance energy, and
of course there is no inelasticity and hence the width is
smaller. This shows that it is not the tail of the p which
drives the resonance as in the Ball-Frazer nanner. Of
course, the elegant formalism of Cook and Lee can also
handle the e6ects of real di-pion production, but their
choice of p-N as the inelastic channel has led them to
stress the off-the-mass-shell contributions. The present
model supports and extends their interpretation.

We also support their interpretation of the D33
"shoulder" as being due to a reduced coupling to the
p-nucleon channel according to the peripheral diagram.
The coupling as they indicate is in this case on the energy
shell, as in our S-wave results.

S. Charge Ratios

The coupling assumed for the two pions has consider-
able consequences in the prediction of charge ratios in
the s. +p production processes. Assuming that the
dominant production amplitude has total isospin T=—„
s-s. (p) isospin t = 1, we deduce (one can use the table in
the article by Carruthers') that the cross sections
o (gr +p —+ 7r +w++rl, ),

—
o (s=+p ~ s'+sr +p), o (vr

+p —+ s'+s'+n) are in the ratio 1:2:0. The vanishing
of the last cross section follows from the requirement
that two m"s have even angular momentum. Thus we
should find negligible double x' production at these
energies. There is little conclusive data on this predic-
tion. Angular distributions do seem to show isobar
production, so that the result of coupling to the third
channel s+X—& s+X* should be of interest.

6. Imjportance of Inelasticity

The ability of an inelastic channel to influence scat-
tering way below its threshold" (as well as, in the 5»
case, slightly above threshold) leads to the speculation
that the distant singularities are of great importance
in using the partial wave dispersion relations; they
should be taken care of in a manner which goes beyond
the strip approximation. Inelastic unitarity has demon-
strated itself as a potent driving force, and its inclusion
in a simple, physically meaningful and analytically
soluble model has demonstrated its possibilities over a
wide energy range. Proposed for future study is to ex-
plore the effects on the 900-MeV x-Ã resonance of pro-

' For a recent discussion in the context of the Lee model, see
H. Chew, Phys. Rev. 132, 2756 (1963).

ducing the p meson (here we expect effects analogous
to the Sii case, since W—M m*) and the effects on the
2-BeV resonance of producing the f' meson. Also several
analyses"" indicate a rapidly rising P~~ phase shift in
the regions of high inelasticity, and the sects of the
different possible inelastic channels on producing this
rise may be readily explored by the use of the B.C.M.

APPENDIX: THE CONDITION Imf. ff(0 AS
A CONSEQUENCE OF UNITARITY

Let the reduced radial wave function be

N(r) =&*(r)+S(k)p(r), for r&ro. (A1)

P(r) is the outgoing solution of the radial wave equation

where V(r), the potential tail, is in general a real func-
tion of r and k.

Multiplying (A2) by p* and (A2)* by g, and then
subtracting we obtain

d dp dp*

dr dr dr
(A3)

i.e., the Kronskian

is independent of r. Thus we can calculate it by substi-
tuting for p(r) in (A4) its asymptotic form, which is

( i)'+' e'""—(except for a Coulomb potential). Doing
this we obtain

8'= 2ik. (A5)

' William M. Layson, Nuovo pimento 27, 724 (1963).
's H. Feshbach and E. Lomon, Ann. Phys. (N. Y.) (to be

published).

7'. Use of the B.C.M.

The important mechanism here and in Refs. 6 and 7
is the inelastic coupling. However, the detailed struc-
ture of the result has depended on the use of the B.C.M.
The quantitative results are an d Posteriori justification
of this choice of model. An d Priori justification of the
B.C.M. has been developed" from nonrelativistic and
relativistic dynamics. Arguments are presented using
reaction theory, the Mandelstam representation and
general causality arguments to suggest that this ampli-
tude gives a more meaningful description of strong
short range interactions than the standard ones. This
eliminates some of the ambiguity of high-momentum
contributions which are usually either ignored or cutoff
arbitrarily. The long-range predictions of the gerieral
B.C.M. are identical to those of "peripheral" or "gen-
eralized potential" approaches and can be easily added
to a specific B.C.M. model when appropriate. "
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Thus But

Im g* =1, for all r.
d(kr)

(A6)

Now, from Eq. (4.14) we write S=rie"' in terms of
eff= r

.'. ImAQ*= —p Imp*
d(kro)

(j.tto*—4*'&
s=

E f.«y py—' &
(A7)

= —P t from (A4)$. (A10)

Thus, from (A9) and (A10),
where the prime denotes diGerentiation with respect to
kr, P= kro and—P, g', P*, P*' are evaluated at kr=P

A*+i&*f,

A+iaaf; f
A /'+ f'/p['+2pf

/A[s+f s[y/s —2py,

&~1, if and only if, Imf.«&0; (A11)

where A =f„p —pp'. —

~

A
~

'+f '
~ P ~

' 2f; Im—Aqb*

I
A I'+f'I +I'+2f; ImAqb*

(A9)
Imf, tt&0 (A12)

we know that ~S~ &1, if and only if, f is Hermitian.
Thus, f is Hermitian, if and only if,
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Departures from the Eightfold Way: Theory of Strong Interaction
Symmetry Breakdown*
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We consider the three kinds of departure from exact unitary symmetry: medium-strong interactions
which leave only isospin and hypercharge as good symmetries, electromagnetism, and weak interactions.
We postulate the existence of an octet of scalar mesons that give the possibility of symmetry-breaking tad-
pole diagrams. Our fundamental dynamical assumption —that symmetry-violating processes are dominated
by symmetry-breaking tadpole diagrams —gives an immediate explanation of the success of two empirical
laws: the Gell-Mann —Okubo mass formulas and the nonleptonic AI =-,' rules. Moreover, including tadpole
diagrams and some other electromagnetic corrections, we calculate the six electromagnetic mass splittings
of mesons and baryons in terms of a single unknown parameter correctly to within 0.5 MeV.

I. INTRODUCTION

E assume that the fundamental interactions of
elementary particles fall into the following

classes, arranged in order of diminishing strength (we
omit gravity):

1. Very-strong interactions, invariant under the
transformations of "the eightfold way" —the symmetry

*Supported in part by the U. S. Once of Naval Research,
Contract NONR-3656(09), and by the U. S. Air Force OfIIce of
Scientific Research, under contract number A.F. 49(638)389.

l' Alfred P. Sloan Foundation Fellow. On leave from the Physics
Department of the University of California at Berkeley,
California.

scheme of Gell-Mann' and Ne'eman, ' based on the
group SU(3).

2. Medium-strong symmetry-breaking interactions,
invariant under only the isospin-hypercharge subgroup
of SU(3). Whether these interactions are introduced at
the beginning, or whether they arise by some kind of
spontaneous symmetry breakdown is immaterial to our
dlscusslon.

3. Electromagnetism.
4. Weak interactions.

' M. Gell-Mann, California Institute of Technology Synchrotron
Report CTSL-20, 1961 (unpublished); Phys. Rev. 125, 1067
(1962).' Y. Ne'eman, Nucl. Phys. 26, 222 (1961).


