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these trajectories. In particular, the measurement of
high-energy pion-nucleon charge exchange should be
encouraged. Because of 6-parity conservation, the R
trajectory would be absent here and, if the energy is
high enough, the p alone should su%ce.
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Determination of Pion-Nucleon S-Wave Scattering Lengths by the N/D Method
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The pion-nucleon S-wave scattering lengths are calculated using the method originally developed by
Bali,zs, wherein an effective-range two-pole approximation is made for the numerator function. The residues
of the effective-range poles are determined by matching the amplitude and its derivative with those calcu-
lated with a axed energy dispersion relation. In calculating the latter the contribution of only the E*and p,
together with those of appropriate nucleon-pole terms, are retained. The calculated scattering length in the
T=$ state is in excellent agreement with experimental result, while for the T= —', state, the calculated value,
though of the right sign, is about twice the experimental scattering length.

KVERAL approximation schemes' ' have recently
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been suggested to calculate the elements of the S
matrix of strongly interacting particles. These attempts
aim at constructing approximate solutions for the scat-
tering amplitude consistent with the requirements of
analyticity, elastic unitarity, and crossing symmetry.
Among the methods, the one suggested by Balazs in
which an effective-range approximation is made to
represent the eRect of the distant crossed-channel
singularities, has the advantage of being free from the
necessity of introducing arbitrary parameters into the
theory. The Balazs method has been applied to the pion-
nucleon problem by Singh and Udgaonkar' who have
made a self-consistent calculation of the mass and width
of the pion-nucleon (3,3) isobar, N*. The present in-
vestigation which may be considered as a continuation
of the work of these authors, is devoted to the study of
the pion-nucleon S-wave amplitude using the afore-
mentioned techniques. Our procedure is as follows: We
use the E/D equations, and represent the X function by
a two-pole eRective-range formula. The residues of these
poles, whose positions have been fixed a priori, are next
evaluated by comparing the amplitude and its deriva-
tive at a suitably chosen point, with the values of the
same quantities calculated with the help of a fixed
energy dispersion relation. In calculating the latter only
the contributions of E*and p, together with those. of the
appropriate nucleon-pole terms are retained. In this
way the partial-wave amplitude is completely deter-

and write it in the ftf/D foim

fs+= &(s)/D(s).

In (1), W'(= S) is the square of the total c.m. energy of
the incoming particles and q the magnitude of c.m.
3-momentum. 5 is the S1~2 phase shift. In the two-pole
effective-range approximation the X(s) function may be
written as~

X(s) = +
s+m' s+ 16m'

(3)

In (3), m is the nucleon mass. The pion mass has been

mined and the S-wave scattering lengths may now be
readily determined. The calculated scattering length in
the T'= —', state comes out to be in excellent agreement
with the experimental result, while for the T= —', state
the calculated scattering length, although of the right
order and having the correct sign, is much too large.
This may be due to our explicit neglect of the inelastic
channels which are expected to be relatively more im-
portant in the T=-2 state.

We follow the same notation as in I'rautschi and
Walecka. ' Let us consider the S-wave amplitude fo~
normalized as

8"'
fs+= e" sin5

' L. A. P. Balass, Phys. Rev. 126, 1220 (1962).
' F. Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962).
' K. S. Abers and C. Zemach, Phys. Rev. 131, 2305 (1963).
J. S. Ball and D. Wong, La Jolla preprint, 1963 (unpublished).

s V. Singh and B. M. Udgaonkar, Phys. Rev. 130, 11'I'I (1963).

S. C. Frautschi and J. D. Walecka, Phys. Rev. 120, 1486
(1960).

7 This is shown in Ref. 5. The results of this calculation do not
appreciably depend on the variation of the location of e6ective-
range poles $B. M. Udgaonkar (private communication)]. This
may also be true in the present case.
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s—(m —1)'
D(s) =1—

Ey R2

set equal to unity. The D(s) function is now given by parameters p& and p& which occur in the above expres-
sions may be determined from an analysis of the

q'/s' electromagnetic form factor of the nucleon. We take the
rsr i r r rm 1)s) results of a recent investigation of this problem by Singh

(m+3.)'
and Udgaonkar' which gives

x + . (4)
s'+m' s'+16m'

A (s,t,u) =Pole terms+
A „(u')

dN
I

m+y)2 S —I
"A, t'

dt'. (5)

The unknown residues R~ and E2 will now be deter-
mined by matching the amplitude f~ given by (3) and

(4), and its derivative, with the values calculated with
a 6xed s dispersion relation. The fixed s dispersion rela-
tion satisfied by the invariant amplitude A (s,t) is

y~= —4.91 and y2 ———11.7.

The S* contribution fo+&~*& is given by an expression
similar to (7) with Ao r&» and Bo,r&» replaced by Ao r&~*&

and Bo,&&~*). These are given by

Ao r&~*~(s) =
[s—(m+ 1)'][s—(m —1)']

2s (2m'+2 —mP —s)
XQo I

1+
[s—(m+1)'][s—(m —1)'])

(10)

tr 2s(2m'+2 —m,'—s)
XQ., ,i

1+
[s—(m+1)'][s—(m —1)']~

X and I" occurring above are given by the following

(6) expressions:f~(s) = f~' '(s)+fo+'"(s)+f~'""'(s).

fai.~ i(s), fp+&»(s), and fo+&~*i(s) denote the contribu-
tions of the nucleon, the p meson and Ã*, respectively.
These contributions are now written down for the 7=—,

'
state. The contributions of p is given by

32 7' nZ~ —m3~ —S
X= (mo+m)

2(mo+m) trmos —m'+1)'

3m os 4 2 )
fo+'» (s) = ([(s'"+m)' —1][Ao&»+ (s'r' m)B &»]-

327r

+[(s& s m)s 1][—Ar P + (s&/s+m)Br(»] (7)

with Ao, &&», 80,&&» given by

ms+ m (moo —m')'
+ (moo —m')—

3 6m3
(12)

32syo 2m' —moo —s 2 toms' —ms+1)'

3ms& 2 )12m', (2m'+2 —m '—2s)
g, ,()—

[s—(m+1)'] [s—(m —1)']
2m m

(m, +m)+—(mss —m'+1)+-', . (13)
3 m3

2tsp s
XQo, i 1+

[s—(m+ 1)'][s—(m —1)']r'

24~ (yr+ 2ys) —4s

(8)

In the above, mo (=8.8) and yo(= 0.06) are, respectively,
the mass and the reduced half-width of the E~. In
writing down Eqs. (7)—(13) we have also followed the
usual practice of neglecting the width of a resonance
(compared to its mass) in the energy denominator. This

(9) procedure is rigorously valid only for the case of a stable
particle, however. Finally let us consider the nucleon

&0 i&»=—
[s—(m+ 1)'][s—(m —1)']

2$tÃ p

XQo, rj 1+
[s—(m+ 1)')[s—(m 1)']—

A similar relation holds for B(s,t,u). s, t, u are the Bo,r&~'(s)=
usual Mandelstam variables. Using (5), we calculate Ls (m+1)']Ls (m 1) ]
A (s,t) by assuming that the u' and t' integrals are ex-
hausted by the contributions of the E* and p, re-
spectively. B(s,t) is similarly calculated. With the ex-
pressions for A(s, t) and B(s,t) so calculated one can
easily calculate the partial-wave amplitude fo+(s) This.
has the form

In the above, m, is the mass of the p meson, and Q~(a)
is the Legendre function of the second kind. The o V. Singh and B.M. Udgaonkar, Phys. Rev. 128, 182D (1962).
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contribution. This is given by

3 [(s'I'+rrt)' 1][s'I —ttt]
g2

16m S—5Z

X{[(s'I'+nt)'—1](s'"—ns) flsttvl

32m

+0,1
~' (s) =— 4g's

[s—(nt+ 1)'][s—(rrt —1)']

g occurring above is the rationalized pion-nucleon
coupling constant, g'/4vr~14. The first term in (14) is
the nucleon-pole term in the direct s channel, and the
second term that in the I channel. Using the said
matching procedure, the partial-wave amplitude fo+, is
now completely determined. We take the matching
point at s= (rtt —1)'. From the partial-wave amplitude

fo+, so determined, the scattering length which is defined
as

(16)

may be easily obtained. The calculated value of the
T= —,

' scattering length is

cy~0.31 )

which is to be compared with the value obtained from
experimental data by Woolcock'

at= 0.17&0.005.

A similar treatment may be done for the T= ~3 state.
The contribution of the various states to the 6xed
s-dispersion relation for this case may be obtained from
the corresponding values for T= —,

' states by the relation

The substitution rule for ft~& refers to the I-channel
nucleon only, there being no nucleon pole in s channel
for the T=2 state. The calculated T=~ scattering
length is

a3 —0.088,

'W. S. Woolcock, Proceedings of the Aix-en-Provence Interna-
tional Conference on Elementary Particles, 1961 (Centre d'Etudes
Nucleaires de Saclay, Seine et Oise, 1961), p. 459.

+[(s'I'—ttt)' —1](s'I'+rtt)Bt&~'} . (14)

Bo&~' and B&&~~ are given by

which is to be compared to the experimental result'

as= —0.089~0.004.

The calculated scattering lengths are of the right
order and have correct signs. For the T=2 state the
agreement between the theoretical and experimental
results is extremely close. This may be partially acci-
dental. For the T=-', state the calculated value is about
twice the experimental result. There may be several
reasons for such a situation. First is the importance of
inelastic channels which have not been taken into ac-
count in our calculation. For the T=-,' state one expects
them to be relatively important because of the existence
of two-body inelastic channels such as (1Vrt), (1V,ABC),
(EA), etc. , fairly close to the threshold. The second
reason may be our inability to treat the high-energy
parts of the crossed channels occurring in the fixed
s-dispersion relation properly. The only tractable method
of taking the high-energy effects into consideration is
the Singh-Udgaonkar' approxilnatlony which relates
these effects to the low-energy resonances in the direct
channel. Within the restricted criterion of the validity
of this approximation, however, the high-energy effects
for the present case can only arise from the contribu-
tions of higher spin resonances in the direct channel;
there being no low-energy direct channel resonance in
the S~~2 partial wave. In particular, the T=-,'state can
have a contribution from the T= —,', d3~2 resonance at 600
MeV in the pion-nucleon system. Our neglect of this
contribution might be partly responsible for the dis-
crepancy in the T=-,' scattering length.

Previous workers" found it dificult to explain the
isotopic spin dependence of the S-wave scattering length
without making arbitrary assumptions. ""Our success
in explaining this effect may be considered as the main
result of this investigation. We therefore conclude that
the approximation scheme (Ref. 5) which has been
successfully applied to the study of pion-nucleon (3,3)
partial wave, together with the same choice for the
location of the effective-range poles and the same
matching point, also explains the qualitative features of
low-energy scattering in the S&~2 state.
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work.

I See Ref. S. A Reggeized version of this approximation has
been proposed by L. A. P. Balazs, Phys. Rev. 132, 867 (1963).

u J. L. Uretsity, Phys. Rev. 123, 1459 (1961).
' J. J. Sakurai, Proceedings of International School of Physics,

Varenna, 1963 (unpublished). For instance, the validity of
Sakurai s observation that a simple p-exchange diagram explains
the isotopic spin dependence of the scattering length depends
crucially on the explicit neglect of the magnetic moment coupling
(the parameter ye used in text) of the p meson.

'3 J. 3owcock, W. N. Cot tingham, and D. Lurie, Nuovo
Cimento 16, 918 (1960).


