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The quadrupole moment obtained is larger than the
single particle estimate ~Q~ 0.05 b. The E2 transition
probability for the second excited state (—',+) to the
ground state (-,'+) transition is known to be strongly
enhanced compared with the single particle estimate.
The nucleus F" has been treated on the rotational
model by Paul" and Rakavy. "On the strong coupling
theory of the rotational model, the E2 lifetime and the
quadrupole moment are interrelated by an intrinsic
quadrupole moment Qo, and the quadrupole moment
was calculated to be ~Q~ 0.091 b from the measured
lifetime under an assumption that the levels belong to
a K=~~ band and the particle part of the transition
probability can be neglected. Paul has shown, however,
that a mixture of two rotational bands is necessary to
interpret the level structure of F" and also that the
collective part and the particle part of the E2 transition
probability are of comparable importance.

On the other hand, Inoue, Sebe, Hagiwara, and
Arima" have treated, recently, the s-d shell nuclei on
the intermediate coupling shell model, and predicted
the quadrupole moment of the state to be Q~ —0.09/ b
by taking the effective charge P 0.5.
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Theoretical calculations of mu capture rates in 2s-id nuclei are compared with experiment in the hope of
elucidating the coupling constants of the interaction. Working from Primakoff s closure-approximation
expression for the total average capture rate, the nuclear matrix element is treated in the context of the
Nilsson unified model. A Hill-Wheeler integration must be performed to avoid extraneous coordinates in
the A-particle wave function. The one- and two-particle parts of the matrix element are broken up into the
various shell contributions, since all of the angular momentum properties reside in the shell wave function
for the nucleons outside the 0" core. The closed-shell matrix elements are easily treated with standard
angular-momentum techniques. The method for reducing the outer-shell matrix elements to a form amenable
to evaluation by a computer is given in an appendix. Radial integrals are obtained from the Ford-Wills
muon wave functions. The average neutrino momentum P is chosen on the basis of Kaplan s Fermi-gas
model for the capture process and the subsequent comparison with neutron evaporation rates. The choice of
nuclear parameters for F",Ne", Si", C13', and Cl' is discussed and numerical results are given. Comparing
with experimental rates, one cannot exclude the possibility that the Fermi part of the interaction is absent.
If a V—A theory is assumed, however, we conclude the induced pseudoscalar coupling is probably present.
The induced pseudoscalar with the "wrong" sign, gp = —8gz, is de6nitely excluded, and the "large" pseudo-
scalar, gp=16gg, seems to 6t the data better at P =0.75.

I. INTRODUCTION

'HE mu-capture interaction, tt +p —+rt+p, like
beta decay and mu decay, is presumably de-

scribed by the universal Fermi interaction (UFI)"

*Based on a dissertation submitted in partial fulillment of the
requirements for the Ph.D. degree at the University of Michigan.

f National Science Foundation Pre-Doctoral Fellow, 1959—63.
Now at Department of Physics, Johns Hopkins University,
Baltimore, Maryland.' E. Fermi, Z. Physik 88, 161 (1934).' J.Tiomno and J.A. Wheeler, Rev. Mod. Phys. 21, 153 (1949).

given in the re6ned V—A form of Feynman and Gell-

Mann. ' It is not very well understood experimentally,
however, and we can only say at this time that it 6ts
the UFI hypothesis to within 20% or so.' In this paper
we present a theoretical study of this capture process in
certain of the light 2s—1d nuclei to see whether existing

3R. P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193
(1958).

R. Klein and L. Wolfenstein, Phys. Rev, Letters 9, 408
(1962); see footnote 12.



CALCULATIONS OF MU CAPTURE RATES I N 2s —1d NUCI. E I

experimental information on total average rates can
elucidate the nature of the coupling constants of the
interaction.

Ideally, one would like to study mu capture on free
protons, e.g., in liquid hydrogen. There are a number of
difhculties in such experiments, and it has only been
recently that the capture has even been observed. '
The results can only be said to be in agreement with the
UFI predictions and may, perhaps, be somewhat low. '

For intensity reasons, most experiments on mu
capture have been concerned with capture by protons
within a nucleus, since the rate roughly goes as Z4.

Nuclear capture unfortunately introduces all the
uncertainties of nuclear physics into the theoretical in-
terpretation of the experiments.

There are four coupling constants to be determined,
gy, g~, g~, and g~~, as can be seen from the most
general Lorentz invariant matrix element for the inter-
action that can be written. ' gy and g~ are the usual
V and A coupling constants (form factors) and UFI
assumes them to be the same as those that occur in
beta decay and mu decay (but evaluated at the appro-
priate momentum transfer). gt is the induced pseudo-
scalar coupling constant ' and is estimated to be
~8g~ from a dispersion theoretic argument. gg ~ is the
"weak magnetism" coupling constant predicted by the
conserved vector current theory (CVC), ' arising from
a pion-lepton weak vertex. In principle, these four form
factors could be determined by four diferent capture
experiments.

There are, in fact, four kinds of experiments which are
available: capture rates to particular 6nal states, total
capture rates, hyper6ne difference effects, and neutron
asymmetry. The hf experiments in F" by Winston and
Telegdi' establish that the interaction is of the V—A

type rather than V+A." The neutron asymmetry
experiments indicate the presence of the induced
pseudoscalar term which might be somewhat larger
than the theoretical estimate. " The ground-state to
ground-state partial transition C"—+B" a 0+~ 1+
transition, is well studied" and shows that the Gamow-

' R. H. Hildebrand, Phys. Rev. Letters 8, 34 (1962); E. Bleser,
L. Lederman, J. Rosen, J. Rothberg, and E. Zavattini, ibid. 8,
288 (1962); F,. Bertolini, A. Citron, G. Gialanelli, S. Focardi,
A. Mukhin, C. Rubbia, and S. Saporetti, in Proceedings of the
International Conference on IIigh Energy unclear Physics, Geneva,
INZ (CERN Scienti6c Information Service, Geneva, Switzerland,
1962), p. 421.' A. Fujii, Nuovo Cimento 27, 1025 (1963).

'M. L. Goldberger and S. B. Treiman, Nuovo Cimento 12,
327 (19S9).

s L. Wolfenstein, Nuovo Cimento 8, 882 (1958).
~ G. Culligan, J. F. Lathrop, V. L. Telegdi, R. Winston, and

R. A. Lundy, Phys. Rev. Letters 7, 458 (1961);R. Winston, Phys.
Rev. 129, 2766 (1963),

'e R. Silbar and H. Uberall, Nuovo Cimento 22, 864 (1961)."V. Eseev, V. I.Komarov, V. Z. Kush, V. Roganov, V. Cherno-
gorova, and M. Szymczak, Zh. Kksperim. i Teor. Fiz. 41, 306
(1961) LEnglish transl. :Soviet Phys. —JETP 14, 217 (1962)j.

'2 See, e.g., G. T. Reynolds, D. B. Scarl, R. A. Swanson, J. R.
Waters, and R. A. Zdanis, Phys. Rev. 129, 1790 (1963), and
references cited therein.

Teller part of the interaction is as expected from UFI,
as well as showing that if the induced pseudoscalar
term is present, it has the expected sign. The g.s. to g.s.
transition He'~H', a —,

'+ —+-,'+ transition which can
give information regarding the Fermi part of the
interaction, is in agreement with UFI." A recent
measurement of a 0+ —+ 0 transition in capture on 0"
indicates the induced pseudoscalar term is larger than
expected, " gI 15g~, something which is consistent
with the results on free protons'' and on neutron
asymmetry. " The results of experiments measuring
total capture rates" will be discussed here at some
length.

Since the initial ayalysis of Wheeler and Tiomno,
using a Fermi-gas model of the nucleus, ' theoretical
interpretation has proceeded along two somewhat
different paths. One school of thought feels that total
rates should be calculated by summing up the squared
matrix elements for the partial transitions to 6nal
states. "Most of the eGort here has been in using shell-
model wave functions to describe the initial and final
nuclear states, some of the wave functions being quite
simple-minded, some quite complex. The results leave
something to be desired. If we were to accept the values
of the matrix elements for Ca" given by Luyten, Rood,
and Tolhoek as good, then the squared coupling
constant needed to fit the experimental rate would be
about 50% less than the UFI value. "These authors
indicate that this discrepancy is probably due more to a
lack of detail in their nuclear wave functions than to a
failure of UFI.

The other theoretical procedure, and the one to be
used here, has been to avoid use of 6nal-state wave
functions by means of the closure approximation.
Because of the large amount of energy available (muon
mass —105 Mev), very many of the possible final
states contribute to the rate. By extending the sum
over energetically allow'ed 6nal states to a sum over
all final states, the completeness relation reduces the
expression for the rate to one which involves only the
ground-state wave function of the initial nucleus. This
last is presumably much better known than the wave
functions for the excited final states, and v e only have
introduced error from the extension of the sum. How-
ever, this method requires a knowledge of the average
phase-space factor w'hich w'as taken out of the sum over
final states.

The closure approximation was 6rst applied by

"See, e.g., L. B. Auerbach, R. J. Ksterling, R. K. Hill, D. A.
Jenkins, J. T. Lach, and N. H. Lipman, Phys. Rev. Letters 11,
23 (1963).

'4R. C. Cohen, S. Devons, and A. D. Kanaris, Phys. Rev.
Letters 11, 134 (1963).

"See, for example, J. C. Sens, Phys. Rev. 113, 679 (1959).
~e J. M. Kennedy, Phys. Rev. 87, 953 (1951), Ca40; H. A.

Tolhoek and J. R. Luyton, Nucl. Phys. 3, 679 (1957), 2s-1d
nuclei; J. R. Luyten, H. P. C. Rood, and H. A. Tolhoek, ibid.
41, 236 (1963), O~e Ca e; I. Duck, ibid 35, 27 (1962),. Hee, 0'e F'~
H. G. Wahsweiler, Z. Physik 170, 574 (1962), Cis' ".
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Primakoff in his model-independent calculation of the
total capture rate for an "average" nucleus, specified
only by Z and A."He obtains a formula for the rate

A —Z-
X(Z)A) = const)(, Zeff 1—const)&

ZA

which gives the well-known "Primakoff plot. "As given,
the above formula fits the V—A theory quite well,
expecially when the fast Auger conversion to the lower
hf state is taken into account ""

Unfortunately, Klein and Wolfenstein have pointed
out that one of Primakoff's approximations is unjustified
and that, when this is taken into account, his formula is
changed to"

A —Z-
t(Z, A) = const)&Z, .tt'(1 —A„) 1—const)& (2)

ZA

On fitting the experimental rates to this, one finds
rather poor agreement with the UFI predictions. "
In fact, the fitted-squared coupling constant must be
twice that given by UFI. It seems that a structureless
nucleus, such as Primakoff considered, does not contain
sufficient detail to account for the observed rates.

The shell model calculations of Luyten, Rood, and
Tolhoek give a G' which is too small while the structure-
less nuclear model of Primakoff, as modified by Klein
and Wolfenstein, gives a G which is too large. This
might be an indication of a difference between the two
methods used, summation of partial transitions and
closure approximation, but the hope is that the use of a
more detailed nuclear wave function will bring them
both in line with UFI, and in doing so give detailed
information as to its finer details.

In this paper we evaluate the nuclear matrix elements
in the context of the unified Nilsson nuclear model and
find a G' consistent with UFI. Moreover, if a V—A
theory is accepted, the comparison of these results with
experiment indicates the presence of the induced
pseudoscalar term of the expected sign.

) p+
2I+1 2I+1

Z3
(+~rx'I ~+~

I
+srx')

2''a '1+v/M
(3)

'7 H. PrimakoG, Rev. Mod. Phys. 31, 802 (1959).
' V. L. Telegdi, Phys. Rev. Letters 8, 327 (1962).
' Reference cited in footnote 4. See, however, footnote 70a of

R. Winston, Ref. 9.
~ H. Uberall, Phys. Rev. 121, 1219 (1961).

II. EXPRESSION FOR TOTAL AVERAGE
CAPTURE RATE

Let us begin with the closure approximation expres-
sion for the total average capture rate as given by
PrimakoP' ~'

as found from an effective nonrelativistic Hamiltonian
for the process derived from the general Lorentz
invariant matrix element. "Here, I is the nuclear spin,
X~ being the capture rates from the upper and lower hf
states respectively. M is the mass of the nucleus and
the muon Bohr radius

137( m„)

e'm„' m„( Ml

in units with A =c=m, = 1. F is the average momentum
of the emitted neutrino.

The nuclear matrix element in (3) is taken with
the ground-state wave function of the initial nucleus.
We have split the operator X~X into one- and two-
particle parts

1+rs&'&q
A=a P l~'(r )

2

A

cu(ij ) = (a'+a"e; o;) q (r,) p(r, )j s(vr, ;),
where the sums on i and j run over all the nucleons of
the nucleus. The muon, space wave function y(r) is
normalized so that it goes to 1 as Z —+0. jo is the
zero-order spherical Bessel function. All dependence on
the coupling constants resides in the a' s.

a'= Gy',
a"=G~'—sG~Gp+ sGp',

a =a'+3a" =Gv'+3G~' —2G~Gp+Gp',

where the effective G's are related to the g's under the
usual UFI—CVC assumptions by"

Gv ——gv(1+ /2vM ),p
Gg =gg gv (1+@v—IJ,„)—v/2M„,

Gp= $gp gg gv(1+@v —p„)—7v/2Mp. —
Here the g's are the form factors appearing in the
relativistic matrix element. ~M~ and y are the anomalous
magnetic moments of the proton and neutron, respec-
tively, and give, in the combination p,„—p„, the effect
of the "weak magnetism" term.

The two-particle operator A' gives the effect of the
Pauli exclusion principle as it acts upon the produced
neutron and is therefore responsible for the isotope
effect, an inhibition of the capture rate due to the
reduction in the number of final states available to
this neutron.

III. NUCLEAR MODEL

The success of the jj-coupling shell model for a
description of nuclear properties is by now well estab-

"A. Fujii and H. Primako8, Nuovo Cimento 12, 327 (1959).
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lished. "Nevertheless, the description is not a complete
one for the 2s—1d nuclei, as evidenced by the poor
predictions of quadrupole moments, and collective
aspects must be incorporated into the nuclear wave
functions. The unified approach of Bohr and. Mottleson"
together with the Nilsson modeP' has had considerable
success for the 2s—1d nuclei. "

The chief collective feature of nuclei is their equi-
librium deformation, which, following Nilsson, we
assume to be axially symmetric. Corresponding to a
splitting of the nuclear Hamiltonian into an intrinsic
and a rotational part, we write the nuclear wave function

from it a good angular momentum eigenfunction @~~I
by means of the weighting function D~z . Kurath and
Picman. have shown that, in the 1p shell at least, such
a generating procedure gives wave functions with

very good overlap with intermediate coupling wave
functions. "

It should be noted in (9) that the arguments ot Ka
are in body-fixed coordinates, i.e., they depend on the
Euler angles 0. We can re-express this in terms of space-
6xed coordinates by means of a rotation operator,

(10)
where"

Kg is the eigenfunction of the intrinsic part of the
Hamiltonian, expressed in intrinsic nuclear coordinates,
and D~~ is the eigenfunction of the rotational part,
expressed in terms of Euler angles. " The quantum
numbers I, M, and E refer to the nuclear spin and its
projections along some space-fixed axis and along the
nuclear body-6xed axis. 0 is a quantum number referring
to the projection of the intrinsic angular momentum
along the body axis.

The intrinsic wave function has as its arguments the
coordinates of the A nucleons with respect to the slowly
rotating nuclear axes. There are 3A such space coor-
dinates. The three Euler angles, the arguments of the
rotational part of the wave function, are also space
coordinates. This means we have, in all, 3A+3 space
coordinates for the A nucleons. There is a problem of
three extraneous coordinates in our wave function as
written. in (3).

The method for dealing with these superAuous
coordinates is to perform a Hill-Wheeler integration
over the three Euler angles. "

which we have factored into single-particle rotation
operators 8(8). The rotation operators, when acting
on a good angular-momentum eigenfunction, give a
linear combination of angular-momentum eigenfunc-
tions with the same j,

(12)
tnl

The D & here are exactl'y the same as in (8), occurring
now as the matrix elements of the rotation operator.

Our interest lies not so much in nuclear wave func-
tions as in nuclear matrix elements. Using (9) and (10),
we can express these in terms of doubly integrated
theta-dependent matrix elements,

(9) where

where we use 8 to abbreviate cr, P, y. Here we take Xn,
which does not have good angular momentum properties
because of the lack of spherical symmetry, and project

"See, e.g., M G. Mayer and J. D. H. Jensen, rstementary
Theory of Xnctear Shell Strstctstre (John Wiley 8r Sons, Inc.,
New York, 1955}.

23 A. Bohr and B. Mottelson, Kgl. Danske Videnskab. Selskab,
Mat. Fys. Medd. 27, No. 16 (1953);J.P. Elliott, University oi
Rochester Report NYO-2271, 1958 (unpublished)."S.G. Nilsson, Kgl. Danske Videnskab. Selskab, Mat. I'ys.
Medd. 29, 16 (1955)."G. Rakavy, Nucl. Phys. 4, 375 (1957); H. E. Gove in Proceed
ings of the International Conference on Nuclear Structure (The
University of Toronto Press, Toronto, 1960};many references are
given in R. K. Sheline and R. A. Harlan, Nucl. Phys. 29, 177
(1962), footnote 5.

MWe use throughout this paper the conventions of A. R.
Edmonds, Angnlar Momentum in Qnantnm Mechanics (Princeton
University Press, Princeton, 1960},2nd ed.

~~ J. J. Griffen and J. A. Wheeler, Phys. Rev. 108, 311 (1957};
R. E. Peierls and J. Yoccoz, Proc. Phys. Soc. (London) 70, 381
(1957).

The intrinsic wave function in this 6nal form is
expressed in terms of space-hxed coordinates.

The intrinsic wave function Kg can be written as a
Slater determinant of single-particle Nilsson eigenfunc-
tions. '4 These can be written in the form

X ir) —Q. c.„( le„i

The eigenfunctions, in addition to the component of
angular momentum along the body axis ~ and to a label
r specifying which Nilsson level of that co is meant,
have E, the number of harmonic-oscillator quanta, as
a good quantum number. For the 2s—1d shell, %=2
and the sum in (15) runs over j= sr, ss, s. The c;„&"&are
tabulated in Nilsson's paper for various choices of the

"D. Kurath and L. Picman, Nucl. Phys. 10, 313 (1959).
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nuclear deformation g. The energy eigenvalues asso-
ciated with the eigenfun. ctions (15) are twofold
degenerate in &(d and depend on )& also. (See the
energy-level diagrams given in Sec. VIII.) Knowing
the deformation from other evidence, the Nilsson
configuration is chosen so as tominimize the total energy.

IV. REDUCTION TO SHELL MATRIX ELEMENTS

Since S is a good quantum number of the Nilsson
functions, we can take advantage of their shell-like
nature to reduce the nuclear matrix elements to the
contributions from the various S-shells. Following a
similar reduction of Uberall, " we write the totally
antisymmetric intrinsic wave function

K&)(1 A) =Jr pr C'~=p" (P1,P2)
XC'rr=p (P3,P4)Crr=r" (PS P10)
XC~, (P11 P16)Co(P17 PA) . (16)

Here CN=0, 1" are the closed neutron and proton shell
functions which together make up the 0" core, and
Cg is the function for the unfilled 2s—id shell. Each of
these shell functions is assumed normalized and anti-
symmetric in its ow'n arguments.

The reason for doing this is that the antisymmetric
closed-shell functions, which at first would be written
as a Slater determinant of Nilsson single-particle
eigenfunctions, can just as well be written as a Slater
determinant using any other convenient set of basis
functions. This is because the unitary transformation
between the two sets of basis functions becomes, in the
Slater determinant, the determinant of the transforma-
tion matrix, which is just a constant phase. Thus we
w'ill only have to use the Nilsson eigenfunctions in the
outer shell function, C&. The appropriate basis for the
inner shell functions will become clear when we have to
evaluate the contributions to the matrix element from
these shells.

Another big advantage of (16) is the fact that the
antisymmetry of the inner shell functions requires that
each of these have a total angular momentum J=O.
All of the angular momentum of the intrinsic wave
function resides in the outer shell function C&. The
rotation operator D(8) does not act on the spherically
symmetric closed shells.

Substituting (16) into the nuclear matrix element for
capture occurring in (3) and using the orthogonality
between the various shell functions, we can eventually
recast the one-particle part in the form

(1+r ('))
Dt 0' j q'r; 8" Cg

'=r &, 2 i
(17d)

where E is the normalization constant for the unfilled

shell.

Z= dg' dg"Drrrr" (8')Dprxr(8")X(8', 8"). (18a)

X=(C.
I
D'(8') D(8") IC.) (18b)

Mrr, ,rr. , '= pq(Crr'(12 p)C».."(1'2' . q') I

Xp) (1,1')
I
C~'(1'2 .P)C'rr "(12' q'))

(19b)

()&8' dg"D~rr *(8')Djrxr(g")

Xg(p» (g' 8")/E, (19c)

(C '(1 )C' (1' ) I
D'(8')

XI r &'&r &'&+r &"r "happ(11')

xD(8")Ic (1' ")c.(1" )), (»d)
Z(') =N(N —1)(C&)I D'(8')r+&"r "'pp(1,2)

x D (8")
I
c'0) (19e)

All these terms involve the exchange of a neutron and a
proton and the antisymmetry of the over-all wave
function leads us to expect each term to give a negative
contribution. The negative sign is explicit in the inner-
inner and inner-outer exchange terms and is to be
expected from the antisymmetry of the shell function for
the outer-outer term as well. These terms give the
reduction in the rate due to the Pauli exclusion eRect.

In (17) and (19) only the rV=O and rp)r=1 inner shells

are included in the closed shell contributions, i.e., only
the 0" core. For the treatment of Cl'5 and Cl p

how-

ever, we can better work with holes in a closed Ca"
core. The one-particle part, in such a picture, takes the
form

The reduction for the two-particle part is somewhat
more complicated.

(A') = — Q M'rr, ,rr', PL&)r,—(')+L('), (19a)
Nr

(A) =MN=p +Mrr=r +L(') (17a)

(17b)

(A)= Q MN L&'&—
N=0

while the two-particle part becomes

(20a)

L(r) (r d8 dg Drrrrr*(8 )Dr)rrrr(8 ) (A') =— 2

MN„rr...'+ Q Lrr &'&+L&'&. (20b)
XZ, (') (8',8")/E, (17c) N, N'~, v, r' NM, r
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(2l+1) (2l'+1)
ll'00lXO). (26)

4 )V. CLOSED-SHELL MATRIX ELEMENTS: SP

Here the shell function Cn is composed of the Nilsson coefiicients, and the well-known result"
eigenfunctions for the appropriate hole con6guration.

The closed-shell matrix elements in the above
expressions can, as said before, be evaluated with any
appropriate set of basis functions. The natural choice is
the elm~m, basis. The one-particle matrix elements are
easily found to be

M„=a P P P(nlsnisn, l q'(r) l nlnsirn, )
m) mg

= a P 2(2l+1)(nil qo'(r) lnl),

a simple expression in terms of the radial integrals of
the squared muon wave function. The two-particle part
is, by the standard techniques of angular momentum, "

N7r, N'v

(rn„sn, 'l a'+a"tri trsl rn, ',n4)
l, my mg l' mg' mio'

X(nlrni, n'l'mt'
l |p(ri) q (re) jo(Pris) l

n'l'en&', nlsnt)

=a+ g 2(nlrni, n'l'mt'l oo(ri) y(rs) jo(vris) l

l, l' mg, m~'

Xn'l'nsi', nlmi) . (22)

Note that the parity selection rule that l+l'+X must
be even and the triangle condition D(ll'lt) severely
restrict the number of X's that contribute from the
infinite sum in (23).

Within the context of the Nilsson model, we can treat
the Si" nucleus at this time. Here the X=2 shell is
exactly half-full, and as such, is expected to have its
quadrupole moment vanish. "This means the nucleus
has no deformation, i.e., is spherically symmetric. That
the deformation "crosses over" at this nucleus is
confirmed experimentally; AP' must have a positive
deformation and Si" a negative deformation in order to
predict the correct spins from the Nilsson configura-
tions. At zero deformation the Nilsson eigenfunctions
reduce to ordinary shell-model eigenfunctions and the
calculation, of (A+A') goes fairly simply.

The eGect of the 0"core is given as before. The outer
nucleons, those outside this core, are treated as con-
stituting two 6lled 1d5~2 shells, for the protons and
neutrons separately. The antisymmetric shell functions
I;~~„," are, as usual, orthogonal to each other and
to the shell functions CN" of the core.

For the one-particle operator

The collapse of the spin sums into the combination
a=is'+3a" for closed shells has been noted previously
by Tolhoek and his collaborators. "To proceed further
we use the identity"

jo(vris) = Z j~(vri) jx(vrs)
X=O

(A )out M 1dtltldt/t 2 2 M ldiv/s yt
N=0, 1

(28a)

where the factor of 6 corresponds to the six protons in
the shell.

For the two-particle operator

and find

X g, (—1)i4 J „i(1)J „i(2), (23)
p,

M' ,ie, ,I,M,——In (Xie„, (1 n) Kie„,"(1' n') lto(1, 1')

X l X,e«,.(1'2 "n)8C„»,"(12' "n')),
N7r, N'l

=& Z 2X4 (ill J'"lll')(l'llI'"lll)
l l/)E

X(nl l ji(vr) q (r) l
n'l')(n'l'

lj &, (vr) y(r) l nl)

= a Q 2(2l+1) (2l'+1)(Rii i'(ll'00
l
XO)',

(itrv). =(nil j.(.-r)o (r) lnl)=(Rvn, .

M'~, M„, rnn(C ~ (1 ——sn) xia„t"(1 n')
l
co(1)1')

XlC»-(1'" ~)n:„„,(1" n')). (»c)

(24) To evaluate these we must use the eljm basis for the
outer shell. In the inner-outer exchange term we can
still use the elm~m, basis for the inner shell and we
find, using (23) again,

(25)
M'sr, iatf t= cc Pi (61l+1) 6~1ii, a(il2 00 le)O' (29)

Here we have used the %igner-Eckart theorem, the
symmetries and orthogonality of Clebsch-Gordan

"G. N. Watson, Theory of Bessel FtcncÃons (Cambridge Univer-
sity Press, London, 1958), 2nd ed. , p. 363.

tt A. R. Edmonds, Angular llromenlnm t'n Qnantnm 3fechantcs
(Princeton University Press, Princeton, 1960l, 2nd ed. , p. 76.

» M. G. Mayer and J. D. H. Jensen, Elementary Theory of
Nuclear Shell Structure (John Wiley 8z Sons, Inc., New York,
1955), p. 106.
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TABLE I. M1' and M2" for closed 1d2(2 shell, (Si").

Inner shell

1$1/2
Ip1/2
Ip1/2
Ip3/2
Ipa/2
Id 5/2

Id5/2
Id 5/2

M'g'

6
0
6

36/5
24/5
6

48/7
36/5

3/Ig"

18
48/5
42/5
12
24
42/5
46/7

1116/35

in much the same way as before. To collapse the spin
sums and obtain the combination a, we have gone from
the eljm basis to the elm&m, basis by means of Clebsch-
Gordan coefficients.

The outer-outer exchange term M'~~«2 ~~», not involv-
ing a closed shell of both j's for a given /, will not give
the same relationship between the Fermi and the
Gamow-Teller terms, viz. , the u' and a" terms. Here
we must use the ml jets basis and write

The values of these quantities for the cases we need
are given in Table I. We have included the inner shells
as well and we see that, on summing over the inner j,
we recover the result indicated in (37), viz. ,

M "=3' '."

E=g ep~(P)X j sums, (34a)

j sums= p g K(j o)rP) X rl sums,
21 2n

(34b)

g sums=+ g X(j go)P)X(j g(dE), (34c)

VI. OUTER SHELL MATRIX ELEMENTS

The outer shell matrix elements, i.e., those involving
the Nilsson eigenfunctions and the subsequent Hill-
Wheeler integration, are of course much more dif6cult
to evaluate. The method for doing this is given in an
appendix and we only present the final results here.

For the normalization constant, we have

where"

M';, ~; =Q ( '3I '+ "M ")(R ~ ', (30)
where

n—2

~ '= (—1)" '4~&jllI'"ll j'&(j'll I'"ll j&, (31a)

~„«—( 1)1' 1+ (
—1)x+1—s

x 4~&jll T'll j'&&j'll T'I j& (3»)
Here T,~ is a spherical tensor defined by

T,'=P( 1~.lug) I'„"~„. (31c)

The reduced matrix elements are given by

&gll 7"lip'& = (—1)'+" O'I (2j+1)(2j'+1)/42rg'('
X(jj'-,' ——,'I) 0), (32 )

&jll2'll j') = (—1)'L6(2j+1)(2j'+1)(2~+1)

X (2l'+1) (2&+1)/42rf"'

X ((ll'00
I
)(0) 2 2 1, (32b)

j j'k'
the last symbol being a 9j symbol. Here we always
couple in the order 1+—ss=j, which accounts for the
difference in phase in (33a) from the expression given
by Klliott. "With these,

~.'=(2j+1)(2j'+1)b~'-:—:I)0)' (33a)

~),"——6(2j+1)(2j '+1) (2t+1) (2l'+1) X (ll'OOI)(0)

~( ) ~rpl&l~rpsr2 ~~pnrn1

(&Pl)L ~ (&1)r ~ (~P2)r, . (r2) ~ . ~
21+P1 & it() 1 &2f2)P2 & 2') 2

(35a)

I (1)= Q P g eph, (P) Xj sums/E,
i=1 P

(36a)

j sums=/ .Q (j (drP) X(R(;Xrt sums, (36b)
71 gn

x(jS~Q) = (jrj2~~1~~2I 81121')(8(js~)1'~Qsl82122') ' ' '

X (g 2j„0„2oo)()„I IE) . (35c)

In (34a) P is a permutation of the labels 1 22, arising
from the Slater determinant for the n —particle outer
shell function, where it acts on the e sets of quantum
numbers of the Nilsson configuration. These quantum
numbers are, as we saw, or, r, and z, the isospin compo-
nent (—', for a proton, —22 for a neutron). cp ——&1
depending on whether P is even or odd. d, (P) severely
restricts the nature of P so that the ith and Pith
particles are either both protons or both neutrons.
In (35b) we have used the fact that the Nilsson coeK-
cients are real, and in (35c) Q is taken as P or P, the
identity permutation, as required.

The expression for the one-particle matrix element is
very similar, involving only additional factors of radial
integ rais.

X 2

Xgs(24+1) -,'-', 1 . (33b)jjk
"J. P. Elliott, University of Rochester Report NYO-2271,

1958, p. 51 (unpublished).

g SumS= Q p X(j go)P) X(j O)o)P)
gn —2

"It is also interesting to note that

Z Mp" =3 Z M), ', j axed.
X X

(36c)
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where

r(P) 5rp1+lt25rplrl 5rpnrn1 (37a)

(37b)

and the other quantities are as in (35).
The two-particle matrix elements are, as usual, more

complicated. For the inner-outer exchange terms we
again have a collapse of the spin summations to give
the coupling constants in the combination a=a'+3(t".

n

L)v, (') =(2 P P spy, '(P) Xj sums/E,
2=1 P

j sums=+ P L+(21+1)(ll,OO~XO)2(Rtt;&2(
jj. jn

(38a)

Xp(j MrP) Xg sums, (38b)

g sums= P g X(j go)P)X(j g«), (38c)

where

(P) = Pr r 1+, &. —r, r gl)&rplrr' ' '&rp r (38d)

with all other symbols as previously defined. The outer-
outer exchange term does not give such a collapse, and,
as in the case of Si", allows us to differentiate between
6 and 6

L(') = Q Q spark(P) Xik sums/E, (39a)

j sums=+ P K;k(j 'j "o)rP) X at sums,
21 hark

g sums=+ g X,k(j'g»)x'k( j"g«),
gn —2

where

~tk(P) 5rpr rc+15rpk rklx5rppj 5rpr-r~

~'Js', O)Pi ~&i rk)i ~&k'tk)Pk ~&k 'rs) k
(7'Pi) . (7'i) . (7'S'&) . (7'Js)

(39c)

(39d)

(40a)

(rpl)c,. „(1). . .c,. (rp.)c, ( .) (40b)

x k(jol(oQ) (j'jkcoQ'ooQk
~
oil(ll ) (oil) (ll o)Q1~ oi2(l2 )

x x ($„2j„Q„2Qo)Q„~IE), (40c)

a'M'+ a"M"=Q), ((t'M),'+a"M),")
X%; 1, k(Rt;"tk" 1„, (40d)

~ I ' ll—( 1)t "+ik'+(ll

X4 &j IIJ"llj;"&&j.'ill'"Ilj"), (40e)
' /)r

M~~~ —+1( 1)1+1 k+ir,"+A'+el—
x4~&j''117'kllj'")&j'llTkll jk"&. (40f)

Here the single-particle quantum numbers are ordered
i, k, 1, , i 1, i+1, —, k —1, k+1, , I rather
than 1, 2, -, e, and the ith and kth terms are to be

ik sums=+ P P Q Q((t'M'+a"M") Xjsums, (39b)
)' ~ I )' ~ r I )'I I )'J I I

skipped in the "
~ ~" of (39c), (40b), and (40c). The

new symbols in (40e) and (40f) are 6-j symbols;
the reduced matrix elements here are given by (32).

The formulas in this section for E, L('), L('), and
L(') are in a form amenable to computation by an
electronic computer, consisting of sums over products of
Nilsson coeKcients, Clebsch-Gordan coeKcients, radial
integrals, and recoupling coeKcients.

VII. RADIAL INTEGRALS

The above formulas are complete except for a knowl-
edge of the radial integrals, (R~ and (R~p),. For these we
need to know both the radial eigenfunction and the
muon wave function. The former are just the eigen-
functions for the spherical harmonic oscillator'4

g (r) —(ns 2/2rl 4)p2+t/(2)+1) ) )gl 2(nr) e—1 2 a '
(41)

R2, (r) = (n't2/2r' ') (2'/3) ' '(3/2 —(nr)'je 't'( ")'

The radial parameter n may be found by using the
radial functions to calculate the expectation of r' and
comparing this with the experimental nuclear radius. '4

(r'&= (1/~)Z (r') .t;= (1/~n2)2' P(~—1)+J+23'—R 2 & F2/3 (42)

Strictly, this formula should apply only within the
context of the ordinary shell model, but we see that for
the X=2 shell, the bracket is the same for ml=2s,
ml=1d. Thus

n= fZ' E2(~—1)+i+23')"'/(r&"')
= [36+7(2 —16)/2]'"/(rpA't') . (43)

The nuclear radii for a number of the 2s—1d nuclei
consistent with muonic x-ray and electron-scattering
data are given by Sens in his Table II"and we use these
values (and interpolations between them), to find n.s'

Ford and Wills have calculated muon wave functions
for many nuclei by numerically integrating the Dirac
equation, assuming a nuclear charge distribution
consistent with electron scattering data." We found
that we could obtain a good fit to the Ford-Wills
numerical values, for the nuclei of interest, by assuming
cubic forms for p and q', following Uberall. "

The one-particle radial integrals (R~ can now be
evaluated by simple integrations over r. For the two-
particle radial integrals we need to deal with the
spherical Bessel function jk(vr) The argumen. t of these
functions is Pr fR—1.5, which is small enough to
allow us to approximate the jz by their expansions to
order (pr)'." With these, the integrations can be
carried out in the same way as for (R&.

'4 M: G. Mayer and J. D. H. Jensen, Etemelstary Theory of
Nuclear Shell Structure (John Wiley R Sons, Inc. , New York,
1955), p. 236.

"The o.'s given by Uberall in Ref. 20 actually use r0=1.2
instead of Sens's values, despite the statement to the contrary.

36 K. W. Ford and J. G. Wills, Los Alamos Report LAMS-2387,
1960 (unpublished), and private communication.

22 L. I. SchitI, Qrca22&m Mecharsics (McGraw-Hill Book Com-
pany, Inc., New York, 1955), 2nd ed. , p. 77.
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Note that these two-particle radial integrals depend
on the average neutrino momentum P. This will be of
some consequence in the role the closed shells play in
determining the average capture rate.

VIII. NEUTRINO MOMENTUM) NUCLEI)
AND THEIR DEFORMATIONS

The average neutrino momentum s occurs in a very
important way in the phase space factor of (3) and the
correct choice of this quantity's value is critical. From
the conservation of energy, the neutrino momentum for
a transition from nuclear state 2 to state 8 is given by"

i ~a=m„[1—BE„/m„—(Eii E~)/n—z„], (44)

where we have dropped terms of order m„/M. The
binding energy BE„ for the low Z we are considering
gives less than a 2% correction to p~s and we henceforth
ignore it. Thus, we see that we know P if we know the
average excitation of the final nucleus, (Es—Ez).

This quantity can be calculated on the basis of a
Fermi-gas model of the nucleus. Such an analysis has
been done by Kaplan" to interpret data he had collected
on neutron evaporation following mu capture. His
formulas for the nondegenerate Fermi gas involve two
parameters, the nuclear "temperature" and the effective
mass of the nucleon within the nucleus. Results for f
from these formulas for various choices of the param-
eters are presented in Table II. We see that, for given
parameters, F does not vary much over the range of
nuclei we are considering. Kaplan's data"' fit his
model's prediction for the neutron multiplicity for an
effective mass M*=-,'M~ but not for M*=M„. (There
is some theoretical justification for such an effective
mass. ) We therefore take as our best choice of average
neutrino momentum 9=0.75.

Numerical calculations are presented in this paper
for F" Ne" Si" Cl", and Cp . To proceed we need to
know the nuclear deformation and the appropriate
Nilsson configuration for each. We discuss these nuclei
in turn, considering at the same time their relevance to
mu capture.

F", the only stable Quorine isotope, consists of a

TABLE II. Fermi-gas model results for P.'

Nucleus

F19
FIQ

CPv

fp

1.03
1.03
1.05

MN
$MN
2~N

10
20
20

14.5
22.9
23.1

0.828
0.750
0.766

38 S. N. Kaplan, University of California Lawrence Radiation
Laboratory Report No. UCRL-3749, 1958 (unpublished).

"See also G. Groetzinger, Martin J. Berger, and Gordon W.
McClure, Phys. Rev. 81, 969 (1951); M. Widgo8, ibid. 90, 892
(1953); R. D. Crouch and M. F. Sard in Progress in Cosmic Ray
Physics (Interscience Publishers, Inc. , New York, 1952), Vol. II.

& M+ is the effective nucleon mass, 4 the Fermi nuclear temperature
(measured in electron masses), Q the average nuclear excitation (in Mev),
and ~ the average neutrino momentum (in muon masses).

Ma /2~&=25

CUa /2st&$l

Cu* /2, r5

QJs /2s V+2I

QJ ~/2s & = I

'Q*O

CO=/2, r=lI

Fro. 1. Con6guration for F". )(—proton, Q—neutron.

proton and two neutrons outside the 0" core. It is a
"meeting ground" where the three-particle shell model
with configuration mixing can be compared with the
Nilsson unified model. This has been done and it is
found that the two different kinds of wave functions
have a very good overlap. "Moreover, Burkhardt and
Caine" have calculated the average capture rate in F"
with the Elliott-Flowers wave function, using the
closure approximation in the same way as we have. A
comparison of our result for the nuclear matrix element
with theirs gives an indication of just how good the
nuclear matrix element is.

There are five recent measurements of the capture
rate in F"O' Since F"has a spin of 2 and because of the
high conversion rate from the upper to the lower hf level,
what is actually measured is X rather than ). We can
compare our results for t with experiment, however,
since the hf difference dA/X has also been. measured by
Winston, "and, using this experimental result, we can
find the experimental A.

Astbury (1958): X =2.72&0.20, X=1.73&0.20;

Sens (1959): X =2.54&0.22, X=1.60+0.22;

Eckhause (1962): X =2.41+0.18, $, = 1.53&0.18;

Astbury (1962): X =2.40&0.40, X=1.52&0.40;

Winston (1963): X = 2.40&0.10, $,= 1.52&0.10;

all rates given in 10' sec '. Here we have taken AX/)t
=—0.78.

The nuclear spin of —, indicates that F"has a positive
deformation and Nilsson configuration as shown in
Fig. 1, the three nucleons residing in the first co =—,'level.
The choice of g can be made in several ways. Nilsson
suggests, for one thing, that the total energy of the
A-particle configuration be minimized with respect to

4' M. G. Redlich, Phys. Rev. 110, 468 (1958).
'G. H. Burkhardt and C. A. Caine, Phys. Rev. 117, 1375

(1960).
O'A. Astbury, M. A. R. Kemp, N. H. Lipman, H. Muirhead,

R. G. P. Voss, C. Zanger, and A. Kirk, Proc. Phys. Soc. (London)
72, 494 (1958); J. C. Sens, reference cited in footnote 15; M.
Eckhause, T. A. Filipas, R. B. Sutton, R. F. Welsh, and T. A.
Romanowski, Nuovo Cimento 24, 666 (1962); A. Astbury, I. M.
Blair, M. Hussain, M. A. R. Kemp, and H. Muirhead, Proc. Phys.
Soc. (London) 78, 1149 (1962); R. Winston, reference cited in
footnote 9.



CALCULATIONS OF MU CAPTURE RATES IN 2s —id NUCLEI

the deformation parameter. 43 Another way to 6nd p is
through the quadrupole moment. A nucleus with spin ~,
as is the case here, does not have a spectroscopic
quadrupole moment, but the so-called "intrinsic"
quadrupole moment can be measured from the reduced
transition probability for an electric quadrupole transi-
tion. Finally, the energy-level spectrum as a number of
rotational bands based upon single-particle levels can
be ltted to experiment. (In addition to the single-
particle level spacing, the decoupling parameter depends
strongly on the deformation. ) All these methods for
choosing p are only in rough agreement with one another,
so the deformation is only approximately known. Paul
finds, for F", a best value of g=3.0—3.5.~

Neon occurs predominately in the isotope Ne"
(abundance 90%), although the isotopes Ne" and Ne"
are stable. The deformation and Nilsson configuration
are much like that of F", the lowest level now 6lled by
the additional proton.

The capture rate for naturally occurring neon has
just recently been measured by a method due to Shiff, 4'

in which the neon is dissolved in liquid hydrogen. Since
Ne" is an even-even nucleus, the experiments measure
) directly. The two measurements are"

CERN: ) =1.69+0 3

Columbia: X=2.01~0.1;

again in 10' sec '. These experimental results are
reduced somewhat from the rate for Ne" alone because
of the presence of the heavier isotopes.

Si" is a somewhat special case discussed in Section V
in terms of simple shell model wave functions. An even-
even nucleus, the experimental rate is"

Sens: R = 7.7&0.25,

again in 10' sec '.
Chlorine occurs in two stable isotopic forms, Cl" and

CPr, with an abundance of about 75 and 25%, respec-
tively. One therefore expects an isotope effect. This has
been seen experimentally. 4' Since each of the chlorine
nuclei has a spin of —'„we again have that the measured
rates are the rates from the lower hf state. The correc-
tion to 6nd ) in this case is in the opposite direction
from that for F", because here the spin comes from a
1dgs single-particle state, (with I=/ —rs), while in F's
it comes from a 2sr~s state (with I=/+s) We can.
estimate the amount of the correction by means of the

BLYP formulal

AX b 1 2I+1
aZ' I I= l+-',

b 1 2I+1

a Z' I+1
Z'= (Z—1)~+1. (45b)

The parameter P represents the effect of the Pauli
exclusion principle in reducing the number of anal
states and can be estimated by comparing this formula
with the shell-model results of Uberall for F", AP', and
P".I This comparison gives )=0.50, 0.30, 0.54, respec-
tively, averaging to )=0.45. For Cis' ", the above
gives, using UFI values for the coupling constants,

hX/X =0.137, (=0.30,
=0.177, f=0.45,
=0.251, g =0.60, (46)

which in turn gives

) =1.092 X

=1.126 )
~ ——1.187 X,

)=0.30,
)=0.45,
)=0.60.

gs~/~ rs)

The diGerence between these choices, centered about
the average $ of 0.45, is a matter of 5%, which is
comparable to the experimental error of 3—4% quoted
by Bertram et a/. We combine the errors to get the
experimental values for 'A from 3,which are P "=18.02
~0.49, X35= 20.3~0.6, and X "=12.51+0.52, )"=14.1
&0.65, all in 10' sec '.

The quadrupole moment and the closing of the X=2
shell at Ca" indicate that the chlorine nuclei have
negative deformations. In terms of holes, the con6gura-
tion for Cl" is pictured in Fig. 2. The deformation
parameter q for these nuclei can be found in much the
same way as for F'. In this case, however, there is no
fitting to the experimental spectra to help us. The

4'Nilsson, Kgl. Danske Videnskab. Selskab, Mat. Fys. Medd.
29, No. 16 (1955), Appendix C; T. D. Newton, Can. J. Phys. 38,
700 (1960).

4' E. B. Paul, Phil. Mag. 2, 311 (1957).
45 M. Shiff, Nuovo Cimento 22, 66 (1961).

6 G. Conforto, C. Rubbia, and E. Zavattini, Phys. Letters 4,
239 (1963); Columbia results quoted by L. Wolfenstein (private
communication).

47 W. J.Bertram, Jr., R. A. Reiter, T. A. Romanowski, and R. B.
Sutton, Phys. Rev. Letters 5, 61 (1960).

FIG. 2. Hole configuration for Cl3'. X—proton hole,
Q—neutron hole.

"J.Bernstein, T. D. Lee, C. N. Yang, and H. PrimakoB, Phys.
Rev. 111,313 (1958).



RI CHARD R. SILBAR

magnetic moments can give some information, as well
as the spectroscopic quadrupole moment. A best value
for the deformation, which is small, is g= —2.

IX. RESULTS AND CONCLUSIONS

We collect all the formulas to express the rate in the
form

where
) =E(p,Z)(A+A'),

p2

(48)

and
—50.6P'Z' sec '

(A+A') =aX+a'X'+a"X".

(49a)

(49b)

Here the X's are the nuclear matrix elements apart from
the coupling constants which occur in a, u', a", given
by (6). We have taken a factor of (gr&@)' into E(p,Z).
X' and X"arise entirely from the outer-outer exchange
term L&'&.

The values of X, X', X" and the matrix element
(A+A') under the usual UPI assumptions are collected
in Table III for various choices of p and g. For F" we
have also considered the effect of changing the nuclear
radius, although we expect the Sens' values used every-
where else to be better radii.

We note the strong dependence of the matrix element
on the neutrino momentum p, a dependence which is
more and more strong as we go through the shell
from F" to Cl". This comes about roughly because we

are evaluating the quantity

1—jo(Pr») —(Pr»)'& (vR)'.

We do not get the quadratic dependence indicated here
because of the integration over r&, r2 separately and the
inclusion of (pr)' terms. The increase in the dependence
on p as we approach the closing of the shell at Ca"
arises from the fact that the two-particle terms in the
matrix element cancel more and more of the one-particle
contributions, simply reQecting the Pauli exclusion-

principle effect which reduces the mumber of neutron
states available within the %=2 shell. The dependence
of (A+A') on r, in addition to the v' dependence of the
phase-space factor, emphasizes the importance of
choosing the correct average neutrino momentum.

The effect of changing the nuclear deformation is, on
the whole, surprisingly small. As we can see, only the
Gamow-Teller term expressing the exchange of two
outer nucleons is sensitive to g. This could be expected
from the fact that the one-particle term and the Fermi
two-particle term do not involve, in any essential way,
an angular momentum operator, as does the Gamow-

TmLE III. Nuclear matrix elements.

(e) F19

Xx'
XII

(A+A')vrz

Xx'
X"

(A+A')vwz

(b) Nemo

Xx'
X/I

(~+A') vFr

(c) si"

P =0.70

1.5970—0.4327—0.5846
7.845

1.5998—0.4368—0.9031
7.354

P =0.70

2.1627—0.8262—1.2955
9.581

P =0.70

P =0.75

1.7124—0.3998—0.5413
8.614

1.7161—0.4049—0.8388
8.160

9=+2
P =0.75

2.2675—0.7637—1.2020
10.398

P =0.75

rp ——1.03
p =0.80

~=+2
1.8329—0.3672—0.4985
9.410

g=+4
1.8371—0.3733—0.7755
8.990

P =0.80

2.3777—0.7018—1.1049
11.243

P =0.85

1.9579—0.3353—0.4566
10.230

1.9633—0.3427—0.7138
9.847

P =0.80

P =0.70

2.1683—0.8304—1.7856
8.835

P =0.90

2.0878—0.3044—0.4163
11.075

2.0941—0.3130—0.6545
10.726

q=+4
P =0.75

2.2743—0.7687—1.6572
9.713

P =0.85

rp ——1.20
P =0.75

1.9722—0.3129—0.4270
10.383

1.9779—0.3207—0.6692
10.025

P =0.80

2.3858—0.7078—1.5310
10.618

p =0.90

x
X'
x"

(A+A') vox

3.6510—1.9757—2.7879
14.626

3.6999—1.8224—2.5786
15.397

3.7583—1.6736—2.3765
16.207

3.8274—1.5311—2.1836
17.057

3.9080—1.3962—2.0020
17.948

(Q) CP5—37

Xx'
X"

(A+A')vFz

P =0.70

1.8007

~ ~ ~

10.390

p =0.75

2.0264

~ ~ ~

11.692

CP', q= —2

P =0.80

2.2609

~ ~ ~

13.045

p =0.85

2.5038

~ ~ ~

14.447

P =0.90

2.7546

~ ~ ~

15.894

CP', q= —2

P =0.75

2.6132—0.3896—0.3637
14.102
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TABLE IV. Rates without Fermi coupling. '

'fp

(A+A'l

K(p,Z)b

Xexpt

F19

1.03
0.75

+4
7.48
6.83

2.075

1.55
1.42

1.52+0.10

Ne'p

1.03
0.75

+4
8.97
8.18

2.846

2.55
2.33

1.69~0.30
2.01~0.10

$j28

1.03
0.75
0

14.79
13.50

7.810

11.55
10.54

7.77&0.25

Cl35

1.05
0.75—2

12.98
11.84

13.948

18.15
16.56

20.3~0.6

a From Cl»'s p.exit=14.1+0.65, m/ME at g = —2, v=0.75; we find, if
a' =0, a =3a" 4.98&0.23 =5.21 or 4.75.

h In 104 sec '.
e In 105 sec '.

Teller term with e; e;. The breaking of the spherical
symmetry will more strongly affect the matrix elements
of the latter.

The isotope effect can be seen in the results for Cl"
and Cl".

The matrix element for F" obtained by Burkhardt
and Caine using the Elliott-Flowers wave function was
(A+A') =9.720 at P=0.82. We see that this compares
favorably with our results at the best value of p=4 and
at the same P, and on the basis of this alone we would
estimate the matrix elements calculated here are about
5% accurate.

Using these matrix elements, we now consider
whether or not the interaction contains a Fermi term in
addition to the Gamow-Teller term. 4 Suppose we set
the Fermi coupling u' =0 and choose the Gamow- Teller
a" so that the theoretical and experimental rates for
Ci3r agree.

'
(Cl'~ has no outer-outer exchange terms, so

the only dependence on the coupling constants is
through u, which in this case is 3a".) We can now use
this value of a" to predict the corresponding rates for
the remaining nuclei. These results are compared with
the experimental values in Table IV. As we can see,
it is not clear that the case u'=0 is contradicted by the
experimental evidence.

Let us assume, however, that the interaction is of the
V—A type. We consider and compare the results for
6ve different possible variations:

I. Usual UFI, as above. Weak magnetism present,
g~

——8g

II. UFI, but with weak magnetism absent, g~=8g~.

III. UFI, with weak magnetism present, but gI ——0.
IV. UFI, with weak magnetism present, but gJ = 16gz.

V. UFI, with weak magnetism present, but g~= —8g~.

less, it is worthwhile to see what mu capture can say
about CVC predictions. Case IV is suggested by the
recent 0+ —+ 0 measurement in O' ." Case V is
considered because of the uncertainty in the dispersion
theoretic argument' which obtained g~ ——8g~, an argu-
ment which extracts information from rates (squares of
coupling constants) rather than from the coupling
constants themselves. The values of u, u', and a", in
units of (gy'@)', are given in Table V for each of these
cases.

In Table VI we present the matrix elements and rates
under the 6ve different cases for the nuclei being
considered. The best values of the parameters v and g
are indicated and the UFI values for the rates corre-
sponding to these are given in italics.

The case of Si", as we have said, is somewhat special.
The predicted rates are quite high compared to the
experimental rates. This may result froin the simplicity
of the nuclear wave function in this case. While we are
nominally within the context of the Nilsson model, only
id5~2 single-particle eigenfunctions are used in making
up the S1.ater determinant. This completely neglects the
mixing of these states with the close-lying 2s&~& states,
which almost certainly takes place, and which is in
fact present in the Nilsson model at a nonzero deforma-
tion. We are therefore led to discount these calculations
when we come to discuss the coupling constants and
henceforth concentrate our attention on the remaining
nuclei, for which the outer shell contributions were
calculated by electronic computer.

The UFI values given in Table VI for the preferred
values of the parameters are in good agreement with
the experimental rates. They are somewhat high,
though, and the fit to experiment is better if we take
P =0.72, extrapolating linearly to find the matrix
element at this momentum.

Are any of the cases, I through V, excluded by the
comparison to experimentP It seems fairly clear that
case V, for which the pseudoscalar term has the wrong"
sign, is such a case. This is the same conclusion reached
by Reynolds ef, al. in their recent remeasurement of the
C' partial rate. ' We might be able to go somewhat
further than this and argue that case III, for which
g~=0, also gives results which are too large. In other
words, the pseudoscalar term is probably present. The
case which 6ts the experimental rates best at v=0.75
appears to be case IV, for which the pseudoscalar term
is large, gI

——16g~, although the differences between this,
the usual UFI case I, and the UFI hypothesis without
the weak magnetism term II are probably not signifi-
cant.

TABLE V. c, e', u" for Gve choices of couplings.

On the basis of the A = 12 beta-decay experiments, "we
do not expect that case II will reQect reality. Neverthe-

4' Y. K. Lee, L. %. Mo, and C. S. Wu, Phys. Rev. Letters 10,
253 (1963).

5.77
1.03
1.58

4.84
1.03
1.27

6.73
1.03
1.90

IV

5.26
1.03
1.41

8.17
1.03
2.38
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Ter,E VI. Matrix elements and rates.

(a) si"
I
II

(A+A') III
IV
V

K(p,Z)'
I
II
III
IV
V

p=0.70

14.626
12.095
17.239
13.238
21.159

6.803

9.950
8.228

11.728
9.006

14.394

p=0.75

15.397
12.756
18.124
13.949
22.214

7.810

ZZ.OZS
9.962

14.155
10.894
17.349

p=0.80

16.207
13.449
19.055
14.695
23.327

8.886

14.402
11.951
16.932
13.058
20.728

p =0.85

17.057
14.174
20.033
15.476
24.496

10.032

17.112
14.219
20.097
15.526
24.574

p= 0.90

17.948
14.934
21.059
16.295
25.726

11.247

20.186
16.796
23.685
18.237
28.934

(b) F"
I
II

(A+A') III
IV
V

EP (,Z)

I
II
III
IV
V

p=0. '?0

7.845
6.541
9.191
7.130

11.211

1.807

1.418
1.182
1.661
1.288
2.026

8.613
7.189

10.084
7.832

12.290

2.075

1.787
1.492
2.092
1.625
2.550

9.410
7.860

11.010
8.560

13.410

2.361

2.222
1.856
2.599
2.021
3.166

10.230
8.551

11.964
9.309

14.564

2.665

2.726
2.279
3.188
2.481
3.881

11.076
9.263

12.946
10.081
15.753

2.989

3.311
2.769
3.870
3.013
4.709

ro ——1.03, g =+2
p=0.75 p=0.80 p=0.85 p=0.90 p =0.70

7.354
6.146
8.601
6.692

10.471

1.807

1.329
1.111
1.554
1.209
1.892

p =0.75

8.160
6.824
9.539
7.427

11.607

2.075

1.6%3
1.416
1.979
1.541
2.408

8.990
7.522

10.506
8.185

12.779

2.361

2.123
1./76
2.480
1.932
3.017

9.848
8.243

11.504
8.968

13.988

2.665

2.624
2.197
3.066
2.390
3.728

10.727
8.982

12.528
9.770

15.229

2.989

3.206
2.685
3.746
2.920
4.552

1.03, g =+4
p =0.80 p =0.85 p =0.90

10.383
8.681

12.139
9.449

14.774

2.705

2.154
1.801
2.519
1.961
3.066

10.025
8.393

11.710
9.130

14.236

2.705

2.080
1.742
2.430
1.894
2.954

r0=1.20, p=0.75
g=+2 q =+4

(c) Ne" a

I
II

(A+A') III
IV
V

E(P,Z)

I
II
III
IV
V

(J) C$35 3'I

I
II

(A+A') III
IV
V

E(P,Z)

I
II
III
IV
V

p=0.70

9.581
7.971

11.288
8.698

13.735

2.479

2.375
1.976
2.798
2.156
3.405

p =0.70

10.390
8.715

12.119
9.472

14.712

12.181

12.656
10.616
14.762
11.538
17.921

~ —+2
p=0.75

10.398
8.662

12.190
9.446

14.878

2.846

2.959
2.465
3.469
2.688
4.234

p =0./5
11.692
9.808

13.638
10.659
16.556

13.984

16.350
13.716
19.071
14.906
23.152

p=0.80

11.243
9.376

13.170
10.219
16.061

3.238

3.640
3.036
4.264
3.309
5.201

CP', g= —2
p=0.80

13.045
10.943
15.216
11.892
18.472

15.910
20.755
17.410
24.209
18.920
29.389

p=0.70

8.835
7.372

10.345
8.033

12.610

2.479

2.190
1.828
2.565
1.991
3.126

p =0.85

14.447
12.118
16.851
13.170
20.456

17.961

25.948
21.765
30.266
23.655
36.741

g=+4
p=0.75

9.713
8.111

11.366
8.834

13.845

2.846

Z.764
2.308
3.235
2.514
3.940

p=0.90

15.894
13.332
18.539
14.489
22.505

20.136

32.004
26.845
37.330
29.175
45.316

p =0.80

10.618
8.874

12.419
9.662

15.119

3.238

3.438
2.873
4.021
3.129
4.896

CP', q= —2
p=0.75

14.102
11.785
16.495
12.831
20.083

13.964

D.7ZO
16.480
23.067
17.943
28.084

In 104 sec I, holding throughout this table.
b In 10& sec ', holding throughout this table. Xexpt =7.77&0.25 (Sens).

Xexpt =1.52 &0.10 (Winston).
& Uncorrected for 10% Ne» isotopic abundance.

XCERN =1.69 %0.3, XCeI~bis =2.01~0.1.
& Cl», Xexp& =14.1+0.65 (Bertram); Cls~, Xexpt, =20.3+0.60 (Bertram).

Apart from what we can conclude regarding coupling
constants, the results above show why Tolhoek and
his collaborators" might have obtained a rate so large
for Ca4' that G' would have to be twice too small to

fit experiment. First, these authors used shell-model
wave functions similar to those we used for Si". We
found the Si" rates to be high, and this might be
attributed to the simplicity of the nuclear description.
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Perhaps more significant, Tolhoek's choice of p was
0.82S, which is quite large compared with our 0.75.
They arrived at this choice as follows. The nuclear
matrix element was calculated in two ways —by sum-
ming over 6nal states and by the closure approximation.
The average neutrino momentum was then chosen so
that the two methods gave the same result. If we look
at our CP' results at this momentum, we see that the
rate is nearly twice the experimental rate. Moreover,
this should be enhanced somewhat when we go to the
closed shell case of Ca". The problem here seems to be
the average neutrino momentum, and Tolhoek's large
F could easily result from not including enough Anal
states in his summation.
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APPENDIX: OUTER SHELL MATRIX
ELEMENTS, REDUCTION

As an example of the method for obtaining the
computerable expressions for the outer shell matrix
elements given in the text, let us consider the reduction
of L,(».

L&"= u de' de"2 "&(8',8")

xD~x"(8')D~~'(8")/E- (A1)

1+
z~ & =(~,(1 "~)

I
Dt(e') P I

2

x v'9'') D(e")
I
x (1 &)) (A2)

Here Ko(1 . .m) is the intrinsic outer shell function.
formed from Nilsson single-particle eigenfunctions, with
its arguments given in terms of space-6xed coordinates.
We have supposed it to be antisymmetric and this can
be assured by means of an antisymmetrizer.

Xo(1 g) =Qp 6pXpl (1)Xp2(2) ' ' ' Xpa(s) . (A3)

The permutations (of e objects) act on the sets of
quantum numbers of the Nilsson con6guration for the
nucleus being considered.

The antisymmetrizer P=gp epP nominally occurs
in both the bra and the ket of the matrix element given
in (2). P is a Hermitian operator with the property
that P'= P. The operator Dt(e') D(e") written out as
a function of J=g, j; is symmetric with respect to
interchange, i.e., commutes with P. Thus we can

rewrite (A2) in the simpler form

The Nilsson eigenfunctions, we saw, are speci6ed by
the quantum numbers or, r, v and are given by

5/2

x„„,=Z, (/) Q c, &"&R„('"&'L'(ey,s),
j=l&t 2

(AS)

where Z, is the isospinor and 'JJ„&' the usual spin-angle
eigenfunction. Making this substitution in (A4), we get

L(1)—V V'~ ~&PX~rpi, +1/2X~rplr]~1 p2T2 ~rp~r~
i=1 P

Xj sums, (A6a)

j sums=P P P . p @(j'j"zrp)pQ(j'j "~p)
1n 1I 7n

X(e l,'I y'(r, ) In,"l;"), (A6b)

Cyl &pl C&1 ~y Cy2 zp2 C~2»~2
(rp1) . » (r1) . , (rp2) . » (r2). . .

,j-' .-I D'(8') D(e")

X I j&"cv&, .,j„"&o„). (A6d)

The string of Kronecker delta's in the isospin quantum
numbers in (6a) results from the isospin integrations.
Denoting this henceforth by d„(P), we note that this
restricts the possible permutations to those of the
form 8=ST, where S is a permutation acting just
among the e sets of proton quantum numbers and T
is a permutation acting among the e„=e—e sets of
neutron quantum numbers. The operator ~ (1+r3&'&)
acts as a projection operator and requires the ith
nucleon to be a proton. In (A6c) we have used the fact
that the Nilsson coeKcients are real.

Recalling properties (11) and (12) of the rotation
operator D(e), (A6d) becomes

K= Q " Q Q " P D. „'(e')"
I p

tÃ1 m~ m1' m~'

XD „..„-'(8")D.,-., "*(e")"D„„-„„-"*(8")

x(jz'&N&, ' ' 'j tÃz I j& Pl&, ' ' 'j, N tÃ~ )

ZD--p (8')"
f01 one

XD „0) „'"(8')D,„,"*(8') D„„„„'"'(8"). (A7)

The orthogonality between the primed and double-

z~'&= g p ep(xp, (1)xp,(2) xp„(m) I
i=1 P

1+&3(4&

X D'(8')
I

~'(~') D(e")
2

X I x&(1)xg(2) x (N)). (A4)
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primed quantities throws away haM the summations
in (A6b) and (A'7), as well as reducing the radial integral
in (A6b) to the (Rl,. given in the text.

At this point we can carry out the Hill-Wheeler
integrations indicated in (A1). These can in fact be
done independently, as the dependence on 0' and 8" in
(Ai) has been separated into two f'actors, each being a
string of e D functions. We get an additional D function
from (A1). We treat the integral,

dSD„,„, (e)D,„, (e) "
XD~„„„&"(e)D33rr''*(0), (AS)

in the following way. We 6rst note that the product of
two D functions can be expressed as a linear combination
of D functions, the so-called Clebsch-Gordan series. "
D„,„, 3( )0D,„,

'

(S)=pg (j,j,m, m,
~
gm)

X (jljul~2~ g&)Dsnll (&). (A9)

We go through this coupling process e—1 times,
proceeding from the left, to obtain

so that

8~'
Q x(jg~)m(jgm),

2I+1 gt gn —3

X=(jlj2~1~2~$1~1)'' '(gn 2j—nfln 2~—n~IIt) p

(A12a)

(A12b)

I= (jlj2mlm2 I &1&1)' ' ' (g —2j BR —2m
I
IM) (A12c)

There are tw'o such integrations, one for 0' and the
other for 8". Since we end up with sums over Clebsch-
Gordan coeKcients, which are real, the fact that the
8" integral is the complex conjugate of (AS) does not
bother us. Also, since the "parent momenta" g; have
no physical meaning, i.e., are not quantum numbers of
the wave function, we can couple the D functions in
(AS) in any order. The choice which leads to (A12) is
merely one of convenience.

The 0' integration has X depend on the permutation
P, as this is what orders the co's. Both X's from the two
integrations are independent of the m's. Thus, dropping
an OVer-all faCtOr Of (Slr2/(2I+1)]2 and reOrdering
the g and the m summations, (A1) becomes

p x'(jg~)m'(jgm)
81 8n-1

I."'= a P P er 6,(I') Xj sums/E,
i=1 P

(A13a)

dgDsll„, o„,&n '(8)D3r&r'-(8), (A10a) j sums=+ P K(j~rI')61&,XQ sums,
21 in

(A13b)

X'= (jlj2~1~2~(gal)(glj3ft1~3t 82~2) ' ' '

X (g„—2j„~„—2~„IJ„-,Q„—,), (A10b)

m'= (jlj2mlm2~ $10131)(glj39Rlm3~ pg20R2) ' ' '

X(g 2j ~ 2m ~g 1~„1). (A10c)

At this point we use the orthogonality of the D func-
tions"

D3rlr" (e)DSlr n &" '(&)~0

(A11)

m sums=/. p m(jg'm)m(jg"m).
ml m~

(A13d)

We now' 6nally get the result given in the text when
we recognize that the ns sums collapse into bg;~,
)& b~„,~„, . This comes about from the orthogonality
of the Cebsch-Gordan coeKcients appearing in the
7H's. Although not really necessary in this case, it is
best to unravel the sums proceeding from right to left.
In the more complicated two-particle cases, this then
gives rise to the 6-j symbols appearing in (40).

g sums=/ p g p X(jg'orp)
gn —2 gl gn —2

XX(jg"~E)Xm sums, (A13c)


