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is no solution involving fewer particles than the double-
octet solution of unitary symmetry. The 5, 3 {SUs)
scheme, discussed in Sec. IVC, may lead to a solution
of simplicity comparable to that of the double-octet
scheme.

The third result is that deviations from degeneracy
of the Okubo type are favored in the double-octet
scheme.

The model is incomplete in several aspects. The
various assumptions concerning the partial waves and
configurations that are important have not been
checked with detailed, dispersion-theoretic calculations.
The criterion used for nondegenerate solutions is crude;
its chief virtue is its simple applicability. Furthermore,
no reason has been given why the particle multiplets
should be nondegenerate. There is no compelling

reason, other than simplicity, for the neglect of the
baryon-antibaryon states. In fact, it is hoped that in
more accurate bootstrap models the baryons will be
necessary.

Thus, even if our basic assumption is right, i.e., that
nature chooses the simplest self-consistent set of
particles, the true consistency criteria may be quite
different from those assumed here. The primary
purpose of this paper is to demonstrate the falseness
of the common assumption that if simple representations
of one Lie group satisfy a particular bootstrap model,
simple representations of any other Lie group must
satisfy a similar model. The consistency criteria of
Secs. III, IV, and V are examples of plausible criteria
that distinguish between different group-representation
schemes.
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Although the 6nal conclusion of a preceding paper was incorrect, as we shall explain, the main point
remains, and should entail the existence of sli generis recoil e6ects associated with nonzero values of curl e
(ir is the spin density). These should be observed by testing, not with solids as was previously proposed, but
with the probability Quids associated with moving particles; this more rehned type of experiment should
be able to select, among the set of integrally equivalent energy-momentum tensors, the one describing
locally the true or physical energy-momentum Qux. In this paper it is shown, by an explicit calculation, that
cylindrical type solutions of the extreme relativistic Dirac equation exist with no s dependence of the wave
function (and thus no k, component of the momentum) but still with a s component of the Dirac probability
current; as this conclusion is reached with a t dependence of the wave function of strictly the form
exp (—iWt/fi), there is no question of having to perform a Foldy-Wouthuysen transformation to extract the
positive energy contribution (or equivalently, to use the Newton-Wigner position operator). The "transverse
inertial spin effect" we predict is locally described by the Qux of the Dirac current per time dt and surface
ds, and corresponds to the local transition probabilities between the dynamical state of the beam and a
pointlike localization of the incident particles.

I. INTRODUCTION

' "N a preceding paper' it has been argued that the true,
~ ~ physical, energy-momentum tensor associated with
a spin-2 wave is Tetrode's asymmetrical tensor

T' &= ,'cbgf8')y'P+ —seA—'Py'P (1)

so that, according to the well-known' formula

QQ i& pi j T&i '
r—)&gi &'s feei & k l (r) &g &

'—
f) &g &) (2)—

where a- denotes Dirac's spin density

g ijk —scei& klg se$ltyijkP' (3)

the kinematical current lines and the energy-momentum

' O. Costa de Beauregard, Phys. Rev. 129, 466 (1963); all the
notations of this paper are retained here, except for 0'& which is
taken in a different sense.

'H. Tetrode, Z. Physik 48, 52 (1928).

lines may, under appropriate circumstances, be non-
collinear. (Latin indexes run from 1 to 4; x'=icf;
h=2xA, denotes Plank's constant, e'&" Levi-Civita's
indicator, y' the von Neumann matrices, P=fty4, [cl']
the Gordon current operator, e the electron charge, A'
the electromagnetic potential; y'&'"=y'y& if all in-
dexes are different, 0 otherwise. )

The final conclusion of this preceding paper' was
incorrect, as we shall explain later. However, the main
point, which the above paragraph recalls, remains true;
the present paper intends to show that by using as a
test material the probability Quid associated with
moving spin-~ particles rather. than a solid, the recoil
effect corresponding to the "transverse momentum'"
should appear.

The test material, which is a beam of spin--', particles,
has the three following fundamental properties: (a) a
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velocity equal to or nearly equal to c, so that there are
only two (longitudinal) spin, or helicity, states; (b) a
pure energy state, with eigenvalue 8", so that there is no
question of having to perform a Foldy-Wouthuysen
transformation in order to extract the positive-energy
contribution; (c) no s dependence of the wave function

f, so that there is certainly no momentum component in
the (Gxed) s direction.

We will prove by an explicit calculation that it is
possible to (d) bend the beam around the s direction,
that is, parallel to the xy plane as far as momentum (not
necessarily velocity!) is concerned, in such a way that a
pure (longitudinal) spin state is conserved; and (e) im-

pose a radial distribution of the f wave amplitude such
that the field of current and spin vectors (which are
collinear) has a nonzero s component.

Finally, we will show that (f) these joint properties
correspond precisely to the existence of a "transverse
momentum" associated with a nonzero value of curie,
according to Tetrode's formula (2). The following re-
marks will be useful.

Let us define the "true" or "physical, "the "pseudo-, "
and the "transverse" energy-momentum associated
with an infinitesimal volume'ice'& "'dm'i jd=x'dx&'dh~] as,
respectively,

dP'= T'&du.

so that formulas (4)—(6) now represent energy-mo-
mentum Quxes per time element through a surface
element. In view of the following, we consider the case
of a surface element orthogonal to the s axis; inserting
the Tetrode expression (1) in (5) and remembering
postulate (c) (no s dependence of the iP wave), we find
in this case a nil "pseudo" energy-momentum Qux. But
the "transverse, " and thus the "total, " energy-mo-
mentum Qux will not be nonzero in general; using an
abridged, but grammatically incorrect expression, we
shall call c'dT' and c'd T'/dt the "transverse energy" and
"transverse power" Quxes; the formula

cull@ ds —P g.

(where co& denotes the "transverse power") follows
directly from Tetrode's formula (2).

We will show in Sec. III that the noncollinearity of
the particles velocity and momentum found in Sec. II
by a direct calculation is completely justifiable in terms
of either the spacelike or the timelike integral considera-
tions just stressed.

The problem of extending these conclusions to higher
spin cases is an interesting one, but, as a few more
difBcult questions would be raised, we shall postpone
consideration.

dL'= Tg'dg

dpi= Q~iiifs. (6)
II. SPIN-i/z PARTICLES IN A CIRCULAR ACCELERATOR

(EXTREME RELATIVISTIC LIMIT)

T and O~ being defined by (1) and (2); we will consider
successively the cases where the 4-vector du; is timelike
and is spacelike.

A timelike dg; represents a volume element in the
ordinary sense, and no generality will be lost in sup-
posing that dl4 is the only nonzero component. Then,
inserting in (4) and (5) the Tetrode expression (1), we

obtain a "true" dP' directed by the energy momentum
operator i8', and a "pseudo" energy-momentum dL'
collinear with the Dirac current if''iP gas cj' will be the
only differential operator present in (5) and the f de-
pendence of P is, according to postulate (b), solely
through a common factor exp( —iWt/A) j.Thus, in this
case, dL' may well be called the "longitudinal" energy-
momentum. In view of the following, the prerelativistic
form of formula (2)

We shall proceed to integrate the Dirac equations
with a time- and s-independent, cylindrically symmetric,
potential of the form

Ai —— a(r) sing, A2 ——a—(r) cos9, A3=0, A4 ——0, (9)

generating the magnetic Geld

Hi ——0, H2= 0, Ha= H, =a(r)/r+a (r); (10)

we use cylindrical coordinates r, 8, s(r~& 0).
In the extreme relativistic limit Lpostulate (a) abovej

the mass terms are negligible, and the four Dirac
equations reduce to two pairs of equations implying the
2X2 Pauli matrices such that

(Trop= 0'po'pg='20'p
q

0''p 1
q p) r) p= 1) 2p 3 ~ (11)

According to postulates (b) and (c), we will seek solu-
. tions of the form

should also be noted.
In the case where dl; is spacelike, no generality will

be lost in supposing that the dl4 component is zero; the
three other ones may be written as du =ds dt (n = 1, 2, 3),

' To avoid confusion with the spin density, Schwinger's notation
do-; for &hc yohrge element is discarded.

with C and W constant, and the (common) function

f(r) real; q 0 is a constant 2-spinor, and A '(0) a 2)&2
matrix which will be specified later; TV is clearly an
energy eigenvalue, and C (due to the 8 dependence
through A ') is the mean value of the angular mo-
mentum around the s axis.
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According to (12) and (13),

e B. 18 8—+i A—,= cos8——sin8 — +—i a(r—)
Bx A Br r BO A

B 8 B 1 B 8
+i —A„=s-in8—+cos8 — +i—a(r)—

By A Br r Bo

the four Dirac equations may be written

(13)

With solutions of the type (12), (18)—(21), the spin

component tangent to the H helices of common slope n

obeying the equations r= const. , z=nr(8 8—0), remains

constant and equal to &-,'A. In addition, the field

trajectories of the current and spin-density vectors
(which are collinear) are the H helices, as seen through

(18), (19), and (20).
Finally we show that the integration of Eqs. (17) may

be achieved along these lines. Inserting (18), (19), and

(20) into (17) yields the two equations

df B

(01 COS8+0'2 S1118) + (0 2 COS8 —0'1 S1118)
r Be

C — i W
+-I «(r)+— f e1 —f -~—'(8)o 0=0' (14)

A( r Ac

«(r)+ C/r = ere2W/c cosrr

df 1 sinn( C—+ —e2
I
«(r)+— f=o;

dr 2r A E r

(22)

(23)

it is well known that the double sign &~=+1 allows

jointly for the possibility of performing space inversions

and describing antiparticles. 4

Following postulate (d), we will seek solutions with

the same cylindrical symmetry as the external potential

(9); that is, we will identify A (8) with the matrix

A+'(8) =cos28+io 2 sin28,
such that

the double sign 02 ——&1 is the same as in (20). Therefore,
according to (22), the radial distribution of the vector
potential (9) is not arbitrary, but depends on the a
priori choice of the constants W, C, and n (energy and

mean angular momentum of the particles, slope of their

trajectories). The C/r term is merely a gauge term,

ensuring that the kinetic energy momentum is a null

4-vector, as it has to be.
Inserting (22) in (23) yields

A. 0'1A = 0'1 COS8+0'2 S1118i

A. 'o-24=0~ cos8—fr~ sin8.
(16)

A(8/88)A. '= —2i02 is easily calculated, so that (14) can

be rewritten as

df 1 W tano.
+ el

dr 2r cA

the integral of which is (8 real)

f=O,

(df fl i -f C) W-

I

—+—I~1+- I «(r)+—I02—e —f 0 0=0. (17)
2r) h 4 r) 0

We now specify the representation of the o-'s ac-

cording to postulates (d), (e), and (f). When 8=0,
A=A '=1; we want qo to be an eigenfunction of the

spin projection on a unitary vector N&=0, 12=cosn,
N3= sinn, thus, we choose

01 001 02 002 cos&+002»nrr
0 2 0QQ COSQ 0 Q2 sinn, (18)

with essentially 0.= const. , the 0's being the standard set

f'0 1) fi 0 ) ( 0
&01=1 I, 002= I I, &oo= I i (19)

Oj' (0 —1/' ( i 0

and we take q 0 as one of the two eigenfunctions

73 We, tann
f(r) = exp

Qr ch,

Thus, as was expected, we find a definite relation be-

tween the (common) slope u of the helical-current (and

spin) lines, and the radial distribution of the waves

amplitude f(r); let us recall that, as the f wave has been

taken as z-independent, there is no momentum com-

ponent along the z axis.
There are essentially two classes of solutions ac-

cording to the sign of Wer tann (the intermediate case
n= 0 being the one where no inertial spin effect exists, as
the current lines are circles of axis z). Let us recall that
5' is taken as greater or less than 0 according as one

deals with particles or antipartieles, and restrict our-

selves for brevity to the particle case: 8') 0.
Ke consider 6rst the class of solutions e~ tann(0,

which are square integrable in the sense that

%0 = Po = (20)
2vrcA

with the normalization condition

N*u= 1.
4 See, for instance, J. Hamilton, The Theory of Elementary Par-

ticles (Clarendon Press, Oxford, England, 1959), pp. 138, 139.

f2(r)rdr =—
H/'ei tann

(26)

is finite. Then, according to the well known corre-

spondence between energy and spin states in the two-

component I'ermion theory, ' we see that the positive-
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ei tann= ch/2rW. (27)

Thus, in this case, the positive- (negative-) helicity
states will be deviated upwards (downwards).

(negative-) helicity states are deviated downwards
(upwards).

The class of solutions e~ tann&0 is not square inte-
grable, as it diverges in the upper limit r~+ ~;
consequently, when it is used, some kind of a cutoff
should be introduced. These solutions are of physical
interest since, going from + ~ to + QD through a mini-
mum, they are able to describe, in the minimum region,
the behavior of a homogeneous thin beam injected
tangentially in the field (10) at the right distance r.
This can be worked out by simply solving (23) at the
point df/dr=0, which yields

The non-nullity of the latter expression, which is es-
sentially due to the behavior of the wave function in the
limit r=0, shows that, in the problem under discussion,
the various tensors nT'&'+pT", n+p =1, deduced from
Tetrode's tensor (1) are cot integrally equivalent; and
that the correct one is unambiguously T'&, which yields,
by integration over the whole plane z = const. , dP/dz =0.
In particular, use of the classical symmetrized tensor
(a= p= ', ) wo-uld yield the wrong result dP/dz= 2idT/dz-
40.

Second Method

According to formulas (8), (18)—(21), and (24), the
"transverse power'" die, =c'dger 51 through the ring
comprised, in any plane a=const. , between two circles
of radii r and r+dr is

First Method

The transverse momentum T=JJ'e&&ds contained
inside a ring of radius r, thickness dr, and height ds is,
according to formulas (18)—(25), parallel to the s axis
with the value

dT=7rA cosnd(f'r)dz=27rc 'Wei sinef'rdrds; (28)

inside the same volume, the probability of the presence
of the Fermion (or, in a superquantized version, the
mean number of Fermions) is

dpi = 27rf'rdrds,

so that the transverse momentum per Fermion is

T= dT/dpi= c 'eiW sinn.

(29)

(30)

I.= e&W/c (31)

is the classical, longitudinal, momentum, so that finally'

T/I. = sinn. (32)

Incidentally, in the class of solutions 8'e& tane&0,
formulas (28) and (29) are integrable over the whole
plane z= const. , yielding, according to formula (25),

dn/ds= —~B'ck/Wei taupe, (33)

which is a normalization equation for the constant 8,
and

dT/dz= ~P'h. (34)
5 The presence of sinn rather than tano. is due to the fact that

the integration all along a circular path has cut off the tangential
projection of the particle's transverse momentum.

III. CONNECTION BETWEEN THE PRECEDING
FORMULAS AND THE GENERAL ONES

IN THE INTRODUCTION

We will show now, by two different methods, that the
connection existing between the transverse momentum
of the particles and the nonzero value of curio is pre-
cisely the one described in the introduction.

dcoi=c'e~ cosn7rhd(f'r)=2ireie2 sinocWf'rdr. (35)

This, according to what was said at the end of the
introduction, must be precisely equal to the "true" or
"physical" power running through the ring, i.e., the
power transported by the deflected particles; this is e~R"

times the particle flux through the ring, 2vrcf'peto3perdr, .

or, according to formulas (18) to (21),

d&u= 2ireie2 sinucWf'rdr. (36)

By comparing (35) and (36) one verifies that d~&=du,
and thus proves that the helical shape of the current
lines, together with the absence of any momentum
component along the s axis, is a direct consequence of
the non-nullity of curie, as explained in the introduction.

IV. DISCUSSION AND CONCLUSIONS

Physically speaking, the transverse dimensions of the
accelerator are 6nite and this is obtained by a suitable
choice of the external field. Ke are primarily interested
in the effect of the radial limitation of the beam.

Calculating the integral (8) or (35) over a ring, normal
to the z axis, limited by two circles outside the beam, one
arbitrarily small and one arbitrarily large, will yield a
zero value; this means that, globally, the transverse (s)
component of the Dirac current induced by the existence
of (nonzero) curie inside the beam, and that induced by
the existence of a (strong) curie in the inner and outer
sides of the beam, will compensate each other. In other
words, one may conveniently distinguish an ' interior"
region of the beam, where the transverse deviation
described in Secs. II and III will appear under appro-
priate radial distributions of the directing field and of
the wave amplitude; and two sides of the beam, where
transverse deviations (of opposite sign) will appear,
which globally compensate the preceding one. Thus, if
the experiment is conducted in such a way that only the
total integral deviation is measured, no effect:. will be
observed; and this nsltatis mutandis is why a positive
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effect cannot be observed in the experiment described in
our previous paper' (contrary to what we concluded
there).

But, experimenting with a Quid as is described above,
a positive effect should be observable, for it is then
possible to test independently the probabilities of im-

pacts of particles along the various stream lines of the
Dirac current; that is, transitions are studied between
the dynamical state of the beam and states corre-
sponding to point locations of particles. This type of
experiment, more refined than the one implying a global
integration, should be able to distinguish, from among
the various integrally equivalent' energy-momentum
tensors, the one describing locally the true or physical
energy-momentum Aux.

The natural way to test experimentally the "trans-
verse inertial spin effect" thus predicted would be to
inject tangentially a monokinetic homogeneous beam of
particles of energy W at the distance r defined by
formula (27); thus, the two helicity states should be
deviated in opposite s directions, as expressed by for-
mula (27).

Of' course, if one intended to use this procedure as a
means for separating the two spin states of the particles,
the callback in the s direction by the directing field
should, at least, be partially removed; the corresponding
dificult stability problems one would have to deal with
are beyond the scope of the present study.

'The reason why the various energy-momentum tensors are
integrally equivalent in the present physical circumstances and
were not in the more schematic picture of Secs. II and III is of
course due to the behavior of the tt wave in the lower (eventually,
upper) limits of the radius r.

Another important technical difficulty which we do
not intend to discuss is associated with the imperfect
vacuum inside the accelerator. Any Fermion colliding
with the electron shell of an atom present along the
track will be lost for testing the effect; the collapse of the
wave packet associated with this position determination
of the incident fermion will entail a corresponding
narrowing of the subsequent probability current (as in
the Wilson-chamber experiment); thus integrations all
over the beam will be implied and, as explained above,
a zero effect will follow as far as the subsequent path of
these particles is considered. Finally, the effect we de-
scribe should be fully observable only on particles which
undergo their first collision in the receiver.

1Vote added ie proof An .explicit calculation has now
been given in the case of a radial limitation of the
beam~; the contents of the present paper are thus com-
pletely confirmed.

The effect has also been calculated in the case of a
vertical limitation of the beam, obtained by a Fourier
superposition of solutions analogous to those of the
present paper (but with a phase exponent Co+ks —Wt). s

The conclusion is that if the k distribution of amplitudes
is a Gaussian one, centered on the value k=o of the s-
momentum component, the transformed Gaussian s dis-
tribution is centered on a value Z such that etZ/sinn
= ro/cosn= ct

' Compt. Rend. 257, 3327 (1963); the notations were de6ned in
Compt. Rend. 256, 4608 (1963).

' Compt. Rend. 258, 1745 (1964). Formula (42) of that paper is
obviously erroneous; it should be written with an m, and thus
and f, essentially k-independent; this is a necessary condition for
the validity of the conclusion that has been drawn.


