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Self-Consistent Sets of Mesons in a Bootstrap Model
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Consideration is given to the possibility that the self-consistency requirements of some dispersion-
theoretic bootstrap model may specify uniquely the set of strongly-interacting particles found in nature.
The discussion is based on a particular, approximate model of the P (pseudoscalar) and V (vector) mesons.
In this model the U exchange forces in the P+P states produce the U mesons, and the U exchange forces in
the P+U states produce the P mesons. Attention is limited to systems in which the particles arising in a
particular way are degenerate or nearly degenerate, and are represented by a small number of irreducible rep-
resentations of a simple I.ie group of first, second, or third rank. . Three plausible self-consistency require-
ments are postulated. The smallest meson set that satisfies all three postulates corresponds to the group
SU». The predicted particles in this scheme are a P-meson octet, a U octet, a U singlet, and a singlet particle
of spin and parity 2 . One of the self-consistency postulates is concerned with deviations from degeneracy,
and leads to the Gell-Mann-Okubo sum rule for the SU» scheme. The double-septet scheme of the group
G2 does not satisfy any of the postulates.

I. INTRODUCTION experimental evidence concerning the existing particles
is used as a guide, it is not necessary to start at the
beginning and work straight through to the end. A
conceivable solution to the problem may be broken up
into the fo/lowing four steps, which may be investi-
gated independently. First, it may be that consistent
bootstrap equations are possible only if the mesons of
lowest mass are pseudoscalar and vector mesons.
Second, it may be that the meson multiplets and their
interactions must correspond to representations of a
simple Lie group. Third, only specific representations
of one specific group may be allowed. Fourth, the mass
differences and other symmetry breaking interactions
may have a dynamic origin. ' Some progress already has
been in investigating each of these conjectures. ' '

The requirement that the existing set of particles
leads to a solution to the model certainly is as important
as the requirement that fictitious sets do not. It is
assumed in this paper that the existing set consists of
eight P mesons, (the s. triplet, E and E doublets, and rl

singlet), and nine V mesons (the p triplet, the 885-Mev
E* and X* doublets, and the co and 1020-Mev q
singlets). The other existing mesons are assumed to
arise in more complete developments of the model. The
last two steps of the four-step procedure outlined above
are investigated here. Only sets of I' and V mesons
corresponding to a small number of irreducible represen-
tations of a simple Lie group are considered. The term

' 'N dispersion theoretic calculations a connnon
~ - approximation procedure is to consider only the
relevant particles of lightest rest mass, neglecting
strange particles whenever possible. The recent dis-
covery of multiplets of particles of the same spins and
parities, together with the success of unitary symmetry,
makes this procedure seem very doubtful. It appears
that one should include entire particle multiplets in the
dynamic calculations. In one respect, this is unfortunate,
since the inclusion of many types of particles leads to
complicated equations. However, there is a compen-
sating feature: A bootstrap model involving particle
multiplets leads to the prediction of the ratios of
interaction constants, and thus allows one to investigate
the possible dynamical origin of interaction symmetries.
The idea that the interaction symmetries may have a
dynamical origin is not new, ' but progress in investi-
gating this idea can be made only when the many-
particle aspects of the dispersion relations are considered.

In this paper, it is assumed that since the masses
of baryon-antibaryon pairs are appreciably larger than
those ot the known I' (pseudoscalar) and V (vector)
mesons, it is a reasonable first approximation to neglect
the baryons. It is hoped that eventually a dispersion
theory of the bootstrap type will be developed that is
consistent if applied to the existing set of mesons, and
inconsistent if applied to any fictitious set, so that the
existing set will be required dynamically. The ter
"fictitious set of mesons" is used to mean a set tha
differs from the existing set in one or more of th
following properties —the total number of types
mesons, the spins, parities, internal quantum number
(isotopic spin, etc.), masses, and interaction constant
of the mesons.

The task of eliminating all fictitious meson set
theoretically is indeed formidable. Fortunately,

' See, for example, G. F. Chew, in Proceedings of the 1'968
Annual International Conference on High-Energy Physics at CERE,
edited by Prentki (CERN, Geneva, 1962) pp. 525—528.

~ It may be that in a complete bootstrap model there will be a
solution involving degenerate multiplets, so that it will be neces-
sary to postulate nondegeneracy. Even if this is so, it would be
quite an achievement if such a postulate allowed one to calculate
the physically observed mass splittings from self-consistency

s requirements.' R. H. Capps, Phys. Rev. Letters 10, 312 (1963).
4 R. H. Capps, Nuovo Cimento 30, 341 (1963).
s R. E. Cutkosky, Phys. Rev. 131, 1888 (1963).' S. L. Glashow, Phys. Rev. 130, 2132 (1963).

if R. E. Cutko sky and Pekka Tar janne, Phys. Rev. 132, 1354
(1963).

s E. Abers and C. Zemach, Phys. Rev. 131, 2305 (1963); E.
Abers, F. Zachariasen, and C. Zemach, Phys. Rev. 132, 1831
(1963);P. Carruthers, Phys. Rev. Letters 10, 538 and 540 (1963)
and Phys. Rev. 133, B497 (1964).
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"scheme" will be used to designate a particular set of
representations of a particular I.ie group, together with
the condition that the interactions of the mesons are
invariant under the transformations of the group. The
aims of the paper are to 6nd a bootstrap model and a
group-representation scheme leading to a solution
involving the seventeen types of mesons listed above,
and to investigate whether or not other schemes lead
to solutions. Since there are an in6nite number of
possible schemes to be considered, we limit our investi-
gation to sets of seventeen or fewer mesons, i.e., to sets
no larger than the existing set. The bootstrap model
considered is a generalization of that developed pre-
viously by the author. '4 '

At the present stage in the development of dispersion
theory, cutoGs, and other approximation procedures
are needed in most calculations, so that it is diflicult to
test a particular assumption concerning the nature of
the singularities that are important in a particular
amplitude by comparing a calculated number with
experiment. However, the question of which group-
representation schemes lead to consistent solutions to a
bootstrap model depends on the types of particle
con6gurations and forces assumed to be important.
Therefore, comparison of the predictions of group-
theoretical bootstrap models with experiment may
provide important evidence concerning the nature of
the forces that are dominant physically.

In Sec. II the basic assumptions of the bootstrap
model used here are outlined. Self-consistency require-
ments associated with the V-meson and P-meson poles
are formulated in Secs. III and IV, and applied to the
various group-representation schemes. The double-
octet scheme of SU3 is discussed in detail in Sec. IV B.
In Sec. V the possibility of nondegenerate solutions is
investigated; this section may be read before Secs. III
and IV without loss of continuity. The double-septet
scheme of G2 is discussed in detail in Sec. VI.

II. BASIC ASSUMPTIONS

In a bootstrap model the P and V mesons must
correspond to bound state or resonance poles in the
appropriate scattering states of angular momentum
and parity 0 and 1 . In this paper it is assumed that
the most important 1 states are of the type P+P, and
the most important 0 states are of the type P+ V. It
is further assumed that only these important con6gura-
tions need be considered when testing whether or not a
particular set of group representations leads to a self-
consistent solution to the model.

In a complete bootstrap model the virtual particles
that transmit the forces must all appear as poles in the
appropriate amplitudes. However, this is not necessarily
the case in an incomplete model. In general, we will
assume that the V mesons of the model transmit the
forces, but for certain considerations it will not be

9 R. H. Capps, Phys. Rev. 132, 2749 (1963).

necessary to make a specific assumption concerning the
forces.

The sets of mesons considered are self-conjugate,
i.e., the set of antiparticles for either the P or V mesons
is the set itself. The mesons are assumed to correspond
to representations of a simple Iie group, and the
interactions are assumed invariant to the group
transformations. " The P and V representations (not
necessarily irreducible) are denoted by Dp and Dv.
The self-conjugate property of the meson sets implies
that the identity representation must occur as a
symmetric combination of the two particles in the
reduction of the direct products DI t3DI and Dyay.
Ke use this fact in order to classify each irreducible
representation as either single or double; the double
representations are those that must occur in pairs if they
occur at all. An irreducible representation that is not
equivalent to its complex conjugate representation is
double. For example, the two three-dimensional
representations of SU3 are double; 3Q+3* may represent
some of the P or V mesons, but neither 3 nor 3*can occur
alone. (Specific representations are denoted here by the
numerical values of their dimensions; a star is used to
distinguish one of two complex-conjugate represen-
tations. ) Each irreducible representation n that is
equivalent to its complex conjugate has the property
that the identity representation 1 occurs exactly once
in the reduction of o.o. . The representation o. is single
(double) if 1 occurs as a synnnetric (antisynunetric)
combination of the n. For example, of the irreducible
representations of SUs, those of odd dimension (integral
I spin) are single, while those of even dimension
(half odd-integral I spin) are double.

At present we consider only schemes in which DI is a
single, irreducible representation of a simple I,ie group
of rank one, two, or three. Double representations are
considered in Sec. III C. The requirement that the V
mesons occur in the P wave, P+P st-ates implies that
the only representations possible for the V mesons are
those that occur antisyormetrically in the direct
product DI DI. Investigation shows that there is one
possible DI, D~ scheme involving as few as seventeen
particles for each of the second-rank groups SU3, C2
and G2, eleven such schemes for the first-rank group
SU2, and only one scheme corresponding to a third-rank
group. The third-rank group is 83, the seven-dimensional
rotation group. These schemes are listed in the 6rst two
columns of Table I.The symbol n, P refers to the scheme
in which DI = rs and Dt =P.

The I-spin zero, K+X state is the only two-particle
state of hypercharge and I-spin zero that can be formed
from the ~, E, and g. For this reason, the q and co

' A lucid discussion of some important properties of I.ie groups
is given by A. Salam, Theoretical Physics (lectures presented at a
seminar, Trieste, summer of 1962) (International Atomic Energy
Agency, Vienna, 1963), pp. 173—196. A detailed discussion of Lie
groups of second rank is given by Behrends, Dreitlein, I'ronsdal,
and Lee, Rev. Mod. Phys. 34, 1 (1962). Onr notation for the
representations is essentially that of this latter reference.
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Tmx, E I. Results of self-consistency tests applied to simple
schemes for which DI is irreducible. The V-Bootstrap, P-Boot-
strap, and Roots (u, b) tests are described in Secs. III, IV, and V.
In some cases where one of the bootstrap tests is violated, the
tests have not all been applied: A blank indicates such an omission.

Group DI, Dy

SU3 8, 8

C2
Gg
SU2
SU2
SU2
SUg
SU2

SU2
SUg
SU2
SU2
SU2
SU2
B3

5, 10
7,'733
53
5, 7
5, 3Q+7
7', 3

77
7, 3Qj7
9, 3
9, 7

11 3
13 3
8, 7

V P
Soot- Boot-
strap strap

Yes

Yes
No
Yes
Yes
Yes
Yes
Yes

Yes
No
No
Yes
Yes
Yes
No

No
No
Yes
No

No
No
No

No
No
No

Roots (u, b)

(1/2, 1/4), (1/6, 1/36),
(—1/3, 1/9)'
(—1/4, 3/8)'
(—1/6, 1/36)8
(—1/2, 1/4)
(1/2, 7/20), (—2/3, 0)
(—1/14, 11/28), (—4/7, 3/70)
(—1/4 3/8)'
(3/4, 3/8), (1/6, 0),
(—3/4, 0)

cannot both occur as P+P resonances in the present
model (the dispersion relations used are sufficiently
simple that two resonance poles cannot occur in a
one-channel problem). The double-octet scheme of SUs
accounts for all the existing mesons except one of the
isoscalar U mesons. Furthermore, as shown in Sec. IV B,
the second isoscalar V meson does arise in this scheme
when the bootstrap model is extended in a natural way.
Thus, we assume the 8, 8 (SVs) scheme corresponds to
reality. Before discussing this scheme in detail we
introduce the principal self-consistency tests of the
model.

III. THE V MESON BOOTSTRAP CONDITION

A. The Self-Consistency Condition

We follow the model of Ref. 3 and assume that the
forces that produce the V-meson resonances in the
P+P states result from the exchange of the same V
mesons. Degenerate P and V multiplets are assumed.
The dispersion theoretic method used is the matrix
1tV/D method, with the numerator matrix (the force
matrix) set equal to the Born-approximation amplitude.

Self-consistency requires that the forces be attractive
in the resonating states and less attractive or repulsive
in all nonresonating states. Since the elements of the
E matrix are proportional, it is not necessary to calcu-
late Ã in order to determine consistency. It is sufficient
to determine the sign of the force and the crossing
matrix for the P+P —+ P+P processes. Different
conventions are used in defining crossing matrices, so we
shall be explicit in our definitions. Ke 6rst define the
(PV) crossing matrices associated with the processes
P+ V ~P+ V. We assume that the numbers of P and
V mesons are e and q, respectively, so that there are eq
different (PV) states, and (eq)' amplitudes connecting

these states. The set of P mesons may consist both of
self-conjugate particles P and particle-antiparticle
pairs Pp, Pp,. i.e.,

CP =I' P CPp I'p——Pp,

where 8 is the charge conjugation operator and the
F and Fp are either 1 or —1. It is assumed that the
phases of the Pp are so chosen that all the Fp and F are
equal (a method for doing this is described later). We
first consider a representation in which the (PV) states
are simple products, i.e., Ps PV—p—, where k ranges
through the nr1 different (PV) states. In this represen-
tation the crossing matrix is an (tiq)' by (eg)' matrix,
de6ned by the equation,

Ts&'"=Ra
& Csi, v& Ts v,

where Tg, I, is the amplitude for the process k —+ l, and
T'"(P Vp~P, Vs) =T(P~Vp~P Vs). (P„=P for
the self-conjugate P mesons. )

Since the interactions are assumed invariant to the
group transformations, it is convenient to rewrite C
in the representation (i,m), where i denotes an ir-
reducible representation contained in the direct product
DI /3Dy and m designates a state within the represen-
tation i In th.e (i,m) representation the matrix ampli-
tude T is diagonal, so we may limit our attention to the
elements of C referring to elastic scattering. " These
elements satisfy the equation,

C7T(i,m) ~ (i',m') C(z, m), (i',m') T(i',m') ~

Invariance under the group transformations implies
that T(,', ) is independent of m', so that a "reduced"
crossing matrix C;,' may be defined by the equation

T,'"=P,' C;,'T,',
where C;; =p ~ C&;, i, t, , l. (C;; is independent of m. )

One may carry out the transformation from the kl
representation to the i representation by using the
Clebsch-Gordan codFicients of the group in question,
if the phases of the P are chosen in the manner dis-
cussed above. One method of choosing appropriate
phases is to first assume any definite phase convention,
form the identity representation lt (I) from the direct
product DpDp, and then redefine the phases so that
the signs of all terms in P(I) are the same. For example,
if Dp is the representation 3 of SU2, and the phases are
dined by the condition that the matrix elements of the
isotopic lowering operator l —il„are not negative, the

"The statement that the amplitude is diagonal in the (i,ra)
representation is not completely general. If a particular irreducible
representation 0. occurs twice in the reduction of DI/3Dv, transi-
tions between the two states characterized by cx are possible.
This situation does not occur in any of the cases considered in the
present paper, however. In the SU3 scheme, the representation 8
does occur twice in the decomposition of 88, but the two octets
are of opposite symmetry, and since the PPV and V VP vertices
are each of dehnite symmetry, there are no transitions between
the two P+ V octets in our model.
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, C;,'=1. (2a)

Furthermore, it follows from the definition of T'" that
Trace T=Trace T'", for all possible choices of the T;;.
(Trace T is defined as the sum over all the Nq elastic
amplitudes. ) If the T, are chosen to be finite for only
one of the irreducible representations of DI Dy, the
trace condition implies the column sum rule,

Qz~zC~v=tt'z'
p (2b)

where m, denotes the dimension of the representation i.
We next consider the (PP) crossing matrices ap-

propriate for P wave ampli-tudes of the type P+P~
P+P. For such an amplitude the two crossed processes
are both of the P+P —& P+P type. The contributions
of the two crossed processes cancel for the symmetric
(unallowed) P-wave 'states, and are equal for the
antisymmetric states. Furthermore, only antisymmetric
states occur in the crossed processes, since these are
also of the P-wave type. The dimension of the (PP)
crossing matrix is the number of antisymmetric ir-
reducible representations in the reduction of Dpt3DI.
One method of constructing a (PP) crossing matrix is
to construct the (PV) crossing matrix corresponding
to the case where DI and Dy are the same represen-
tation, delete the rows and columns referring to the
symmetric representations, and then double the remain-
ing elements. The (PP) crossing matrices also satisfy
the sum rules of Eqs. (2a) and (2b).

In the model of this paper and Ref. 3, a positive
crossing coeKcient corresponds to an attractive V-
meson exchange force in P wave, P+P state-s. There-
fore, if the V mesons are represented by a single
irreducible representation o., the self-consistency condi-
tion for the bootstrapping of the V resonances may be
expressed simply in terms of elements of the (PP)
crossing matrix E, i.e.,

E &E; for all i/n. (3)

[Note that because of the sum rule of Eq. (2b) the
above inequality implies E &0, so that the force
producing the resonance is attractive. ) If Dtr is a sum

isotopic singlet state of 33 is

lt (I)=3-&(—s.+s.——s.-m-++a-'s-'),

where ~' denotes the members of the P triplet. In this
case, one should change the defined phase of the x+ or

by 180'. The fact that the phases may always be
chosen so that the terms in P(1) have the same sign is
obvious if Dp is a direct sum of a double representation
and its conjugate representation, and follows from our
definition of single representations if DI is a single
representation.

It is clear from the basic definition of T'" that if the
matrix amplitude T is a multiple of the unit matrix, T'"
must be the same multiple of the unit matrix. This
condition implies that the C;;. of Eq. (1) satisfy the
row sum rule,

of nz irreducible representations, the self-consistency
conditions for degenerate V resonances are

(4)

where n, P, and i range through all the resonating
representations, and y ranges through all nonresonating
representations.

P Septet (Gs)

7 14

P Septet (SUs)

3 7 11

3' 11 14 —11
1

22 X—
14

11 K 3 14 3&

P Nonet (SUs)

7 11 15

3 ' 627 1078 605 —1320'

7 462 -382 -770

11 165 —490 715

15 —264 784 440

1680 1
X

600 990

30.

The numbers by the rows and columns are the dimen-
sions of the corresponding representations. For these
three P-meson multiplets, the only schemes involving

"The 8, 8Q+20 (SUq) solution to the V-meson bootstrap model
is discussed in detail and compared with experiment by Donald E.
Neville, Phys. Rev. 132, 844 (1963).

B. Single P-Meson Representations

The (PP) crossing matrices for the 3, 3 (SUs) and 5,
10 (Cs) schemes are one-dimensional unit matrices.
Therefore, these schemes satisfy the V-bootstrap con-
sistency condition. The crossing matrices for the P-
meson quintet of SU~ and the P-meson octet of SU3 are
two-by-two unit matrices, so the 5, 3, the 5, 7, and the
5, 30+7 schemes of SU~, and the 8, 8, the 8, 20, and the
8, 8Q+20 schemes of SU3 all satisfy the V-bootstrap
condition. The 20-fold V-meson multiplet of SU3
corresponds to the sum of the irreducible representations
10 and 10*. The schemes involving this multiplet are
not included in Table I, because more than seventeen
particles are involved. "

The (PP) crossing matrices are more complicated for
the P-meson septet of G2 and for the P-meson septet
and nonet of SU2. These three crossing matrices are
listed below.
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TmLz II. The V-meson representations corresponding to
some simple E-meson, double representations.

Group

SUg
SU2
SUB
C2

Dp

2Q+2
4Q+4
sQ+3*
4Q+4

V representations

1$~ 3$~ 2tS

1s, 3s, Ss, 7$, 2d, 104
1s, 8s, 6d

is, Ss, 10s, 2d, 10d

as few as seventeen mesons that satisfy the self-
consistency test of Eq. (3) or Eq. (4) are the '/, 3 and
9, 3 schemes of SU2. Those schemes satisfying this test
are indicated with a "yes" in the V-bootstrap column
of Table I.

For any set of I' mesons, one scheme satisfying this
V-bootstrap test is obtained by assuming a V resonance
in every P-wave, P+P state.

C. Double P-Meson Representations

In this section we consider several 6ctitious schemes
involving 2m, I' mesons associated with a double,
m-dimensional irreducible representation. The reader
not interested in these possibilities may skip to Sec. IV
without loss of continuity.

Four douMe representations for the I' mesons are
considered; 20+2 (SUg), 40+4 (SU2), 30+3* (SU3), and
40+4 (C~). The E and E doublets are an example of
the 20+2 (SU~) P-meson set. Particle-antiparticle pairs
are split between the representations. The possible
V-meson representations are of two types. The 6rst
type corresponds to P-meson pairs from the opposite
E-meson representations; these V-meson irreducible
representations occur singly and are denoted by their
dimensions, followed by the letter s. The second type
refers to pairs from the same E-meson representation;
these V-meson representations appear in pairs (though
representations of the type defined as single in Sec. II
may be involved) and are denoted by twice the dimen-
sion of the irreducible representation, followed by the
letter d. The possible V-meson representations corre-
sponding to each of the four E-meson sets are listed in
Table II.

The crossing matrices have been computed for each
of these four eases; in each case only the scheme in
which all possible V representations resonate satisfies
the bootstrap equation, Eq. (3) or Eq. (4). The crossing
matrix for the 30+3* (SU8) scheme is given below as an
illustration.

is only to show that it is more dificult to find self-
consistent solutions for a certain type of complicated.
scheme than it is for the simple type of scheme discussed
in Sec. IIIB.

IV. THE P-MESON BOOTSTRAP CONDITION

A. The Self-Consistency Condition

If a particular assumption is made concerning the
nature of the force in the 0 partial wave of the P+V
states, a further self-consistency condition is obtained.
We assume that the force results from V meson ex-
change, and that the two interaction vertices are of the
VVI' type. We continued to assume degenerate
multiplets. This model was introduced in Ref. 8 and
will be extended here.

Since the pseudoscalar state of two V mesons is
symmetric under exchange of the mesons, the VVI'
interactions may exist only if Dp is contained sym-
metrically in the reduction of DyDy. If this inter-
action does exist, the direct product DI Dy contains
both D~ and DI. The predicted magnitude of the VVI'
interaction constant cannot be determined unless
detailed calculations are made, in which the coupling
of the P+V and P+P states of partial wave 1 is
included. However, in order to determine the consistency
of any scheme for which the VVI' interaction exists,
it is sufFicient to know the sign of the force and the
relevant (PV) crossing matrix. It is shown in Ref. 4
that a negative crossing coefBcient corresponds to an
attractive V-meson exchange force in the 0 partial
wave. Therefore, if Dy and Dp are irreducible, the
self-consistency conditions for the bootstrapping of the
I' mesons are,

Cpy(C, y, all i/E',
Czv&0,

where the C;, are the elements of the (PV) crossing
matrix defined by Eq. (1).

B. The Extended SU3 Scheme

The VVP interaction does exist in the 8, 8 (SUg)
scheme, since the reduction of 88 contains a sym-
metric 8 as well as an antisymmetric 8. In this scheme
the elements of that column of the (PV) crossing
matrix corresponding to the exchange of the V octet are

1s 1 8 —6'i

1s Ss 6d
C8.= ——,,

1 C10 C10+ 5 p

~8a 10 y C1 1y C27
(6)

Ss 1 —1

6d -—1

X3

There are many other possible schemes involving
multiple representations. The purpose of this section

where the column index is suppressed and the 8s and
8u denote the symmetric and antisynunetric octets
contained in 8(38. In this SU3 scheme the I'I'V inter-
action is antisymmetric to the exchange of correspond-
ing V and I' mesons, as well as to exchange of the two
E mesons. Therefore, the representation Sa represents
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The quantities 8' and q are the total energy and particle
momentum in the center-of-mass system, and p and m
are the masses of the P and V mesons. The constant
factors are included in the de6nition in order that the
expressions for the 8 be simple. A positive value of 8
corresponds to an attractive force.

We make the assumption that a P wave, PjV-
amplitude corresponding to the partial-wave j and
representation n resonates if and only if B (j)~Bs.(0 ),
where 8a is the representation of the resonating P'

mesons. As in Ref. 4, the V VP vertex function is taken
to be proportional to e„.q,p„q„, where p and q denote the
four-momenta or the two V mesons, and ) and cr are
the polarization indices for the two V mesons. The
computation of the 8 is complicated, but straight-
forward, and leads to the results

B (0 )= C f', —
B-(1 )= (i+I '/~')C'f',
B (2

—)=-,'C f',
(7)

where C is the appropriate element of the crossing
matrix, and f' is the VVP interaction constant, defined
to be equal to the y2 of Ref. 4. The calculated value of
p'/m' in the approximate model of Ref. 3 is 6; we
assume here only that 0(p'/m'( —', . It is seen from a
comparison of Eq. (6) and Eq. (7) that in the 8, 8 (SU3)
scheme, 1 and 2 resonances in the P+V states are
expected in the singlet representation, and not in any
other representations.

Since the corresponding members of the P and U
octets are of opposite 6 parity, the predicted unitary

the P mesons and the bootstrap condition of Eq. (5)
is satisfied.

In order to check the consistency of the model more
thoroughly, we must examine partial waves other than
the 1 (P+P) and 0(P+-V) waves, to see if any other
resonances are predicted. The P+P states of angular
momenta 0 and 2 are being investigated currently; the
results will be reported in a later publication. The
dispersion integrals associated with the various P+V
partial waves are so highly divergent that it is diKcult
to make a sensible comparison of two arbitrary partial
waves. 4 However, if two partial waves correspond to
the same orbital angular momentum, a comparison
may be made of the values of the Born-approximation
amplitudes at the threshold energy. Thus, we may
compare the 0, P+V amplitudes with the two other
P-wave amplitudes of total angular momenta and
parities 1 and 2 . The symbol 8 is used to denote the
Born-approximation value of the partial-wave ampli-
tude T at the threshold energy, where the elements of T
are de6ned in terms of the corresponding elements of
the unitary S matrix by the formula

3+(S;;—5;;)Wp(2m —p)

singlets are of odd |"parity. The singlet V meson and
the isoscalar member of the V octet may be identified
with the physical co and y mesons, although it is not
clear what linear combinations of the theoretical
particles should correspond to the experimental
particles. To the author's knowledge, there is no
evidence for a unitary singlet Ineson of spin and parity
2—.We conclude that the model predicts the existence
of the seventeen particles listed in Sec. I, plus one other
(probably nonexistent) particle.

In a consistent bootstrap model, all resonances must
be included in the input. Therefore, we must consider
the effects of the U singlet on the fundamental scatter-
ing states and forces. The spin-2 meson is neglected,
since no attempt has been made to be complete in the
sense of including all significant partial waves. There is
no P'PU interaction involving the V singlet, since the
identity representation does not occur antisymmetric-
ally in the direct product 88. Therefore, the presence
of the V singlet does not a6ect the argument of Sec,
III, concerning the bootstrapping of the V octet from
P+P states.

The only interaction involving the singlet V meson
in the model is the VqV j'8 interaction, where the
subscripts denote the dimensions of the representations
involved. This interaction does aGect the argument
concerning the bootstrapping of the P octet, V singlet,
and 2 singlet from the V+P states. We consider first
the force in the Pa+ Vs state resulting from the exchange
of the V singlet. The elements of the singlet column of
the (PV) crossing matrix are

Css, 1 C1,1 C27, 1

= —1
C8a, 1 C10,1 C10+,1 8 ~

(8)

Since an attractive force corresponds to a negative
crossing coe@.cient for the 0—partial wave, and to a
positive crossing coeKcient for the 1 partial wave, the
V-singlet exchange force is attractive for both the 0
antisymmetric octet and the 1 singlet. The U-meson
exchange force is not more attractive in any other 0-
or 1 states, so its presence does not alter the previous
conclusions concerning which representations resonate.

The threshold values of the Horn-approximation
amplitudes in the resonating P octet and U singlet
states are

BB.(0 ) =If'+g'
(1

—
)—(1+~2/~2) (f2+g2)

where g' is the V~VSP8 interaction constant. )The
crossing factor s of Eq. (8) has been absorbed in the
definition of g'.] If g'/f' is very small, then B&(1 ))B„(0 ); i.e., the force is strongest in the V-singlet
state. However, if g'/f2 is sufliciently great, the attrac-
tive force is greatest in the 8a(0 ) state. Since the P
octet actually is lighter than the V singlet, the presence
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of the V-singlet exchange force improves the agreement
of the model with experiment. The threshold amplitude
for the partial-wave 2 singlet is Bi(2 )=-,'(f'+g'), so
the predicted mass of this particle is greater than those
of the P octet and V singlet for any nonzero value of
g2/P

It is necessary also to consider the effect of the
Ps+Vi states. These states are not coupled to the
resonating singlet and antisymmetric octet combina-
tions of the Ps+V8, but only to the symmetric octet
states. " Thus, the Born-approximation amplitudes
(forces) in the synunetric octet, P+ V states are
represented by two-by-two matrices denoted by Bs,.
In such a situation the energy of the lowest predicted
resonance is inversely proportional to the largest
positive eigenvalue of B~,. We consider first the 0
partial wave. For self-consistency, it is necessary that
there be no positive eigenvalue of B8,(0 ) larger than
88,(0 )= —',f'+g'. It can be shown that B8,. (0-) is

given by

where the first row and column refer to the Ps+Vs
states, and the second row and column refer to the
Ps+ Vi states. It is easy to verify that for any value
of g'/f', the largest eigenvalue of the matrix B„(0 ) is

smaller than i2f'+g' H—ence, .the assumption of no

pseudoscalar resonance in the symmetric octet is

justified. The ratio of the largest eigenvalue of B8,(0 )
to -', f'+g' is smaller when —,'f' and g' are comparable
then when g' is zero. Therefore, the assumption of an
appreciable ViVSPS interaction improves the model by
leading to a larger difference between the forces in the
resonating and nonresonating octet states.

We now consider the partial-wave 1, symmetric
octet state. This is the state in which the V-octet
resonance develops. In order to treat the model com-

pletely, it would be necessary to consider the coupling
of the V-octet resonance to the P8+V~ (symmetric
octet) and the Ps+Vi state, as well as to the P,+Ps
state. Such a treatment is not attempted here.

The experimental measurement of the small partial
width for the decay p —+ p+~ indicates that the
interaction constant y„, is small. "A small y„, does
not imply that the U~V8P8 interaction constant is small,
since the experimental q may be a mixture of the
unitary singlet and isoscalar member of the V octet."

'3 The allowed couplings of the P8, U8 and V& may be understood
simply from the facts that the G parity of the V singlet is odd, and
the G parities of corresponding members of the P and V octets are
opposite. Thus, the antisymmetric octet combination of P8+U8
has the G parity of the P octet and is not coupled to P8+U1.

' P. L. Connolly, E. L. Hart, K. W. Lai, G. London, G. C.
Moneti, et al. , Phys. Rev. Letters 10, 371 (1963).

"See the discussion of S. L. Glashow, Phys. Rev, Letters 11,
48 (1963l.

C. Groups Other than SU3

An interaction of the type VVP does not exist for
the double-representation schemes discussed in Sec.
IIIC, and for many of the schemes listed in Table I.
It turns out that for those listed schemes that allow
the existence of the VVP interaction, the P-meson
bootstrap condition of Eq. (5) is satisfied. These
schemes are indicated with a "yes" in the P-bootstrap
column of Table I.

The scheme involving the fewest particles that
satisfies both the V-bootstrap and P-bootstrap tests
is the 5, 3 (SU~) scheme. The elements of that column
of the (PV) crossing matrix corresponding to the
exchange of a V triplet in this scheme are

C3= i'o, C5= —i'o C~= 5

where the column index is suppressed. We follow the
procedure of Sec. IVB, using Eq. (7) to see if additional
resonances are predicted in the 1 or 2 partial waves.
The approximate value p'/m' 6 calculated in Ref. 3
for the 8, 8 (SU~) scheme applies also to the 5, 3 (SU2)
scheme (and to all other schemes in which the ap-
propriate element of the (PP) crossing matrix is unity'.
It is seen that resonances are predicted in the 1 and 2

septet states. The consistency of this system when the
V septet is included in the input has not been investi-
gated. However, even if the extended 5, 3 scheme is
consistent, it now involves 22 particles and is more
complicated than the SV3 scheme.

On the other hand, if similar considerations are
applied to the 5, 7 (SU~) and 5, 10 (C~) schemes, no
additional 1 or 2 resonances are predicted.

V. SELF-CONSISTENCY FOR NONDEQENERATE
MULTIPLETS

In this section we study the possibility of solutions
involving nondegenerate multiplets. It is hoped that
no such solutions exist for many of the group-represen-
tation schemes, so that these schemes will be eliminated
theoretically, if an argument for the necessity of
deviations from degeneracy can be found.

The masses of the P and V mesons are denoted by p,

and m, respectively; po and mo are the values correspond-
ing to the solution in which the P and V multiplets
are each degenerate (the "degeneracy solution" ). The
symbols 8; and 6; denote the fractional deviations in
the squares of the masses of the P-meson i and the
V-meson j, i.e.

~'= (~'' I o')/I o' and &;—= (m,'—mo')/mo2.

We consider first the amplitudes in which the P-
meson poles occur. The wave function associated with
the pole of P, is of the form P(P,) =P, i, (P;Vi)P, ,»

where the P,,~ are real coefficients. The mass deviations
8, depend on the mass deviations of the particles in the
wave-function P(P,) and of the virtual particles that
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6;=Q; Z,,8,+02. (12)

Combination of Eqs. (11) and (12) leads to self-
consistency equations for the 5; and 6,. A solution other
than the degeneracy solution, 6,=6;=0, is desired.

Accurate calculations of the X,;, Y;,, Z,; and 0~
cannot be made, because of the incomplete nature of
the bootstrap model and the inexact state of present-day
dispersion theory. Furthermore, the equations resulting
from detailed calculations would be rather complicated,
while our aim is to find a simple criterion that may be
applied easily to any group-representation scheme.
Therefore, we will attempt to find a simple, but plausi-
ble, approximation to Eqs. (11) and (12).

The type of approximation to be used is based on
the results of Ref. 9. In this reference the values of
the 6; resulting from assumed values of the 5; are
calculated for the 8, 8 (SU2) scheme from the bootstrap
equations for the partial-wave 1 amplitudes. A rough,
approximate rule for the result is that the factor Z,.;
of Eq. (12) of the present paper may be replaced by the
probability of the P-meson P, in the degeneracy-solution
wave function |I (V;). The basic reason for the approxi-
mate validity of this rule is that in the self-consistent
dispersion relations for the V poles, the partial deriva-
tive of &0(V,) with respect to /1, is proportional to this
probability, where 0&(V,) is the energy of the zero in the
resonance denominator corresponding to V;.

The above considerations suggest that the X, I', and
Z coefficients of Eqs. (11) and (12) be replaced as fol-
lows,

X;;=a/pp0(P;P, ), Y,;=np10(P;U, ),
Z;;=ni p0(U, P;), (13)

where 0(n,P;) denotes the probability of the meson P;
in the degeneracy-solution expression for P(n, ), and
Qpp, Qpy, and ny p are positive constants. The effect of
mass splitting in the virtual multiplets that transmit
the forces is neglected in this approximation. Since
absolute masses cannot be determined from the dis-
persion relations, the assumption that all the 8; and 6,
are equal must lead to a solution of both Eqs. (11) and
(12). It follows from this condition that if the probabili-

transmit the forces. It is assumed that the deviations
are sufficiently small that an expansion in powers of
8, and 6, may be made, and terms of order greater
than the second neglected. The equation for 5;, determin-
able from the dispersion relations for the bound-state
P,, is of the form

0,=Q; X;,0,+Q, Y,id,+02, (11)

where the X;,. and P;, are real numbers and 02 represents
symbolically the terms of second order. A similar
equation for the 6; may be determined from the dis-
persion relations involving the V poles. Since f(V,)
is of the form P+P, we omit terms involving the 6, in
the right side of the equation, i.e.,

ties are normalized according to the convention
p;0(a,p,)=1, the coefficients n of Eq. (13) must
satisfy the equations

&vp=1& /happ+/2p//'=1.

The basic idea of expanding in powers of 8, may seem
unrelated to reality, since the actual deviation of the P
and V mesons from degeneracy are not small. However,
in the present calculation the small deviation require-
ment is that the ratios of the interaction constants
should not differ greatly from their values in the
degeneracy solution, in order that the use of degeneracy-
solution wave functions be justified. In the calculation
of Ref. 9, it is shown that the relative deviations of the
coupling-constant ratios are much smaller than the
relative P-mass deviations. Furthermore, the success
of many of the experimental predictions of unitary
symmetry supports the point of view that the symmetry-
breaking may be regarded as a perturbation.

It is convenient to regard the 0 functions of Eq. (13)
as rectangular matrices and the 6;, 6;, and 02 as column
matrices. Boldface symbols will be used to represent
the matrices. The matrix elements of the 0 are Byp, ;;
=0(V,P;), etc. If Eqs. (12), (13), and (14) are substi-
tuted into Eq. (11), the resulting equation, in matrix
notation is

5= [(1 npv)8pp+—npi Op&6+p)6+02. (15)

We assume that the mass of a particle is equal to that
of its antiparticle, so the dimension of 6 and of the
square matrices Bpp and Opy8yp is the sum of the
number of self-conjugate particles and the number of
particle-antiparticle pairs in the set of P mesons.

The elements of the 8 may be determined by using
standard methods of group theory. "As an illustration,
we write the wave-functions f(P;) corresponding to the
8, 8 (SU2) scheme. "

4 (n) = (-')'"(I"~ )—(')'"(I"~")—-
+ (1)1/2 (g0~0)+ (1)1/2 (+ le+)—

4'(1r )= (2) (1r P )+(2) (7r P )—(12)'"(&'~ )
+ (1'2)'"(&'~')—(1'2)'"8'~')

+(1'2)'"(& ~+)

4'( )=() ( P) () ( P ) () (I~ ~)
+ (0)'"(It'~+)

4 (&')= (4)'"(&'0 )—(4)'"(n~')+ (1'2)'"(&+P')

+ (0)'"(&'P')—(1'2)'"(~'~')
—(-,')'" (2r+3/I0),

4 (&')= (-')'"(&' )—(l)'"( ~')—(—')'"(&' ')
+ (0)'"O'P )+ (1'2)'"(~'~')

—(-')'/'(2r M+) . (16)
'6 The construction of the wave functions corresponding to the

various representations in the direct product 8 8 of SU3 is
discussed by S. L. Glashow and J.J. Sakurai, Nuovo Cimento 25,
337 {1962).



B468 RI CHARD H. CAP PS

g 0
x' 0

Opp= x+ 0
E+ 3

E'X' 3

0 0 6
0 8 2
4 4 2

2 4
2 2

6
2 1
2 X—.
2 12

In the 8, 8 (SUB) scheme, the PPU interaction is
antisymrnetric to the exchange of corresponding V and
P Tnesons, as well as to the exchange of P mesons.
Because of this fact, the product-matrix Opy0yp is
equal to the square of Opp in this scheme.

For each group-representation scheme, a complete
set of eigenvectors and eigenvalues of Opp is defined by
the equation Oppo, =u,6,. It can be shown that the 6;
are eigenvectors of the product matrix 6py0yp also,
i.e., epvevp6;=b, S,. Equation (15) may be written as a
set of equations in the 6;, i.e.,

c,G, = 02, ,

c,= 1—(1 npv)—a, o.pvb—

(17)

(18)

For every scheme the trivial set of eigenvalues u=1,
b=1 exists, and corresponds to equality of all the
components of 6;, i.e., to no breaking of the degeneracy.
The nontrivial eigenvalue sets have been computed for
many schemes and are listed in the "Roots (a,b)"
column of Table I. The symbol (i,j)"means that a=i,
b= j is an e-fold root. Since no assumption is made in
this section with regard to the virtual multiplet that
transmits the forces (except that deviations from
degeneracy in the multiplet may be neglected) the
present considerations apply to a more general model
than that considered in Secs. III and IV. Therefore,
the roots (a,b) are computed for many schemes that
violate one or both of the bootstrap tests.

A mass-deviation 6 that satisfies the second-order
expansion of the dispersion relations is most likely
to approximate an actual solution to the unexpanded
equations if ~5~ is small. The second-order terms 02;
cannot be determined without detailed calculations.
However, the magnitude of a 5 satisfying Eq. (17) is

smallest if the 8; that participate appreciably in the
deviation all correspond to small ~c;~. It is seen from
Eq. (18) that the condition 0&npv&1, together with
the fact that the value of all the nontrivial u, and b;
are less than one, implies that c;&0. Therefore, c; is
smallest when both u; and b; are appreciable and
positive. It is seen from Table I that all the eigenvalues

b; are in the range O~b, (—,', while the u; are of both
signs. We assume that o.py is either about ~~ or smaller;
i.e., that P-mass deviations are of comparable or
greater importance than V-mass deviations in the

The wave functions for the m, E, and E' may be
determined by applying the charge-conjugation operator
to g (m+), P(E+) and f(E'). The matrix Op p, determined
from the above equations, is

sr+ E+ E'E'

equations for the P-meson poles. It is conjectured that
a mass-deviation eigenvector 5; cannot participate
appreciably in an actual solution if u, is negative. This
conjecture leads to the following self-consistency
requirement for the existence of a nondegenerate
solution corresponding to a particular group-represen-
tation scheme:

u;&0 for at least one i. (19)

The physical meaning of this condition is that large
masses of the P rnesons in the wave-function f(P,)
=P+ V should lead to a large pP.

It is seen from Table I that for many of the schemes
considered, there are no positive, nontrivial values of u, .
In fact, the only schemes satisfying Eq. (19), as well
as the two bootstrap conditions of Secs. III and IV,
are the 5, 3 (SU~) and 8, 8 (SU3) schemes. It is shown
in Sec. IVC that the 5, 3 scheme is not simpler than the
8, 8 scheme.

For any set of P mesons, the U-bootstrap condition
of Section III is satisfied if all antisymmetric P-wave
states resonate. Ke now show that this general scheme
does not satisfy the nondegeneracy consistency require-
ment, Eq. (19). Let n~ denote the number of self-

conjugate P mesons, and e2 the number of particle-
antiparticle pairs, so that there are eq+e2 independent
P-meson masses. In the wave-function f (P ;), the.
antiparticle P; is absent (P; is P; if i refers to a self-
conjugate particle, of course) and all other P; occur
with equal probability. If we norv use the indices i and

j to refer only to self-conjugate particles, and k and l
to refer only to particle-antiparticle pairs, the matrix
elements of epp have the simple form

Opp, ;,=0, Opp, ,A;
= 2y,

Opp„; ——y for i/ j,
~pp, kA; y) ~pp, a =y,
8pp p&

——2y for k/l,
y= (mg+2N2 —1)

—'.

~Z'= ~zo,

~~=2&zo,

8 +=5 o= —28~o.

(20)

These equations correspond to the conservation of

It is seen that all rows of the matrix epp+yl are
identical. This is the condition that u;= —y is an
(e~+n~ 1) fold —eigenvalue of Opp. However, there
are only e~+n2 —1 nontrivial roots, so no positive,
nontrivial a, exists. )The m+n —1 fold eigenvalue of
epvevp in this scheme is b=-,' (1—y).]

The largest values of u; and b, for the double-octet
scheme are u=-,', b=~. The components of the eigen-
vector 6; corresponding to this root are
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isotopic spin'~ and to the famous Gell-Mann-Okubo
sum rule. " There is one other deviation from de-
generacy involving the conservation of isotopic spin,
corresponding to the unfavorable root (a= —s, b= —', ).
This deviation, 8„=—35~, 5„=——38~, is associated with
the hypercharge zero, I-spin zero operator of the 27-fold
representation. "The conclusion concerning the favor-
ability of the Okubo type deviation is similar to that
obtained for the V-meson model of Cutkosky and
Tarjanne, ~ because the UUU interaction in the V-meson
model and the PPV interaction of the present model
are both totally antisymmetric in the octet scheme
of SUs. LThe PPV interaction is totally antisymmetric
for the 7, 7 (Gs) and 3, 3 (SUs) schemes also. ]

Similar self-consistency criteria for nondegenerate
multiplets may be applied to other models. In order to
illustrate this, we modify the present model by assuming
that the dominant states in the wave functions for the
P mesons are of the type V'+V rather than P+V.
In the SU3 scheme, the appropriate wave-function
P'(P, ) are

li'(n) = (s)'"(V V) —(s)'"(P+P )- (s)'"(P P )
+ (—i'o)'"(~+~ )+(—t'o)'"(~'~'),

4'( +) = —(l)'"( + )—(l)'"(~'~'),
lt'(&+) = (t'o)'"(vlf') —(r'o)'"(p'~') —(s)'"(p'~')

The other P'(P, ) may be determined by applying the
isotopic lowering operator and charge conjunction
operator to these equations. The ij component of the
probability matrix 8&& is defined to be the probability
of V; in the wave-function P'(P,). The significant roots
a, for this model are defined by the eigenvalue equation
S~,'e&&o;= a,'6, , where 8,~ is the matrix defined below
Eq. (13).A procedure similar to that used before leads
to Eq. (17) with the quantity c, given by

c;= (1—a,').

A positive a is desired. It is easy to verify that for the
8, 8 (SUs) scheme all four nontrivial roots a,' are
negative, so no type of nondegenerate solution appears
likely.

This example does not show that a nondegenerate
bootstrap model in which the V+ V states are dominant
in the 0 partial waves is impossible, only that in such
a model the 8, 8 (SUs) scheme would not likely be a
solution. The example also illustrates that the favor-

"It is well known that SU2 can be contained as a subgroup of
SUB in three diferent ways, corresponding to the choice of the
~+, or the E+, or the E' and K' as "outer" members of the SU2
triplet. LSee C. A. Levinson, H. J. Lipkin, and S. Meshkov, Nuovo
Cimento 23, 236 (1962).] The fact that the 7r+ are singled out as
members of the isotopic triplet in Eq. (20) results from our
identification of the 7i-' and q as distinct particles. Had we chosen
as distinct particles either oi the combinations, s'=-', L(3)&s+s),
rl'= ~P(3)4 Wvg, diferent SUs multiplets would have resulted."M. Gell-Mann, Phys. Rev. 125, 1067 (1962); S. Okubo,
Progr. Theoret. Phys. (Kyoto) 2?, 949 (1962).' This alternate mass formula is discussed by J. J. deSwart,
CERN Report Nn. 6488/TH. 345, 1963 (unpublished).

ability of a particular group-representation scheme and
a particular type of mass splitting may depend critically
on the types of configurations and interactions assumed
important. %e believe that realistic sets of particles
must be considered if we are to find out why a particular
group and type of mass splitting are realized in nature.

The magnitude and sign of a deviation from de-
generacy cannot be determined unless terms of order
greater than the first in the 8; are calculated. At this
point we make some extremely speculative remarks
concerning the possible effects of. higher order terms
on a deviation from degeneracy of the Okubo type for
the SU3 scheme. The remarks are based on a comparison
of the calculations of Ref. 9 (a first-order calculation
of the dependence of the 6; on the 6, in the bootstrap
model of the V octet) with that of Ref. 20 (a similar
calculation of the mass of the 3E meson only, but
including all orders in the deviations from P-meson
degeneracy). The two configurations (s.+E) and (r)+E)
contribute to the M-meson amplitude. The most
significant difference between the results of Ref. 9 and
Ref. 20 is that the calculated M mass is higher in the
first-order calculation for assumed physical values of
the P masses. This effect results primarily from the
fact that when the masses of the (m+K) and (rl+E)
states are taken to be very different, the probability of
the state with the lighter mass in the M-wave function
is appreciably greater than its value in the degeneracy
solution, so that the second effect of the large splitting
is to decrease the M mass.

For the sake of argument we assume that the most
important type of second-order effect in the present
bootstrap model is the type discussed above. We
imagine a series of calculations in which progressively
larger deviations of the Okubo type are assumed for
the P-meson masses, the V masses are then calculated
from the equations for the 1 amplitudes, and then the
P masses are calculated from the 0- amplitudes. The
subtraction energy (or cutoff parameter) is adjusted
so that the average of the squares of the calculated P
masses is equal to the averag= originally assumed.
Therefore, consistency is obtained if the calculated ~
and g masses agree with those originally assumed. The
degeneracy-sotution wave functions for the m and g are

k(n) = (s)'"(&~)s+ (s)'"8'~) s,

e(-)= (l)"(:)+(-:)"( ~).—(-:)"(&~),
where the subscript denotes the isotopic spin. Clearly,
there are no states of different mass in P(r)). However,
since the signs of m, '—m~' and p '—p,~' are the same
in the present model, the second-order effect may be
large for the m pole. For a very small deviation, the
inequality c;)0 [where c, is defined in Eq. (18)]
implies that the calculated 8 is smaller in absolute
magnitude than that originally assumed. The second-
order effect discussed above implies a negative second

'0 R. H. Capps, Phys. Rev. 131, 1307 (1963).
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derivative of the calculated p ' with respect to the
assumed

~
5,

~

.Therefore, as larger vr —K mass di6erences
are assumed, consistency for p

' is not likely to be
obtained if p &p& . If consistency with respect to p
is obtained, one can attempt to obtain consistency with
respect to p„' also by varying the ratio E=(ti„'.—tilr2)/
(px' —p ') from the value given by the Okubo formula. "
This plausibility argument suggests two conclusions:
(1) It is not at all clear that a nondegenerate solution
exists. (2) If one does exist, it is likely that p '—tax'(0
and that the value of E is smaller than that given by the
Okubo formula. Clearly, this speculation should be
checked by detailed calculations based on a simplified
form of the bootstrap model. If the question of the
existence of a nondegenerate solution is to be investi-

gated, it witt not be sufhcient to include in the calculations
only terms offl, rst and second order in the b, .

VI. THE DOUBLE-SEPTET SCHEME OF Gg

Recently, Behrends and Landovitch have pointed
out that present experimental data does not rule out
the hypothesis that the mesons and baryons are
associated with representations of the group G2."Under
this hypothesis the vr, K, p, and M mesons may be
associated with the 7, 7 (G~) scheme. It is seen from
Table I that this scheme violates both the V-meson and
P-meson consistency tests, as well as the consistency
test for mass splitting of Eq. (19)."The 7, 14 scheme
of G2 also violates the P-bootstrap condition, as may be
seen from the (I'I') crossing matrix of G2 given in
Sec. IIIB.

It is instructive to consider a modified form of the
model for the double-septet scheme, a form in which
the dominant force in the I' wave, I'+I' -state is
assumed particularly attractive in the resonating septet
state. The particle multiplet transmitting this force,
and the nature of the partial-wave 0 amplitudes, are
unspecified. If the Z, , of Eq. (12) may be replaced by
8(V;P,), it is easy to show that a positive E vr mass-
difference leads to a negative M-p mass difference, in
contradiction with experiment. We conclude that the
G2 scheme is difFicult to reconcile with a simple boot-
strap model, self-consistent, and consistent with ex-
periment.

Sakurai has pointed out that if degenerate P- and
V-meson octets of the isotopic spins and hypercharges
appropriate to SV3 are assumed, the requirements that
the second-order eBects of the PPV interactions leave
both multiplets degenerate lead to the same interaction-

"R.E. Behrends and L. F. Landovitz, Phys. Rev. Letters 11,
296 (1963).

"This conclusion concerning the V-bootstrap test is not new.
It is contained in Ref. 4, where all subsets of the I' and V octets
are examined. Furthermore, since the PPV interaction is totally
antisymmetric for the 7, 7 scheme, this scheme has many of the
algebraic properties of the V-meson schemes considered by
Cutkosky in Ref. 5. The theorem of Ref. 5 shows that this scheme
violates the bootstrap condition, since 7 is not the regular repre-
sentation of G2.

constant ratios as does the simple V-meson bootstrap
model (the ratios corresponding to SU~).'" The bootstrap
requirements are more general than those of Sakurai,
since degeneracy assumptions are not necessary in the
bootstrap model. ' Nevertheless, it is interesting to ask
whether or not Sakurai's criteria are equivalent to the
bootstrap criteria if consideration is limited to the
coupling-constant ratios predicted when the multiplets
are degenerate. We investigate this question by applying
Sakurai's criteria to the 7, 7 (G2) scheme. '4 The three
interaction constants y p ', y p++ and y~ ~' are
defined in the same manner as in Ref. 3; i.e., y;, ~' is
proportional to the partial width for decay of the
V-meson i into the I'+I' state j+k. The requirement
that V-meson degeneracy is maintained to second
order is

2~ 2 2
PP+7r ~PPXK +3I7rX

and the requirement that P-meson degeneracy is
maintained leads to the equation

2m 4 2 3 2~ 2
2+pm7r ~ 3+MmK 2+pKK ~/&~K ~

These equations predict pp pp++ p~ Q ~ 2 3p

which are the ratios corresponding to the G2 group.
However, as discussed above, this scheme does rot
satisfy the V-meson bootstrap condition, so this
condition clearly is not equivalent to those of Sakurai.

VII. CONCLUSIONS

There are three main results of this paper. The 6rst
is that a second isoscalar, hypercharge-zero, vector
meson arises naturally in an extension of the double-
octet bootstrap model of Ref. 4, and the inclusion of
this V meson improves the correspondence of the model
with experiment.

The second result concerns the possibility that the
self-consistency requirements of bootstrap-dispersion
relations may specify uniquely the set of strongly
interacting particles found in nature. In this paper a
particular bootstrap model of the pseudoscalar and
vector mesons is considered. Two self-consistency
conditions are obtained from the requirements that
the forces are more attractive in the resonating states
than in the other states of angular momenta and parity
1 and 0 . These conditions are formulated for the
case of degenerate multiplets; it is clear, however, that
their implications are not changed essentially if small
deviations from degeneracy are assumed. A third self-
consistency condition is conjectured, applicable only if
nondegenerate multiplets are assumed. If all three
conditions are required, and it is required that mesons
of the same spin arising from the same type of configura-
tion correspond to an irreducible representation of a
simple Lie group of first, second, or third rank, there

"J.J. Sakurai, Phys. Rev. Letters 10, 446 I'1963).
Making this comparison was suggested to the author by

Professor L. M. Brown.
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is no solution involving fewer particles than the double-
octet solution of unitary symmetry. The 5, 3 {SUs)
scheme, discussed in Sec. IVC, may lead to a solution
of simplicity comparable to that of the double-octet
scheme.

The third result is that deviations from degeneracy
of the Okubo type are favored in the double-octet
scheme.

The model is incomplete in several aspects. The
various assumptions concerning the partial waves and
configurations that are important have not been
checked with detailed, dispersion-theoretic calculations.
The criterion used for nondegenerate solutions is crude;
its chief virtue is its simple applicability. Furthermore,
no reason has been given why the particle multiplets
should be nondegenerate. There is no compelling

reason, other than simplicity, for the neglect of the
baryon-antibaryon states. In fact, it is hoped that in
more accurate bootstrap models the baryons will be
necessary.

Thus, even if our basic assumption is right, i.e., that
nature chooses the simplest self-consistent set of
particles, the true consistency criteria may be quite
different from those assumed here. The primary
purpose of this paper is to demonstrate the falseness
of the common assumption that if simple representations
of one Lie group satisfy a particular bootstrap model,
simple representations of any other Lie group must
satisfy a similar model. The consistency criteria of
Secs. III, IV, and V are examples of plausible criteria
that distinguish between different group-representation
schemes.
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Although the 6nal conclusion of a preceding paper was incorrect, as we shall explain, the main point
remains, and should entail the existence of sli generis recoil e6ects associated with nonzero values of curl e
(ir is the spin density). These should be observed by testing, not with solids as was previously proposed, but
with the probability Quids associated with moving particles; this more rehned type of experiment should
be able to select, among the set of integrally equivalent energy-momentum tensors, the one describing
locally the true or physical energy-momentum Qux. In this paper it is shown, by an explicit calculation, that
cylindrical type solutions of the extreme relativistic Dirac equation exist with no s dependence of the wave
function (and thus no k, component of the momentum) but still with a s component of the Dirac probability
current; as this conclusion is reached with a t dependence of the wave function of strictly the form
exp (—iWt/fi), there is no question of having to perform a Foldy-Wouthuysen transformation to extract the
positive energy contribution (or equivalently, to use the Newton-Wigner position operator). The "transverse
inertial spin effect" we predict is locally described by the Qux of the Dirac current per time dt and surface
ds, and corresponds to the local transition probabilities between the dynamical state of the beam and a
pointlike localization of the incident particles.

I. INTRODUCTION

' "N a preceding paper' it has been argued that the true,
~ ~ physical, energy-momentum tensor associated with
a spin-2 wave is Tetrode's asymmetrical tensor

T' &= ,'cbgf8')y'P+ —seA—'Py'P (1)

so that, according to the well-known' formula

QQ i& pi j T&i '
r—)&gi &'s feei & k l (r) &g &

'—
f) &g &) (2)—

where a- denotes Dirac's spin density

g ijk —scei& klg se$ltyijkP' (3)

the kinematical current lines and the energy-momentum

' O. Costa de Beauregard, Phys. Rev. 129, 466 (1963); all the
notations of this paper are retained here, except for 0'& which is
taken in a different sense.

'H. Tetrode, Z. Physik 48, 52 (1928).

lines may, under appropriate circumstances, be non-
collinear. (Latin indexes run from 1 to 4; x'=icf;
h=2xA, denotes Plank's constant, e'&" Levi-Civita's
indicator, y' the von Neumann matrices, P=fty4, [cl']
the Gordon current operator, e the electron charge, A'
the electromagnetic potential; y'&'"=y'y& if all in-
dexes are different, 0 otherwise. )

The final conclusion of this preceding paper' was
incorrect, as we shall explain later. However, the main
point, which the above paragraph recalls, remains true;
the present paper intends to show that by using as a
test material the probability Quid associated with
moving spin-~ particles rather. than a solid, the recoil
effect corresponding to the "transverse momentum'"
should appear.

The test material, which is a beam of spin--', particles,
has the three following fundamental properties: (a) a


