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Nonrenormalizability and the Short-Range Force in Some Field-Theoretic Models

RAYMOND F. SAWYER

DePartrlelt of P1zysics, Unzoerszty of Wzsconsin, Modzsozz, Wiscozzszzz

(Received 11 December 1963)

Bethe-Salpeter equations for the scattering Green s functions are discussed in some nonrenormalizable
models. The models involve the multiple exchanges of pairs of Dirac particles, coupled to the scattering
particles by a four-Fermi interaction. The Green s function is constructed from a Bethe-Salpeter scattering
wave function. For certain forms of coupling the forces are repulsive at short distances and analogous to
potentials in a nonrelativistic scattering problem which behave as r 6 at the origin. In these cases there is a
unique, well dehned, and Fourier transformable solution for the Green s function in space-time; and the
scattering amplitude exists. A class of terms corresponding to delta-function potentials may be included
in the interaction kernel without changing the solution. In a case with zero-mass particles and zero total
energy an exact solution for the scattering amplitude is obtained.

I. INTRODUCTION

' N this paper we discuss the solution of some non-
~ - renormalizable Bethe-Salpeter equations. These are
integral equations for two-body scattering Green's
functions which arise in an approximation to a non-
renormalizable field theory. Even if we manage to find
honest solutions it will be unclear what their significance
is to the general problem of unrenormalizable field
theories, since we are dealing here with just one of the
Green's functions of the theory, and only in an approxi-
mation. Nonetheless our models, if expanded in pertur-
bation theory, give rise to all of the pathologies of a
nonrenormalizable theory. That is, their perturbation
developments require an infinite number of subtrac-
tions. There is thus some interest in seeing whether
there exist well defined nonperturbative solutions. '

Our equation is an integral equation for the scattering
of two Dirac particles, where the interaction term comes
from four-Fermi interactions. The approximation is the
ladder approximation, where the exchanged object is a
Fernuon bubble and the graphs generated by an (in-
correct) iteration procedure are those of Fig. 1.We shall
consider several different forms of coupling.

The main point of our work is that in some of the
cases to be considered the integral equation for the
scattering Green's function has a perfectly well defined
and unique solution. Xo regulators, cutoffs, or arbitrary
procedures of any kind are involved in defining this
solution. The solution for the Green's function in space-
time is Fourier transformable; the scattering amplitude
exists. No concept of a sum of graphs is involved. For
these well-defined cases in general we can prove only the
existence of a solution. The only cases we have managed

to solve exactly involve the scattering of mass-zero
particles by exchanges of mass-zero particles.

There is a way of gaining some qualitative insight
into the nature of our solutions, in terms of singularities
of forces at short distances. Our nonrenormalizable
equation is quite similar in structure to a Schrodinger
equation in a potential which has a r ' singularity at the
origin. Our well-defined cases correspond to a repulsive
short-range force. In the corresponding potential-
scattering problems the scattering amplitude is well
defined, but the integrals in the perturbation expansion
diverge more and more strongly as the order of per-
turbation theory is increased. Predazzi and Regge have
given a systematic development of scattering formalism
for such potentials' and it is our aim to develop the
relativistic analog to their work.

The great restriction in our work will be to zero-total
four momentum. %e shall consider the amplitude for
scattering two particles of equal mass, analytically
continued to zero-total energy in the center-of-mass
system. From analogy to the potential-scattering prob-
lem we may anticipate, however, that certain interesting
properties of the scattering amplitude are independent
of the total energy, following only from the behavior of
the wave function at the origin. For our short-range
repulsions the behaviors near the origin are independent
of the energy.

It has been noted that in a number of renormalizable
models the location of a branch point in the angular-
momentum plane depends only on behavior near the
origin. ' In our nonrenormalizable models there will be a
branch point in the coupling-constant plane, at G=o,
the nature of which is probably energy-independent.

FIG. 1. The graphs which
would be obtained if we
(incorrectly) iterated the
Bethe-Salpeter equation.
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*Work supported in part by the National Science Foundation.
~ There have been a number of schemes for de6ning a result in

nonrenormalizable models: R. Arnowitt and S. Deser, Phys. Rev.
100, 349 (1955); L. N. Cooper, ibid. 100, 362 (1955); T. D. Lee
and C. N. Yang, ibid 119, 1410 (1960);.G. Feinberg and A. Pais,
ibz'd 131, 2724 ('1963). .

2E. Predazzi and T. Regge, Nuovo Cimento 24, 518 (1962).
3 Fixed branch points in the l plane for the Goldstein amplitude

(see Ref. 7) are implicit in the discussion by G. C. Wick (Phys.
Rev. 96, 1124 (1952)j. For boson theories (Xzoz and vector-meson
exchange) they are discussed by R. F. Sawyer LPhys. Rev. 131,
1384 (1963)j and by Baker and Muzinich (to be published); for
Fermion theories by A. R. Swift and B. W. Lee LPhys. Rev. 131,
1857 (1963)j.The general connection between such branch points
and the solution near the origin is implicit in Refs. 11.The most
complete treatments are by G. Domokos and P. Suranyi, Nucl.
Phys. (to be published); and by G, Cosenza, L. Sertorio, M. Toiler
(to be published).
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Another reason for interest in the zero four-momen-
tum case is the fact that it corresponds to zero momen-
tum transfer for the crossed process. Our models, there-
fore, give some predictions for forward scattering in a
physical region.

II. BETHE-SALPETER SCATTERING FORMALISM

We consider the scattering process, A+A -+ A+A,
where A is a Dirac particle of mass m. Let pi, ps be the
incident four momenta of A and A, respectively; pi', ps'
the final momenta. We define

pl+ps pl +ps
p= s(pi —ps) p'='s(pi' ps') — (&)

The T-matrix element for scattering may be written
in the form,

T(p' p W)=MU '(-'W+p')U '(-'W+p)Up'(-, 'W+p)
XU;( ;W+p-)T-.,„,(p,p, W), (2)

where

T-p, vo(p' p W)

i d4xd4x'e —~' *'+'~ 'T.p, ,o(x',x,W) . (3)

Here M is the usual product of 2ir's and (M/E)'"'s. The
labels u and c distinguish the initial and final spin states
for the particles; b and d for the antiparticles. We are
describing the antiparticles as particles with reversed
four momenta. The object we shall study is the scatter-
ing operator in relative space-time coordinates for zero-
total four momentum.

T p,,o(x',x) =T p,,o(x',x,W„=O). (4)

The Bethe-Salpeter equation in the ladder approxi-
mation for our models involving a Fermion bubble
exchange is of the form,

T p,,o(x', *)= V.p,,o(x)3'(x—x')

+ rJ'xid'xsT. p, ;o (x',xi)

XS7 ~ (xi—xs)So",o (xs—x) V~"o,,o(x) . (5)

Here the interaction function V(x) depends on the
nature of the coupling chosen. Various choices are
discussed in Sec. III. The details of the reduction to
relative coordinates and the derivation of Eq. (5) are in
the Appendix.

It should be noted that Eqs. (3) and (5) together
already involve a continuation out of the physical region
if the scattering particles have nonzero mass. For the
case of W„=O the mass shell is defined by p'= —m',
p"= —m', po ——po' ——0; i.e., the relative momenta p and
p' are purely spatial and imaginary. From the later
developments, it will be clear that the Fourier transform
(3) still correctly defines the analytically continued

scattering amplitude provided the minimum exchanged
mass is greater than or equal to 2m, where m is the mass
of the scattering particle A.

Whether or not this inequality is satisfied, a general
procedure is to begin with the four momentum of each
external particle space-like.

p'= p"=p '= p '= p "=ps's=X' (for W =0)
po= po'= o

In this case the relative mornenta p and p' a«re» and
the Fourier transformation (3) is well defined. The
continuation to the mass shell X'= —m' is to be deferred
until the end of the calculation.

We shall claim a superiority of Eq. (5) over other
formulations of the scattering problem, for example
sums of graphs or integral equations in momentum
space. Therefore, an approach to the ladder approxi-
mation which avoids perturbation theory is required, for
example the Green's function approach of Schwinger. 4

The reduction of the Green's function equation to our
Eq. (5) for the scattering operator is given in the
Appendix.

In our four-Fermi coupling models the interaction
function, V(x), leaving aside spinor complications, will

be of the general form (S~(x))'. This is well defined
except on the light cone, but the Fourier transform does
not exist, so that the conversion of Eq. (5) to momen-
tum space is not possible. One might object that also in
space-time Eq. (5) has no meaning because of the lack
of definition of V(x) on the light cone. However, we
shall find certain favorable cases in which this lack of
definition has no eGect on the solutions.

Next we restrict our considerations to a single in-
variant amplitude. ' We define

Ti(x',*)= 4(vs) p. (~ )s~ oT.
p..o(

x'
x)

Roughly speaking, Ti(x',x) is an amplitude for singlet
AA scattering.

The interaction functions V p„o(x), which arise in
our models, all have the following property,

(vs)~o V.p,~o(x) = (vo)-pV(x)

Restricting to this class of interactions, Eq. (5) leads
directly to an integral equation for the amplitude
Ti(x',x),'

T, (x',x) = —V (x)3'(x—x') —i

X d x"T,(x',x")~,(x" *)V(x). (S)—
This equation is the starting point for all that follows.

It is closely related to Goldstein's differential equation

4 J. Schwinger, Proc. Natl. Acad. Sci. U.S. 37, 452 (1951).' Much of the apparatus for treating the other amplitudes is
contained in a paper by W. Kummer (to be published).' Using J'dx"Si;(x—x")ygSo (x"—x') = iysaz(x x')—
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for a bound-state e'ave function. ~ Differential equations
are not sufhcient for our purpose; the boundary condi-
tions implied by Eq. (8) will be very important.

We now assume that Eq. (8) can be transformed into
an equation in a four-dimensional Euclidean space.
This assumption is discussed in the Appendix. The
standard objections to using the Euclidean space for a
scattering problem do not apply since we are below
threshold for real scattering. It is found that there is no

difhculty in constructing the scattering amplitude from
the Euclidean Green's function, for the case of W„=o,
if the individual four momenta of the scattering parti-
cles are taken to be space-like.

The Euclidean T operator is defined as'

Tt'&(x' x) =iTi(x', xs'e t'~"&—x xse
—t'~~'&).

Since we shall deal always with the case Ps
——ps'=0,

we can rotate the time contours clock.wise in the inte-
grals in (3) to obtain,

The equation for Tt"& (r'r) follows from Eq. (11),

V(r)
Tt"& (r', r) = o(r r')—

rs

where

+ dr" (r")'T'"& (r', r")G„(r",r) V(r), (15)

I +1(mr&)X~+1(mr))
G„(ri,r,) = (16)

+16m'
T'"'(q', q) = r'drJ +i(q'r) V(r) lt„(q,r). (17)

r&= min(ri, rs) r&=max(ri, rs) .

l and E are modified Bessel functions.
From the integral equation (15) and the equation for

the scattering amplitude (14) we can construct the
scattering amplitude in terms of a scattering wave func-
tion P(q, r),

Ti(p', p) = d'xd'x'e 'ts' *'+"s *Tt'&(x',x). (10) The wave function ip„(q,r) is given by the solution to
the integral equation,

The Euclidean T operator obeys the equation,

T t'& (x',x) = V(x)P (x—x')

~-+i(qr)
P„(q,r) = + dr'(r')s

y G.(r,r') U(r')P„(q, r') . (18)

+ d4x"Ttt'(x', x")Ap(x"—x) V(x), (11)

where the Euclidean space is to be understood through-
out. Tt'(x', x) and Ti(p', p) are now to be expanded in
the four-dimensional partial-wave series, '

ted+1 ~x„x„'q
Tt'&(x' x) = P C„~ ~Tt"&(r',r), (12)

=o 2~' k rr')

where q= (p„')'~ r= (x„')'~ . The C„(x) are Tscheby-
scheff polynomials (see Appendix). "

We note the relation

The mass shell is defined by q, g'=im. We now go onto
the mass shell for the initial particles, q=im, keeping
the four momenta of the final particles space-like for the
moment (q'real). From (18) and (16) follows the be-
havior of P (im, r) at infinity,

emr 7r ) 1/2

P.(im, v) ~
~

(i)"+'.
2mi

The potential V(r) behaves like e ""at infinity, where

po is the minimum mass exchanged. When m& po there
is no problem in going onto the mass shell for the inci-
dent state directly in Eq. (17). To approach the mass
shell for both the initial and final particles without
worrying about continuations requires 2m& po.

Setting q=t'm in Eq. (18) gives an integral equation
which is transformable into the differential Bethe-
Salpeter equation for the scattering wave function"
lt „(Im)Re)

(V'„'—m')iP (im, r) = V(r)g (im, r), (20)
XJ~i(q'r') T'"'(r', r)J +i(qr) . (14) where

d' 3 d ts(n+2)
p s — +

t' dt'

' J. S. Goldstein, Phys. Rev. 91, 1516 (1953).' J. Schwinger, Proc. Natl. Acad. Sci., U.S. 44, 617 (1958).
9 The first use, known to us, of the expansion in hyperspherical

harmonics in a scattering problem was by M. Gourdin, thesis,
University of Paris, 1959 (unpublished). The expansion (13) for a
zero-energy problem, was used by M. Baker and I. Muzenich (to
be published) who attribute it to J. D. Bjorken.' See, e.g. , Higher Transcendenta/ ENnction, edited by A.
Krdelyi (Mcoraw-Hill Book Company, Inc. , New York 1955),
Vol. 2 Chapters 10 and 11.

(21)

"Related radial Bethe-Salpeter equations in renormalizable
models have been considered recently in connection with the
-bound-state problem by A. Bastai, L. Bertocchi, S. I'ubini, G.
Furlan, and M. Tonin (to be published), and by G. Domokos and
P. Suranyi, Nucl. Phys. (to be published). Also see S. Fubini, in
Report at the Stanford Conference on Nuclear Structure, 1963
(unpublished).
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This equation is to be supplemented with a boundary
condition at the origin which we can determine only by
knowing the potential V and a boundary condition at
infinity, Eq. (19) (really a normalization condition,
analogous to the normalization of the incident Aux in
ordinary scattering theory).

The problem has now been formulated: to solve Eq.
(20) with the boundary condition (19) at infinity and
with behavior at the origin such that the integrals in
Eqs. (14), (15), and (18) converge. We now look for
models in which this problem has a unique solution.

V(x) = ——(TrF'y, F 'y, )Tr( [(iy"8„—p) 6 (x)7F.
16

X[(—'~"&„—&)& ()7&), (23)

where p is the inass of 8 and hr(x) is now the Feynman
propagator with mass p.

For the four types of coupling we shall consider the
potentials defined by Eq. (23) come out to be (with
Euclidean metric now understood)

(a) Scalar V(r) = li'[—(B„hr(x))'+m'Dr'(x)7, (24a)

(b) Pseudoscalar
V(r) =7'[(8 6r (x))'+p'6r'(x) 7 ) (24b)

(c) Vector V(r)=7~'[—2(ej„hi (x))'—4p'6&'(x)7, (24c)

(d) Axial vector
V(r) = li'[2(B„hr(x))' 4p'AF—'(x)7 (24d).

Leaving out the 8 functions at the origin we have

6p(r) = (p/4m-'r)Ei(pr) . (25)

We see that in each case V(r) behaves near the origin
asr '.

lim V(r) =4G/r'

where

(a) (S) G= —7 s/47rs,

(b) (P) G= 7 '/4n',
(c) (V) G= —7is/2s',
(d) (A) G= 7 s/27r'. (26)

These singularities in the cases S and V are attractive,

A, A

III. THE INTERACTION FUNCTIONS

Our Bethe-Salpeter kernels are those associated with
the graph of Fig. 2. We take the interaction Lagrangian,

Z,=-,'7, (1t,r'tt, )(4 rA ) (22)

and consider S, P, V, or A couplings.
The potential V(x) defined by Eqs. (7) and (5) is

given by

FIG. 3. "Local" ker-
nels. They do not change
the solution for the
repulsive cases and are
to be discarded.

in the cases P and A repulsive, if we make an analogy of
Eq. (20) to the Schrodinger equation.

IV. SOLUTIONS NEAR THE ORIGIN

The solutions to Eq. (20) near the origin for the cases
a and c in which the r ' term in V(r) is attractive are of
the form.

v'I GI
f„(irl,r) ~ constXexp +, r~ 0.

r2
(27)

In the repulsive case it is clear that the regular solu-

tion, that is the solution which vanishes exponentially
at the origin, must be chosen in order that the integrals
in the integral equation (18) exist. This integrability is
the only boundary condition to be met, the condition at
infinity, Eq. (19), being a normalization convention
which can be satisfied except in the exceptional case of
a bound state.

Therefore we find a unique and well defined solution
to the integral equations (18) and (16) in the case of a
repulsive short-range force.

The term 5(r'), which was omitted from the Feynman
propagator in Eq. (25) cannot have any effect on the
scattering in the repulsive cases, in which the wave
function vanishes at the origin faster than any power of
r. Likewise certain additional terms which correspond
to 6-function potentials may be added to our original
Bethe-Salpeter kernel without changing the scattering.
Figure 3 gives the diagrammatic representation of two
such "local" kernels.

In the case of the attractive short-range force, Eq.
(27), the solution is apparently not well defined. The
boundary condition at r=0 is ambiguous since both
behaviors of (27) at the origin are equally regular. Also

there is no reason to discard the 8-function terms at the
origin in this case. These terms are completely unde-
fined since the potentials (24) involve products of
singular functions.

There is a possibility of treating this case by supple-
menting the differential equation (20) with a boundary
condition at the origin. The field-theoretic analog of the
procedure of Case" for the treatment of scattering by
singular potentials would be to impose the boundary
condition,

In the repulsive cases, b and d, the solutions are of the
form

gG-
f (Ae, r) ~ constXexp +, r —+0. (28)

r'

FIG. 2. The Bethe-Salpeter kernel. S B P„(iris,r) —& const cos((IGI/r')+&p).~0
"K, M, Case, Phys, Rev. 80, 797 (1950),

(29)
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Here p is an additional parameter necessary to de6ne
the theory. Its physical signi6cance is unclear. By
analogy with Ref. 12, p should be independent of the
total energy. But it is unclear whether one should pick
a single q for all angular-momentum states e, or a
different q(n) for each value of n. The latter choice
would involve the infinite number of parameters one
expects in a nonrenormalizable theory. Choosing a
universal y, however, might give a well-de6ned theory;
we could even hope that choosing p was equivalent to
giving a de6nition to the product of singular functions
which occurs in the potential.

Though all our considerations have been for the case
of zero-total energy we may anticipate that the be-
haviors at the origin (27) and (28) are independent of
the total energy. The difficulties in carrying through an
analysis which takes correct account of the most singu-
lar force and treats the energy as a perturbation (in
analogy to the work of Predazzi and Regge) are con-
nected with the additional variables which enter the
problem when 5'„/0."We have found no simple way
to approach this problem.

V. AN EXACT SOLUTION

(2)5/2~2

&oo&
= (G)

r(-;)

(VG)
I

= 4~+'G
(ys)

(35)
All the remaining terms in (13) vanish in the limit

q, q' ~ 0. We thus obtain a closed form for the complete
2'-matrix element of (10).

Tg(0,0)= -,'QG= X/16m-. (36)

Since the total energy and all masses are zero for this
solution, X is in fact the only quantity of dimension
(length)' remaining in our theory. With all particles of
zero mass, however, infrared divergences might have
been anticipated. Thus we expect a result of the form

Here we have retained the leading term for small q. We
shall set q= 0 later. By direct substitution we verify the
solution of (33) to be given by Eq. (32) with

A = (G) "/'+'/4q "+'2 '/'" '/'PF (1+n)r ('-+ -s)j-' (34)

The mass-shell T-matrix element is given by Eq. (1'7)
in the limit in which q and q' approach zero. For the case
n=0 the powers of q, q' disappear completely and we
obtain

We consider the cases of pseudoscalar or axial vector
coupling, (24b, d), with zero-mass particles exchanged.
For @=0Eq. (24b) becomes

lim Tg(q, q) = lim Xf(kq),
q—+p q—+P

(3&)

V(y) = 4G/yo (3o)

We also take zero mass for the scattering particles,
ns=0. The differential equation for f„(0,y)=i/„(y),
Eq. (20), becomes

t'd' 3 d n(n+2)) 4G
+ l4-(y) =—~t. (y)

&dy' ydy y' ) y'
(31)

The regular solution of (32) is,

f„(y)= (A/y)K( +1)/2( QG/y') . (32)

G r

dy~ (y~) ~ oP(y~)—
n+1 o

dy'(y') " ii (y') . (33)

'3 A possible method is outlined by G. Domokos and P. Suranyi
(unpublished) .

Because all masses are zero we may no longer use the
boundary condition (19) to determine the constant A
in (32). We determine the normalization instead by
substituting the potential (30) into the integral Eq.
(18) and taking the limit q ~ 0, obtaining,

(2)
—n—1 n+1

4-(y) =
(2+n)

in which the limit might be expected to be zero or
infinity. What is worthy of note here is that the limit is
finite.

VI. DISCUSSION

Since we have dealt only with the very special case of
a single invariant amplitude, at zero total energy, and
in the ladder approximation, we must ask if any of the
results are of more general signi6cance.

The interesting property of our model is that it con-
tains all of the pathologies of a nonrenormalizable field
theory, in a perturbation expansion. Yet it allows a well
defined and unique solution, provided that the problem
is formulated from the Green's function equations in
space-time. The integral equation itself cannot be
written in momentum space, although the solution is
Fourier transformable so that the scattering amplitude
exists.

There are two properties of the "bubble exchange"
potential (interaction kernel) which create the difhculty
in the perturbation expansion, and it is important for
our purposes to consider these properties separately.
The potential near the origin in the Euclidean space
(i.e., near the light cone) consists of an analytic part
with an r ' singularity at the origin plus a part with an
unde6ned product of 8 functions. However, we escape
the problem of defining this product in the cases in
which the coefficient of the r ' singularity corresponds
to a repulsion. In this case the Bethe-Salpeter scattering
wave function approaches zero so strongly at the origin
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that no products of 8 functions and their derivatives in
the potential can have an effect on the scattering. An
additional dividend in these cases is that we can dis-
card a class of contributions corresponding to "local"
graphs (Fig. 3) from the interaction kernel.

Our 6rst hope for a more complete theory is thus that
a short-range repulsion may act between every pair of
particles. If this repulsion is suKciently singular we may
expect that every two-body Bethe-Salpeter scattering
wave function goes at small distances as exp( —Xr ')
where a&0, and that the solutions to all integral equa-
tions in space-time are unique, well defined, and Fourier
transformable.

But it is quite likely that no model can be found with
a repulsion in every state (e.g. , for AA scattering as
well as AA scattering). It must then be asked if we can
replace the effect of the undefined terms at r=0 by a
boundary condition, analogous to that of Case in the
case of a too-singular attractive potential. This pro-
cedure would introduce new parameters, but possibly
only a 6nite number of them.

APPENDIX A

We begin from the integral equation for the Green's
function,

G12(x1)x2 j xl yx2 ) Sl (xl xl )S2 (x2 x2 )

We define

T(x,x', W) = e('~~') "T(x,x',y)d'y. (A6)

APPENDIX B

Ke list some properties of the hyperspherical har-
monics which have been used (see Ref. 10)

dQq ——sinP(d cosP) (d cose) (dq), (Bi)

For the particular case 8"„=0and

V(x),x2,xg )x2 )=()'(x(—x2')5'(x2 —x2') U(x( —x2) ) (A7)

the integral equation for T(x,x')= T(x,x'—
,0) reduces to

(5)
According to Ref. 8 Eq. (A1) can directly be trans-

formed to an equation of the same form in a Euclidean
space. If we accept this result the only question remain-
ing is whether the time integrals for the removal of the
center-of-mass motion (A6) and in the expression for
the scattering amplitude in momentum space (3) may
be rotated to the imaginary axis. As mentioned before
there is no problem in rotating the contours in (3)
provided that the relative energies po and po' are zero
The time integral in (A6) however may be rotated
(clockwise by —,'m. ) only in the region, Wo(2m, because
of the convergence problem at y0= . In our case,
S'„=0 there is no difhculty.

+ G12(xi+2 j xl )x2 ) V12(xl )x2 )fx) yx2 )
C„(cosP)=sin()4+1)P jsinP, (82)

)(S (1)(xl xl )S (2) (x2 x2 )dx1 dx2 dxl dx2 i 1
(A1)

where spinor indices have been suppressed but are
implied in the subscripts 1 and 2.

Abbreviating this equation as

G(,g= S(S2+G(2V)2S(S2,

we define T of Eq. (5) by

dQ)C„(cosP, ),)C„(cosP),f) = C„(cosP,r), (83)
s 1

~(lpl —I&l) - ~+1
s'(p-0) =- C («sP . ) (84)

~=o (2~)'

00 I +g(pr)e'""*"=Q 2(n+1) (i)" C„(cosP, .) . (85)

G(2= S(S2+S(S2TS4S2 ~

The integral equation for T follows,

T(u ——Vis+ Tg2S(Sg Vg2.

(A3)

In T)2(x~,x2, x&',x2') we introduce relative coordinates

x( x2 x x). x2 y xl+x2 x( x2 ~ (A5)

v+1 I~) (mr~)E~~(4)4r~)
A~(x—x') = Q C„(cosP)

n=0 rr'

r = (x„')'~'; r~ minr, r'; r& ——maxr, r—'—.

)

(86)

For x4=ix(), and x4'=ixo' real (i.e., for the Euclidean
case)


