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The foundations of a relativistic theory of the deuteron-electromagnetic form factor are discussed. The
theory is based on single-variable unsubtracted dispersion relations and coupled unitarity equations. Be-
cause of the presence of very low anomalous thresholds, only a few diagrams need be considered to give a
satisfactory low-momentum transfer theory, and the diagrams with thresholds below 36 p,

' are tabulated.
The scalar theory for a subset of these diagrams (corresponding to a one-pion-exchange approximation) is
examined and found to be in close correspondence with potential theory. Special attention is given to the
anomalous thresholds. The role of the 3-pion state is discussed. Numerical calculations are reserved for
future papers.

1. INTRODUCTION AND SUMMARY

HK deuteron, as the only bound state of two
nucleons, has been a subject of interest to physi-

cists since the discovery of the neutron. However, until
the advent of high-energy electron scattering experi-
ments in the last decade, the only experimental data
available regarding the deuteron were its binding
energy, effective range, and static moments: charge,
magnetic moment, and quadrupole moment. ' As a re-
sult, little information could be obtained from the
deuteron regarding the detailed nature of the nuclear
force.

With the use of high-energy electron scattering ex-
periments, one can now measure the matrix element
shown in Fig. 1, which is commonly called the deu-
teron form factor. Measurements have been made by
McIntyre and 8urleson, ' Friedman, Kendall, and
Gram, ' Littauer, Schopper, and Wilson, 4 Friedman and
Kendall, ' Grossetete and I.ehmann, ' Drickey and
Hand, 7 and Erikson. '

The deuteron form factor depends only on the mo-
mentum transfer, s= q', the physical region being s(0.
By assuming crossing symmetry, one can obtain the
annihilation form factor from the scattering form
factor, its physical region corresponding to s&4M'.
Both form factors can be expressed in terms of three
scalar functions of q', G&, G~, 6@,which are the charge,

magnetic moment, and quadrupole-moment form fac-
tors. The electron scattering experiments mentioned
above can only give us information about two combina-
tions of these three invariants LGo'+2(s/6M')'Go' and
GM' for example) but this can already give us con-
siderable insight into the detailed behavior of nuclear
forces. It is the purpose of this paper to lay the founda-
tions for a relativistic calculation of the form factor
using the techniques of single-variable dispersion rela-
tions and generalized unitarity. In a later paper we will

describe a calculation based on these considerations. '
Jones" has done a less extensive calcu1ation along
similar lines, and Nuttall" has independently obtained
many of the results in this paper.

Before we introduce and suDDnarize our work, it is
desirable to review brieQy the progress on this problem
to date.

The literature on this subject is quite extensive, as an
examination of Ref. 1 will indicate. It is true, however,
that very little success has been achieved in obtaining a
fundamental relativistic theory of the deuteron. The
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FIG. 1. The deuteron form
factor (a) in the scattering
channel (physical region s(0)
and (b) in the annihila-
tion channel (physical region
s)43II').

(b)
' F. Gross, Ph. D. thesis, Princeton University, 1963 (unpub-

lished); F. Gross (to be published).I H. F. Jones, Nuovo Cimento 26, 790 (1962)."J.Nuttall, Nuovo Cimento 29, 841 (1963).

8405



B406 G ROSS

U

FIG. 2. The three diagrams
for which the numerical re-
sults have been obtained.
Double solid lines represent
deuterons or antide uter ons,
solid lines are nucleons or
antinucleons, dotted lines are
pions. The vertical dotted
line denotes how the diagram
is "cut," i.e., which particles
are regarded as part of
the intermediate state. Heavy
solid lines denote nucleons (or
antinucleons) which are not
on the mass shell. The same
key is employed in the follow-
ing figures as well.

» S. Gartenhaus, Phys. Rev. 100, 900 (1955); T. Hamada and
I. D. Johnston, Nucl. Phys. 54, 382 (1962)."¹K. Glendenning and G. Kramer, Phys. Rev. 126, 3159
(1962).

"V.Z. Jankus, Phys. Rev. 102, 1586 (1956)."J.A. McIntyre and S. Dhar, Phys. Rev. 106, 1074 (1957).
"M. Gourdin, Nuovo Cimento 28, 533 (1963).

currently popular approach involves choosing a po-
tential for a nonrelativistic Schroedinger equation. The
potential is required to behave as the one-pion-exchange
approximation (OPE) at large distances (calculated
from second-order perturbation theory using a suitable
interaction Hamiltonian) and is assumed to have an
infinite hard core at a distance of about (2li) '. A num-
ber of arbitrary parameters are included in the inter-
mediate range, and these are adjusted to fit scattering
data and static deuteron data. Two-nucleon potentials
have been determined in this way by a number of
physicists. ""

After a potential has been chosen, one can use this,
and the nonrelativistic theory of Jankus, " to analyze
the deuteron form factor. ' ' ' "'s The Jankus theory
leads to an expression for the deuteron form factor in
which the isoscalar nucleon form factors appear as a
factor:

Gc(s) =Fc(s)Cg(s),
Gsr(s) =Fc(s)Cr, (s)+Fsr(s)CB(s),

Gq(&) =Fc(s)C0(s),

where the C's are known functionals of the deuteron
wave function. "If one believes this theory, then one can
deduce the neutron form factor from deuteron and

proton form factor data. Conversely, one could take
neutron form factor data obtained from, say, the in-
elastic experiment and obtain information about the
deuteron. At high momentum transfer the latter pro-
cedure is probably the least subject to ambiguity.

No matter which point of view one takes, the above
approach to the deuteron has several limitations which
have already been discussed by Gourdin. "The most
serious limitation in our mind is not in the restriction to
a nonrelativistic wave function, but in the Jankus
theory itself. This theory gives no indication of what has
been left out, or how to calculate "corrections. " These
corrections include the eGects of exchange currents and
off-mass-shell contributions arising from the fact that
the nucleons are bound and not free. In principle, the
only way even to delne these correction terms is to
have a theory which is fully relativistic and which,
perhaps, can be made to reduce to the Jankus potential
theory at low energies. Then one can isolate the correc-
tion terms, and try to calculate them. Vntil one has
such a theory, one can do no more than guess at the size
of the errors involved, although it is reasonable to be-
lieve they are small at low-momentum transfer.

An additional limitation of the potential theories is
that they invariably involve a number of undetermined
parameters, which are adjusted to fit the data. It would
be most gratifying to have a theory which had no such
parameters, so that one could claim a fundamental
determination of some of the deuteron static moments.

This brings us naturally to the objectives of the
present paper. We are interested in developing the
foundations of a fully relativistic theory of the deuteron
which is fundamental in the sense that very few
phenomenological parameters occur, and in the sense
that all of the effects which must be taken into account
are included. Such a theory could then serve as a basis
from which to make approximate calculations.

Let us hasten to add that what we present here
represents only a partial step toward realizing the above
objectives. However, a calculation has been performed
which seems to us to justify this approach, ' but it is by
no means clear at this time that this approach to the
deuteron will ultimately prove to be the best. Further-
more, at present our calculations are not sufFiciently
complete to compete with potential theory as a research
tool. Their principal value at the moment seems to be in
verifying in detail long-held convictions that the S-
matrix theory of scattering processes already contains
the description of bound states.

In Sec. 2 of this paper we discuss the diagrams which
should be considered in a relativistic calculation and
isolate those which have the lowest threshold. We also
discuss a particular class of diagrams which seems to
relate closely to potential theory. The diagrams in Fig. 2
are the first three members of this class and as such play
a central role in any calculation. In Sec. 3, we present
the calculation of the diagrams in Fig. 2 for the case
where all of the particles are spinless and show how the
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deuteron vertex calculated by Blankenbecler and Cook'

~=V lf.l»
plays a role similar to that played by the deuteron wave
function. This complements the work of a number of
authors" "and enables us to make a direct comparison
between relativistic theory and potential theory. Then,
in Sec. 4 we lay more carefully the foundations for a
relativistic theory using a modified form of the
Blankenbecler" matrix X/D method. Our analysis is
general enough to include spin and we clarify a number
of questions in this section pertaining to the decomposi-
tion of the form factor into additive and nonadditive
parts.

A full numerical calculation with spin based on the
diagrams in Fig. 2 has been carried out. By assuming
known values of the pion-nucleon coupling constant,
and that unsubtracted dispersion relations are valid, the
three deuteron form factors can be calculated in terms
of only one free parameter, which can be interpreted
nonrelativistically as the normalization constant of the
wave function. If this is chosen to give the correct
charge, one completely determines the invariant func-
tions, which agree with known experimental data to
within 10%.

Throughout the paper we have let DE=deuteron
mass, m=nucleon mass, and p=pion mass.

2. SURVEY OF CONTRIBUTING DIAGRAMS

In this section we undertake a systematic study of the
diagrams which contribute to the form factor of the
deuteron. Although our discussion has the flavor of
perturbation theory, it is not based on perturbation
theory, but on dispersion relations with unitarity. This
means that our diagrams are not Feynman integrals but
dispersion integrals, and as such include (1) the par-
ticles which are to be regarded as the intermediate state
(indicated by a dotted "cut" in the diagram), (2) the

approximations to be taken for the initial and final
amplitudes when evaluating the absorptive part. Hence,
each diagram represents a cut and the corresponding
discontinuity across that cut in the complex s plane. All
diagrams have cuts along s)0 only, and according to
the usual assumptions in dispersion theory, those dia-
grams with the lowest thresholds (thresholds closest to
the physical region s(0) are regarded as the most im-

portant while those with higher thresholds are neglected,
or treated phenomenologically. Ke will limit ourselves
to a world of nucleons and pions only.

In the usual situation in which dispersion theory is

'7 R. Blankenbecler and L. F. Cook, Jr., Phys. Rev. 119, 1745
(1960).

' L. Bertocchi, C. Ceolin, and M. Tonin, Nuovo Cimento 18,
770 (1960).

'9 R. K. Cutkosky, Proceedings of the i%60 Annual International
Conference on High Energy Physics est Rocheste-r (Interscience Pub-
lishers, Inc. , New York, 1960), Vol. 10, p. 236; L. Durand, III,
Phys. Rev. 123, 1393 (1961)."R. Blankenbecler, Phys. Rev. 122, 533 (1963).

(a) (b)

Fzo. 3. Complete
set of diagrams
with thresholds be-
low 36@,'. The thresh-
olds are marked be-
low each diagram.
For a key to the dia-
grams see the cap-
tion to Fig. 2.

(e)

employed, the use of diagrams is of little more than
symbolic value, because the initial and final amplitudes
are unknown, and all diagrams involving the same
intermediate state have the same threshold. Hence, in
this case, dispersion theory provides no justification for
choosing one approximation over another. The presence
of anomalous thresholds changes the picture however;
in this case one approximation for an initial or final
amplitude will often have a lower threshold than the
others, and hence can be taken as a legitimate first
approximation. In the case of the deuteron form factor
this situation occurs in the extreme, and there are only
a few diagrams (which can be calculated approxi-
mately) with the lowest thresholds. It is our intention in
this section to display those diagrams with the lowest
thresholds.

The famous nucleon triangle diagram has been well
discussed elsewhere. "' ' It is known to have the lowest
threshold, which is at 1.73ts'. Since the normal threshold
for this process is at 4ttt' —181tt' (m = 6.72 ts), the signifi-
cance of the anomalous region is overwhelming. Fur-
thermore, this single diagram provides the exact con-
tribution to the imaginary part up to the threshold for
the 3-pion state, 9p', and it can be calculated. However,
one can show that this diagram cannot provide a very
good approximation by itself. '

There are many diagrams which contribute above
9p,", to list them all is an impossible task. %hat we will
content ourselves with here is to present a partial list
of some of the more interesting diagrams. First, in
Fig. 3 we present a complete list of all of those diagrams
with thresholds below 36p,'. The choice of 36',' is some-
what arbitrary. Above 36@,', a great many more dia-

"R. Blankenbecler and Y. Nambu, Nuovo Cimento 18, 59$
(1960).
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If we write

A '=m'+2K, ,

then to a good approximation for small A. ,

sz(Xthshs) =4((rr +At+As)' + (n +At+As)'")') (2.2)

(a) (b) (c)
Fro. 4. (a) General diagram used to generate diagrams in Fig. 3.

(b) Specific example of diagram shown in (a) with AI =m, 42=m
+p, A4=m. (c) Dual diagram corresponding to (a).

(2.1)

where,

6 (a b) =6 (b a) = ([a'—(M —b)') [(M+b)' —a') }'"

grams contribute than can be easily discussed, and hence
the absorptive part above this threshold will probably
have to be estimated in some approximate manner
anyway. In addition, one can show roughly that con-
tributions to the absorptive part above a given energy s
do not become important until a distance of approxi-
mately a 4/s'". For s'"=6l4, the relevant radius is
0.67 pion Compton wavelengths or about 1 F. Hence,
the precise structure of diagrams with thresholds above
36@,' should not matter, and it cag. be hoped that a
careful treatment below 36p,' coupled with some reason-
able estimates for the absorptive part above this region
would give a good relativistic description of the low-

energy properties of the deuteron.
In our future discussion we shall ignore the 3- and

5-pion intermediate states, the diagrams shown in
Fig. 3 (f) and 3 (g). It is our feeling that the contribution
of these diagrams is not negligible but a serious attempt
to estimate their magnitude is diKcult and is planned
for a later paper. We will have more to say about these
diagrams in Sec. 4.

It is perhaps worthwhile to sketch in detail how the
rest of the diagrams in Fig. 3 were chosen. We begin by
considering the general class of diagrams shown in
Fig. 4(a). An example is shown in Fig. 4(b). The masses
A~, A2, and A3 are the combined masses of nucleons and
pions exchanged across each leg of the fundamental
triangle. Now it can be shown that the threshold for
such a dispersion integral is the same as the threshold
for the corresponding Feynman integral, where the A;
are regarded as discrete masses. But this threshold can
be easily calculated using the technique of dual dia-
grams. " [The dual of Fig. 4(a) is shown in Fig. 4(c).)
One obtains easily

where 0.'=me and e is the deuteron binding energy.
Hence, the threshold is monotonic in the masses, and
increases rapidly with the differences A,'—m'.

Now since the particles in the intermediate state
must always be on the mass shell in dispersion theory,
the only values of X which need be considered correspond
to those values for which this is possible. If A=m+44,
then X—7.22'', and the thresholds are all above 36''.
Hence, the only cases which need be considered are
those for which the deuteron vertex has an anomalous
threshold. All such cases have been shown in Fig. 3, and
their corresponding thresholds as calculated from Eq.
(2.2) have been so indicated. In the next section we
shall see in detail how this happens in a few special
cases, and hence we shall not discuss it further here.

The diagrams presented in Fig. 3 cannot be calculated
easily, because they contain unknown form factors. To
simplify the calculation we can express these form
factors in terms of the nucleon form factor by intro-
ducing the pole approximation. For example, denoting
the nucleon-antinucleon pion form factor shown in
Fig. 3(b) by F4, we have for spinless particles

Fs(S)g Fs(S)g
F4(S,Nn) = + +F4'(S,ut4),

m —s m —I (2.3)

FM. 5. Diagrams
resulting from Fig. 3
when photon form
factors are replaced
by a pole approxima-
tion. The 3- and 5-
pion states have been
excluded.

where u' ' is the rest mass of the nucleon and pion and
8' ' the rest mass of the antinucleon and pion, and g is
the pion-nucleon coupling constant, Ii2 the isoscalar-

"See, for example: J. C. Polkinghorne in 1967 Brandeis Summer
Institute Lectures in Theoretical Physics (W. A. Benjamin, Inc.,
New York, 1962), pp. 118, 130.



DEUTERON ELECTROMAGNETIC FORM FACTOR. I

nucleon form factor and Ii 4' the part of the form factor
which does not contain a pole in u or I at m'. Retaining
only the pole terms of the above expansion (and simi-
larly for Fo, the nucleon-a, ntinucleon 2-pion form factor)
one obtains the new set of diagrams shown in Fig. 5.
Such an approximation is equivalent to retaining only
"additive" terms (a term introduced by Cutkosky"),
and it appears that the so-called nonadditive terms
contain F4' and Ii~' as well as the 3- and 5-pion contri-
bution. Hence, even though it might be dif6cult to
calculate these correction terms in practice, in principle
they are clearly delineated, and there is no ambiguity
as there would have been had we started from potential
theory.

As we have remarked already, we will devote our
principal attention to a small but important subclass of
the diagrams shown in Fig. 5, and these have already
been shown in Fig. 2. The first two diagrams (a) and (b)
are those with the lowest threshold, but the choice of
the third (c) is less easy to justify. In fact we can
present no rigorous justification for its choice, except to
say that it (along with the other two) admits a very
beautiful interpretation in terms of potential theory.
One can, in fact, single out a whole set of such diagrams
which admit of an easy interpretation through potential
theory. The simplest of these are shown in Fig. 6. We are
tempted to call these potential-theory diagrams, with
the implication that it is this subclass of diagrams which
is described by (Jankus) potential theory. It is not
clear that this is a meaningful distinction, or that it is
correct. If it is, then one could regard the diagrams in

Fig. 5 which are not contained in Fig. 6 as "corrections"
to the additive part of the form factor. We shall have
more to say about this in the next section, but for the
moment the detailed relationship between this theory
and potential theory awaits further clarification.

3. SCALAR THEORY OF THE DEUTERON

In this section we limit ourselves to scalar particles
for pedagogical reasons. Our main goal is to display the
structure of the contributions from the three diagrams
shown in Fig. 2, with particular emphasis on careful
treatment of the anomalous thresholds, and this does
not depend on the presence of spin.

FIG. 6. The first
few members of a
set of diagrams pos-
sessing an immediate
interpretation in po-
tential theory. Each
diagram contributes
a term in the expan-
81011 of (Fo+o y+o'o
+ )' and these
terms are indicated
in the figure.

Our results can also be obtained with the use of the
Cutkosky rules for obtaining discontinuities of Feynman
diagrams. "We have not used these rules, however, as
they apply to Feynman diagrams and we wish our
treatment to apply to the more general dispersion theory
diagrams. While it may be true that the two approaches
are equivalent in these simple eases discussed here, we
feel that confusion can be avoided by doing the con-
tinuations explicitly.

It is necessary to adopt a notation and develop the
kinematics of 2-, 3-, and 4-particle intermediate states.
Our choice of variables is illustrated in Fig. 7. For two
particles we choose s= (ni+no)' and the angle 0 be-
tween ei and a reference axis in the center-of-mass sys-
tem. For three particles we choose either s = (ni+ no+ no)',
u= (ni+no)', Z—the orientation of the 1—2 pair with
respect to an arbitrary axis in the center of mass of the
1—2 pair, and 0—the angle between e3 and a reference
axis in the total center of mass; or s, I', Z', 0', the same
set of variables with e~ and e~ interchanged. For four
particles we choose s= (ni+no+no+n4)', ui= (ni+no)',
uo= (no+n4)', Zi—the orientation of the 1—3 pair with
respect to an arbitrary axis in the center of mass of the
1—3 pair, Z2—the orientation of the 2—4 pair in its center
of mass and 0—the orientation of ni+no in the over-all
center of mass.

With this choice of variables, the 2-, 3-, and 4-particle
phase space integrals can be reduced to a convenient
form.

p(s; ntrn)dQ,
d'nod'n~

54(ni+no s"')=-
(2m) o4n /no

d nid nod k
84(n, +n, +k —s"') =

(2or) ogn, on, ohio

d'n 'id,n' dk'id,k
5'(n)+no+ki+ko s"')=-

(2m) o16n ion o k ioko

p(s; u't'nt)p(u; mp)dQdudZ,

p($ j u] uo )p(u], j Bzp)p(uo' , rrlp)dQduidugdZgdZ2 )

(3.1)

"R.E. Cutkosky, J. Math. Phys. 1, 429 (1960).
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where the e; are nucleon four momenta and the k; meson four-momenta and

1 Q(s; mtms)
p(s; mtm..) = 8fs—(mt+ms)'],

(2s)' 4s(1' (3.2)

(ts —(m,+m, )'][s—(m, —m, )'])'&'

Q (s; mtms) =
~

4s

I.et us now turn to an examination of the integrals corresponding to the diagrams in Fig. 2. If the isotopic nucleon
form factor is denoted by F(s), the deuteron-nucleon coupling constant by I'(), and the pion-nucleon coupling con-
stant by g, then the deuteron form factor, G(s), becomes (for small M')

1 "ImG(s')
G(s) =— -ds',

gp s —s

+' I' 'F (s) 00

ImG(s) = (2s)s ds„p(s; mm) + (2s.) s

m+p) '

p(s; mu'Is)p(u; mu)I's'g'F(s)
dse~sw

(m' —u) (m' —t)) (m' —te)

p (s; u'('u'( )p(u; my) p(u; my) r()'g'F (s)
dsvdsmds

(ms-u)(m' —u)(ms —t )(m)' tt))(—m' )tI)—

(3.3)

We have performed the p integrations. Note also the
extra factor of 2 in the second term, because there are
two such diagrams which contribute to this term. The
variable s, is the cosine of the angle on which v depends,
and the angles are defined so that this integration is
always in the rest system of the virtual particle which
corresponds to v. For definitions of I, I, v, z, and w
see Fig. 2.

Equation (3.3) is obtained by the application of
unitarity to the diagrams in Fig. 2. In applying the
unitarity argument we assume that M is very sma)l, so
that the thresholds of the various intermediate states
will be greater than the physical threshold at 4M'.
Then, we will give 3P a small imaginary part (its sign

Q

S

Fxo. 7. Representation of
choice of variables used to de-
scribe 2-, 3-, and 4-particle
intermediate states.

n
s

does not matter) and continue 3P to physical values. ""
This will give rise to the anomalous thresholds, and a
resulting simplification of the above equation.

Before we proceed with the calculation we wish to call
attention to the curious fact that Eq. (3.3) as it stands

$i
&a

.&c

4 / - FlG. 8. Pole diagram Il-
y ( $; gt;, bd) lustrating the de6nition of

ri p($& sc,bd).
Pd

is certainly a bad approximation to the absorptive part
of the deuteron form factor. Above 9p', F(s) is complex,
but the rest of the equation is real, and hence, if we took
Eq. (3.3) literally, ImG would be complex and G would
not be a real analytic function. This is certainly wrong
for, among other things, it would impIy that the charge,
magnetic moment, and quadrupole moments were com-
plex. The resolution to this dBIiculty lies in the fact that
we have neglected the very important contribution of
the three-pion intermediate state, which if included
would presumably cancel the imaginary part of (3.3)
making the total expression real. Hence, to be con-
sistent, we must regard F(s) as real in Eq. (3.3). Such a
drastic approximation is by no means a limitation on the
present calculation, however, for the situation can be
handled very nicely (and correctly) by treating the
problem as a coupled-channel problem. Such a formula-
tion is sketched in the next section, and for the time
being we will regard F as real, waiting for the next
section to make things right. Let us return now to the
calculation.

s4 S. Mattdelstam, phys. Rev. Letters 4, 84 (1960).
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ill have the formv m a rms of s„s„and z„-.p
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1s

momentum
-of-mass systemner s in their center-o—

2 1/2s—(a+b)'ll s—(a—b)'j) '
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s ab)=i

(s+a' —b') .
2S1/2

Q(

E . 3.2). Note thate that occurred in Eq.T is is t e same Q t
r of the par icthe total energy o

Q2(s; ab) =La2+Q2(s; a
p(u, v) =

m2 —S

g2Pop(u; mp)
)

m —;Mv)m2 —2v(u; mp,

then we can wnte q.
'

e E . (3.3) as

In general, a e w

o sj~dv=, 2=a2+b2=2Qp(s; ac)Qo

Colved are e,pe articles invo

+p,)' (see Fig. ).
. ac bd). Furt er, i

an a
t eh general nota: — . ac
6ne the integra

p, (u, v)p 2

dup(s; u"'m)ImG(S) =22r2F(S) p(S; mm +2
m' —v(s; mm, MM) " MM)%pe

—'v s) Res )—1

p(u, v) p(u, v)
12 12dup(s; u'~2u"'

"'u"' MM)m vs)u —u
dg

—1(m+ )'

e
'

3.7) into a formof the coro
'

A endix we castof the corollary in the ppefor sma l M. Making use of the coroe uations are valid for sma

ImG(s) = 22r2F(s) p(s; mm
Fp2ds

„2 (s'; mm)Q(s'; MM) (s' —s

+2
(~P)

dup (s,mu'~2) p, (u, m2)
1 ods

„2Q s', muu"') Q(s'; MM) (s' —s

( 't2u'~2)p(um p, u m')dip S)N Q
ds

(3.8)
1„2Q(s'; u u"' "')Q(s', MM)(s —s

ImI'(u) = 2 2pr2(;ump) (3.9)
m' —v(u; mu, Mm)1

But note that

s of 3f and I and caner 2, , d as are functions o
b as

'
the Append~.

oint to considerKe interrupt our argum om o
eon vertex s

art of this vertex
deuteron-nuc eon

OPE approxunat'imaginary part o i
for small M

g2p
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It remains only to continue the s' integral. To this end we form

1 " ImG(s')
G(s) =— ds'

4~' S —S

and do the continuation as in the Appendix. Ke encounter integrals of the form

(3.19)

J(s) =
p(s'; bc)

Js
/S —S

a( b, c, M2) ds

2Q(s"; bc)Q(s"; MM) (s"—s')

('+ b) —2m' ds

s —s/

p(s'; bc)
+integral above normal threshold,

2Q, (s'; bc)Q, (s'; MM)
(3.20)

where Q, is the continuation of Q below the normal threshold. The upper integral is neglected. Observing that

p(s'; bc) z

2Q, (s'; bc)Q, (s', MM) (2or)o4$$'(4M' —s')]'/'
we finally obtain:

where
s —s

1 &'+'&' Imp J(s') ds'
~($)=-

7l a

(3.21)
Imps�(s)

=
(2or) '4)s (4M' —s)]'/'

Using the above argument, (3.18) becomes in the anomalous region

F(s)
ImgG(s) =

8Ls (4M' —s)]'/'
I'ooSLs —s (m', m')] —2 d pug( )Iup8[$ sp(m—,u)5

dup~(u) p&(u)0)s —so(u,u)], (3.22)

where we have introduced

and

Immi'(u)

or(m' —u)

sp(u', b')—$T (0, —',(a'—m') -'(b' —m'))
—4 (L~2+1(g2 m2) 51/2+ Loto+ 1 (bo m2) 51/2)2

(3.23)

sp is the anomalous threshold for a diagram corresponding to Fig. 4(a), where the two nucleons which annihilate
to produce a photon have masses a and b and the exchanged nucleon has mass m. Now, in the case at hand we can
see that

Now n is

so (m' m') = 16n'

so(m' m'+2g —2n') =4(n+g'/o)'

so (m'+ 2' —2n' m'+ 277—2n') =4 (r/'"+ g'")'

a = (mo)" =0 328@, n'. =0.108@'

(3.24)

and the smallest value of g, go, is determined from No.

uo m'+2r/p ——2n'=m'+—3 32'', qp—. 1.77''.

Thus, the thresholds for the last two diagrams are just those given in Fig. 2:

s~o/ =so(m', uo) =4(0.328+1.33)'—11'',
sx/vow = so(uo, uo) =4(2.66) =28po.

(3.25)
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added to Im~F to account for higher states can be re-
quired to satisfy conditions like (3.33), and hence its
effect can be determined within the theory.

Finally, it seems likely that all of the diagrams shown
in Fig. 6 can be analyzed in precisely the same way, and
can be understood as providing successively higher ap-
proximations (more pions being exchanged) to the
deuteron wave function. It is likely that these diagrams
can be summed by setting up an integral equation for
the deuteron vertex, and hence, one would, in effect,
duplicate a Bethe-Salpeter approach to the deuteron. "
Whether such an approach gives the full story is unclear
at the moment, because at higher and higher energies,
the-diagrams in Fig. 6 represent a smaller and smaller
subclass of all the contributions which could be con-
sidered.

4. THE UNITARITY EQUATIONS

It is our intention in this section to lay a more careful
foundation for the treatment of the deuteron form
factor with spin. We will clarify the distinction between
additive and nonadditive parts, and present a careful
discussion of the manner in which the three-pion state
enters the calculation. (For the time being we neglect all
other multiple pion states. )

Our discussion is based on the introduction of coupled
unitarity equations. We could, if we wished, solve these
coupled equations using the matrix E/D method of
Blankenbecler. '~ A natural way to introduce spin would
be to formulate the unitarity equations in terms of
helicity amplitudes, in the way that Cook and Lee
treated E—x scattering. '" In fact, what we will do
here is equivalent to proceeding in this manner (we have
even stolen the E/D notation) but has slight technical
advantages when applied to a form-factor problem.

We propose, then, to treat the deuteron form factor as
part of a coupled system of form factors. The channels
we will consider as intermediate states are those shown
in Fig. 11. The channels are (numbered from 1 to 5,
respectively) the deuteron-antideuteron state (not re-
tained as an intermediate state and hence not shown in
Fig. 11), the nucleon-antinucleon state, the three-pion
state, the nucleon-ap. tinucleon-pion state, and the
nucleon-antinucleon, 2-pion state. Our Anal equations
can be generalized to include the 5-pion state if desired.
We shall designate the photon form factor for the eth
channel by P„, and the scattering amplitude from the
ith to jth channel by M;;. Then the statement of
generalized coupled unitarity is:

dis, F;(s,u)

1
(F;(s+—,u) F;(s ,

—u))-
2l

du'p, (s,u') F;(s+,u'+)M;; (s,u', u), (4.1a)

where the integral over I' is meant to represent summa-
tion over all of the discrete variables (spins) and
integrations over continuous variables (masses of com-

pound systems) of each intermediate state. The s+ and
s refer to values of s just above and below the real
axis and p, is the phase-space factor (multiplied by s)
characteristic of each intermediate state.

We shall immediately adopt a matrix notation, where

Eq. (4.1) becomes

dis,F(s,u) = du'F (s+,u'+) p(s, u') M (s ,
u'

,u), (4.1—b)—

where p is diagonal and Ii is a row vector. We notice
immediately that dis, F(s,u) must have no s discon-

tinuity for all s&so, or else the F will not be a real
analytic function (required by time reversal). But this
is true only if

FIG. 11.The four intermedi-
ate states (with correspond-
ing channel number beneath)
which are retained in the dis-
cussion of the deuteron form
factor in the text,

ml

du'F (s+,u'+) pM(s, u', u)

du'F (s ,u'+) pM (s+,u'—,u),

which leads to the familiar requirement

dis, M (s,u, u')

1
fM (s+,u—,u') M(s,u, u—') 5

2i

du"M (s+,u, u"+)p(s,u")
"J.Tran Thanh Van (to be published)."L.F. Cook, Jr., and B. W. Lee, Phys. Rev. 127, 283 (1962);

127, 297 (1962). )&M(s—,u"—,u')s&R. (4&)
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Hence, the scattering matrix 3f must satisfy coupled
unitarity on the right-hand (R) side. This is an im-
portant result —it indicates that whatever choice we
make for the M's must satisfy coupled unitarity, or else
we will obtain a deuteron form factor which is complex
in the physical region.

It is clear that if the scattering matrix M is known,
we can immediately obtain a solution for the deuteron
form factor from (4.1b). Since this form factor has no
extra I dependence, we would have

1
d(s, u, u') =— p(s', u) M (s',u, u') ——

s —s gs —s

X (s', u) du"M(s', u, u"+)d(s', u",u'). (4.7)

indeed describe form factors which are real analytic
functions. We will therefore assume that the d functions
are given by the following integral equations:

and

dis.Fg(s) = ImFg(s),
The remaining problem is to determine the g's. Ex-

amination of Eq. (4.7) indicates that d(s, u,u') -+0.
Hence, we see that

s'
Fg(s) =-

s —s
IrnF g(s') . (4.3)

F(s,u) = du'F(s, u'+)d(s, u' ,u)+g(s,—u), (4.4)

where g is some entire function of s, and plays the role
of a subtraction constant. Let us determine the d
matrix in terms of the presumably known scattering
amplitudes M.

To begin with, d can have no cuts in the left-hand
region, because Ii has none. In the right-hand region we
have

dis, F(s,u) = du'{dis, F(s,u'+)d(s+, u' —,u)

+F(s,u'+) dis, d(s, u', u) }

du'F (s—,u'+) p (s,u') M (s+,u', u), (4.5)

which gives

dis, d(s, u, u') =p(s, u) du"M(s, u, u"+)

X [5(u"—u') d(s,u",u') js—+R (4.6).
This is immediately recognized as the familiar discon-
tinuity of the D function in the cV/D method. Our d's

are diGerent, however; the relationship is

as one can see by rewriting Eq. (4.4).
One can verify that the unitarity condition (4.2) is

sufhcient to guarantee that dis.d has no cuts on the
right-hand Res axis and that therefore Eqs. (4.4) will

However, Eq. (4.3) is an inconvenient form in which
to express the answer, because it necessitates knowing
all of the photon form factors F„ in the unphysical re-
gion. What we would like instead is an expression of the
form (1.1) where the form factors appear factored out
of the integral. To this end we can write (in matrix
notation)

(4.8)

~' J. S. Ball, W. R. Frazier, and M. Nauenberg, Phys. Rev. 128,
478 (1962).

lim F(s,u) =g(s,u),

and the g's are related to the asymptotic behavior of the
form factors. We also see that the g's contain the u
dependence of the form factors. In these papers we shall
be interested in calculating Fi(s) only, an.d shall assume
that Fq(s) —+ 0 as s —+ —~. This is a natural assump-
tion in view of the loosely bound nature of the deuteron,
and makes unsubtracted dispersion relations valid.
Hence, since g is entire we must have go=0, and this is
all we will need to know about the g's.

It should be observed that we have not paid any
attention to unitarity in the I variables. Our formalism
can be extended to handle this case, ' but as the deuteron
and nucleon form factors have no u dependence, we have
decided to neglect this for the time being.

Equations (4.7) have some advantage over the con-
ventional formulation, in that the scattering amplitudes
themselves appear in the equations and not their left-
hand discontinuities. In treating the 3-pion contribu-
tion, this represents a considerable advantage, since if
one wishes to assume a phenomenological form for the
amplitude (cv and g resonances, for example) this can be
directly inserted into the equations without concern for
the nature of the left-hand cut. Any set of phenomeno-
logical scattering amplitudes can be used, provided only
that they satisfy coupled unitarity on the right-hand
axis.

One advantage of the above procedure is that we may
apply it after the analytic continuation in 3P has been
performed. In this way we can avoid many difficulties
which this continuation can introduce into a matrix
EjD method"

The inclusion of spin into the above formalism is now
seen to be a trivial modi6cation. Once one has the
unitarity equations, any appropriate combination of
invariants can be chosen to be regarded as the Ii;, and
one can proceed with the analysis. The relevant M;; are
just the factors remaining after the P; have been
factored out. Specifically, either Fj and F2, or Fz and
Ii~ can be chosen as the most relevant nucleon form
factors. In this work we shall assume Ii g and P~ are a
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"calibrated" so that they yield correct nucleon form
factors and phenomenological resonances.

ACKNOWLEDGMENTS

It is a pleasure to thank Professor M. L. Gold-
berger for his continuing guidance and Professor R.
Slankenbecler for many invaluable discussions. Talks
with Professor L. F. Cook, Jr., and Professor S. B.
Treiman were helpful. I have also benefited from many
informal talks with friends at Princeton and Cornell.
My wife deserves special thanks for help with early
stages of the manuscript.

Now consider the case when g is positive and
~
f(so) ~

~& [ [g(so)P~'). Since
(
s) ~& 1, the denominators are never

zero and again we may apply the same argument, ob-
taining zero for the discontinuity. Since the poles of f
are discrete, they contribute discrete zeros to I and
cannot inQuence the cut structure.

Finally, consider the case when
( f(so) [ &~

(
[g(so))'~'(,

g positive. In this case the denominators vanish, and
we must take some care with the discussion. Introduce
p(s) = f(s)/[g(s)]'~' and write

+' ds
2i dis, I(so) =

-~ [g(»))"' P(so+) zP—(so )

APPENDIX

In this Appendix we first prove the following theorem,
which is suf6cient for our applications in Sec. 3:

Theorem: Let f(s) and g(s) be any rational functions
with no poles such that 1/[f(s) —[g(s)7'"s) approaches
zero at infinity for a dense set of z in

~
s~ &~1.Then

Note that

p(so+) =p(so)+ie sgnp'(so),

P( o ) =P(so) i sgnP—'(so)

sgn(x) =+1 x)0
—1 $&0.

I(s) =
—& f(s) [g(s)]'"z

—ds' sgn(p'(s'))

[g("))"'("—s—ie)

2i dis, I(s) =I(s+) I(s )=-
—r f(s+) [g(s+))'"z

-~ f(s ) Lg(s ))"s—
Consider s=so not a pole of f. Then f is real. Suppose g
is negative. Then g'l" is pure imaginary and

where p(s)=f(s)/[g(s)]'t' and the contour C is de-
termined by

C: s=p—'(n) —1&~a&~1,

with the sense of integration in the direction of in-
creasing s. The integration limits are at so= p '(+1).

Proof: We shall prove this by showing that both
expressions have the same cuts in s. Then, they can
differ only by an entire function, but since both ap-
proach zero at in6nity this entire function can only be
zero.

To show that they have the same cuts, consider

The ie prescription tells us how to deform the contour so
that the integral remains well de6.ned. Hence, by
Cauchy's theorem, we obtain

2i dis, I(s) = 2mi/—[g(so))'12 sgnp'(so).

The contour in the s plane along which this occurs is
determined by

p(s) =n, s= p
—'(u), —1&~a&1.

That the second expression for Ihas this discontinuity
follows from the usual identity

P.V.
—+ +i~8(x' —x) .

I$ $ ZC $ $

Hence the theorem is proved.
Corollary: Let u(z) —m'= f(s)—[g(s))'~'z, where f

and g have the properties described above. Suppose

h(x, u(s)) is a real analytic function of u i e , h*—(x,.u.)
=h(x,u*) for a certain range of x—and suppose that

h(x, u) ~0I—82

as s ~~ for a dense set of z in
~
s

~
&~ 1. Then

2i dis, I(s) =
-~ f(») —[g(so'))'"s

+' h(x u)—ds=I—SZ

h(x, m') sgn( —p'(s'))ds'

[g(s )]'"(s s ie)

dis, I(s)=0.

+»&, for the same range of x. The con, tour C is as given above.
Proof: Since u(s)=u~( —s) when g is negative, the

llecause the denominator is never zero, we may arguments above can still be applied. Whengis positive,
then I is real and hence h is real, and again the same

arguments are valid. Finally, when the residue at the

pole is calculated, I is set equal to rn'.



then the jntegra ] g becomes

I(MfR) ig)ds g s

) I s

a1 tic ContinuationRemarks on Analy ic

OR.TIC F OR ME LE, CTTROMAGNEU TF RON

me functions ofwe have ot continue someIn this paper we
the form

( n+(g

y(s, Mr') =
!

J(s,M') =
$ sn

/I /s —s

'
t ') ' ""s"f(s")~ ds'g s' ( )+ig n—iq

g( sry9) d llf ( I/) ~ ds'g(s')

e a)A.e and of course X)
is o

' M'. Characteristically,
a M') migra es

isc a
' ' thecaseso '

is characterized in

/I /s —$

(~&" ds"f(s")

s —s

s —s/

da/dM'& 0 M'( Mo',

a(MP —ie) =v+8, b&0,
da/dM'(0, M') Mo'.

FIG. 12. Deforma-'
n of the right-hand

contour in the comp
lane necessitate

the migratingby
branch point o
1

deformed right
hand contour

path of migrating
branch pointntegrand

S. 97. MacDowell, andr M. L. Goldberger, S.
123 692 ( 961).h s. Rev.S. B.Treiman, Phy .

I/limit of the sFi . 12. The upper lim'

rein n ' contour if we wish to rem
'tes cous to deform

( i ) sp y'"'""""""'"""' 61h 1art If M ' is the naimaginary part.

//

s —c s
I/ I

M )2 s —sa(

"around the pointist ech continuation of in s a
arting a m,tm andhenca have a cut ste. In general f may e

be the same as . s'

and letting a=a(Mq'
&
q~

J(s,Mr2) =-
where

"2mids"f, (s")g(s"

s —sII

ds"f(s") 4$

"ds'g(s')8(s')

s —s/

B(s')=
A s —s// I

$ c S
s —sIf I

a

we shall retain only ther a lications we s app
1 which is the in egrfirst integral, w ic gr

the
ion.

' — -~ layed no role inthe factor (s -s) p
d btain similar resu sargument, so w e would o ai


