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Bounds on Multichannel Scattering Parameters*
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Using the projection techniques recently developed in the formal theory of reactions, it is shown that
a bound on the exact reactance matrix E is provided by the close-coupling reactance-matrix approximation
E~; that is, E-E+ is, in a sense that can be made precise, a positive definite operator. This is of more than
formal interest since the numerical solution of the finite number of coupled equations which arise when we
allow the target system to be excited to only a restricted number of virtual states, and the determination of
E is feasible for a variety of three-body problems which includes, of course, three-body model problems.
Furthermore, EP improves monotonically as one includes more and more virtual states. The recognition
of this monotonicity property is useful in self-consistency analyses during the course of numerical calcula-
tions, and provides a more precise meaning for the numerical results obtained. Choosing a particular repre-
sentation, the bound on X generates bounds on the appropriately defined eigenphase shifts. The question
of the absolute definition of phase shifts and of eigenphase shifts is discussed in some detail and it is shown
that the presently used definition has serious deficiencies.

1. INTRODUCTION
' 'N the minimum-principle formulation of scattering
~ ~ theory, ' ' an expression containing an arbitrary
number of variational parameters is shown to represent
an upper bound on the scattering parameter under
consideration. The situation is then analogous to that
which obtains in the Rayleigh-Ritz evaluation of the
ground-state energy of a system. The introduction of
more and more parameters enables one systematically
to approach the true result monotonically and, at least
in principle, to come arbitrarily close to it.

An altered minimum-principle formulation was re-
cently given4 which, for single-channel scattering at
nonzero energies, represents a significant improvement
upon the earlier version. The improvement is a con-
sequence of the utilization of recent developments in the
formal theory of scattering due largely to Feshbach, ' '
which, as opposed to the Wigner-Eisenbud formalism,
does not require any of the potentials to be truncated.
The newer version of the minimum-principle formula-
tion has been extended to the multichannel scattering
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and will be reported on shortly. It has also been shown,
for single-channel scattering, that various close-coupling
approximations in common use provide a bound on the
true phase shift. " ' (This bound is a number; it contains
no variational parameters. In our earlier papers, when
we were primarily concerned with the minimum prin-
ciple, we unfortunately did not distinguish between the
words minimum principle and bound. ) The present
paper will be largely concerned with the extension of
the phase-shifts bound of Ref. 7 to multichannel scatter-
ings, that is, to the determination of a bound on the
reactance matrix E which characterizes multichannel
scattering. The multichannel scattering process is, of
course, determined by the specification of the eigen-
phase shifts and of the mixing parameters.

Physical eRects are, of course, never affected by
changes of multiples of 2x in phase shifts or in eigen-
phase shifts, and they are often not affected by changes
of odd multiples of z. It should therefore be clear that
one cannot argue on physical grounds that the phase
shifts or eigenphase shifts must be continuous in any
parameter, but rather one must allow for jumps of 2x
or perhaps ~, and we will 6nd instances in which a
perfectly sensible definition of the shifts leads to shifts
which are discontinuous by 2x or x in, for example,
the energy. It is nevertheless often useful to impose
some restrictions on the multiples of 7t. , we will cite
some examples shortly. One possibility is to 6x the
multiples of z absolutely, in which case one has an
absolute definition of the phase shifts and eigenphase
shifts. Another possibility is to impose the condition
that the shifts be continuous in some parameter, such
as the energy, in which case the difference in the shifts
for two different values of the parameter is fixed.

We will cite just three examples where useful results
can be obtained by imposing certain requirements on
the phase shifts, that is, where something more than
just the phase shifts modulo 2x is of physical interest

7 V. Hahn, T. O' Malley, and L. Spruch, Phys. Rev. 128, 932
(1962).

See also I. C. Percival, Phys. Rev. 119, 159 (1960).
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even though no measurable quantity is affected. The
three examples are all concerned with the simple case
of scattering by a static central local potential. We are
then of course dealing only with phase shifts, and not
with eigenphase shifts.

(i) We demand that i1 (E), the phase shift for angular
momentum L at the energy E, be continuous in E.
That is, we reject the physically allowable possibility
of arbitrarily adding different multiples of x to p at
different energies. (We have not, however, given an
absolute definition of q. ) We then have Ievinson's
theorem, that

t1(E=O)—t)(E= ~)=Em,

where E is the nu~ber of bound states of angular mo-

mentum L. Note that S also represents the number of
nodes other than that at the origin of the zero-energy
scattering wave for angular momentum L.

(ii) The question of the convergence of the Born ex-

pansion is connected with the absolute value of t1. (In
this and the following example, it is possible to replace
the requirement of an absolute definition of p by a
continuity requirement. )

(iii) Take any of the usual absolute definitions of t).

(These will be quoted shortly. ) Then if V(r) &0 for all

r, and if g is less than —,'x, the Lippmann-Schwinger
Greens function variational principle for kcotg pro-
vides an upper bound on the exact value of kcotq for
an arbitrary trial function. ' A corresponding statement
can be made if V(r) & 0 for all r. As one small corollary
of this result, it follows" if V(r) &0 for all r, if q+&-,'s-,

and if q & ——,'m. , where g+ and g are the phase shifts
associated with V(r) and —V(r), respectively, that

coty+ —coty &2 coty'+,

where g~+ is the Born-approximation phase shift associ-
ated with V(r)

Let us now briefly consider the scattering of a particle

by a compound system. Even for single-channel (elastic)
scattering, it is not at all clear how best to define an
absolute phase shift. We will in fact show that the
definition that appears in the literature, ' "while allow-

able, is inconsistent with and for most purposes less

useful than a number of other possible definitions. It
will therefore be necessary to reexamine the results
obtained in the paper on the bounds on single-channel

phase shifts. We will at the same time, and this will in
fact be our main purpose, extend the energy domain of

applicability of the results of that paper to include

energies above resonance but below the threshold for
excitation, and generalize the results to include multi-

channel scattering. The emphasis throughout will be on

numerical results related to close-coupling approxima-
tion calculations, that is, to calculations in which one

solves exactly the approximate problem in which all

' T. Kate, Phys. Rev. 80, 4/5 (1950).
' L Spruch, Phys. Rev. 109, 2149 (1958).
"A. Temkin, J. Math. Phys. 2, 336 (1961).

open channels and a prescribed set of (virtually excited)
closed channels are taken into account. "The results to
be obtained will be useful during the course of numerical
calculations by providing self-consistent checks on the
numerical results. Our results will also allow for a more
precise interpretation of the meaning of the numerical
results obtained in such approximate calculations.

We will have a few comments to make on the absolute
definition of phase shifts and of eigenphase shifts, but
primarily we will be concerned with variations in the
shifts with respect to some parameters. The formalism
as presented is not applicable to systems in which there
are open channels with three or more particles or sys-
tems at arbitrarily large separation, and there is then
an upper limit to the energy that we can consider. We
will not therefore be concerned with extensions of
Levinson's theorem to scattering by a compound
system.

2. DEFINITION OF PHASE SHIFT FOR
SINGLE-CHANNEL SCATTERING

We will consider, in order, scattering by a central
static local potential, and scattering by a central static
nonlocal potential. (The latter is a particular but simple
example of elastic (single-channel) scattering by a
compound system. ) The discussion will be somewhat
detailed since there has been a good deal of confusion
in the literature.

The phase shift for scattering by a central static local
potential is a function of the energy of the incident
particle, which for simplicity we take to be spinless and
uncharged, and of the strength of the potential. Two
absolute definitions of the phase shift are thereby
suggested.

(1) Define t) to be zero for infinite incident energy
and to be a continuous function of the energy.

(2) Replace the true potential V(r) by XV(r), in-
troduce the associated phase shift i1(X) with g=q(1),
set t)(0)= 0, and take t1(X) to be continuous in X.

It will almost always also be possible to define q by
considering variations in the effective range of the
potential and, having gone over to the radial equation,
by considering variations in the angular momentum,
but we will not consider these two possibilities.

There are two other absolute definitions of g which
are in some ways more appealing than those just
recorded. In an actual numerical calculation one after
all keeps the energy, the angular momentum, and the
potential fixed, and determines the scattering wave
function, and it would therefore be nice to have ao
absolute definition of g which required only a knowledge
of the scattering wave function for the energy, angular
momentum, and potential of interest. This suggests the
following two definitions:

(3) Replace V(r) by V(r)Z(r —E), where Z(e)=1 for

'2A review of the theory and of some of the applications of the
close-coupling approximation is contained in P. G. Burke and
K. Smith, Rev. Mod. Phys. 34, 458 (1962).
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e)0 and Z(e)=0 for e(0, introduce the associated
phase shift rl(R) with r)=rl(0), set r1(~)=0, and take
rl(R) to be continuous in R. It should be remarked that
on integrating out numerically from the origin, the
logarithmic derivative of the wave function at a= R is
unaffected by the potential still to be felt, so that r)(R)
has a perfectly well-defined meaning. One integrates
out numerically from the origin once and only once,
and the scattering wave function thereby obtained de-
termines g(R) for all R."

(4) Letr& i and p& 'be thepositionsof the mth node
of the true scattering wave function and of the free-
wave scattering function, krj1, (kr), respectively, and
define g by

lims—.(p&"i—r &"') .

This definition will be referred to as the nodal defini-
tion of q.

Now we will not prove it, but the four different abso-
lute definitions of p that have been given are entirely
equivalent. Thus, for E= ~, for X=0, or for R= ~, the
exact scattering wave function is the free scattering
wave function, for which the nodal definition gives g =0.
(Some care must be exercised in studying the limit
E—& ~ if V(r) has a 1/r singularity at the origin. ]The
various definitions therefore all agree with the nodal
definition for the given value of the parameter, that is,
for E= ~, X=0, or R= ~.We now state without proof,
though it is the crucial point in the argument, that the
nodal definition gives rise to an g which, for the static
local central potential under consideration, is continuous
in E, in X, and in R. It follows that the various defini-
tions agree with the nodal definition for the parameter of
interest, namely the given energy, X= 1, or R=O. Since
the various definitions all agree with a given definition,
the nodal definition, they are clearly entirely equivalent
for the local static central potential under consideration.

We now consider scattering by a nonlocal potential,
and show that as contrasted with the local potential
case the four definitions of g given above are rot neces-
sarily all equivalent. This distinction between local and
nonlocal interactions has its origin in the fact that the
wave function and its derivative can vanish at the same
point for a nonlocal, but not for a local interaction.

The lack of the equivalence of the four definitions of
p for nonlocal potentials can arise in a wide variety of
cases, and is in no sense restricted to pathologic cases
such as that for which there is a bound state embedded
in the continuum. Consider, for example, the case of a
nonlocal interaction which is separable, the kernel being
Xf(r)f(r'). For simplicity we take I.=O. This is a solv-
able problem with the wave function to be called w(), r)
given by

eg„r) = sinkr —XC dr'G(r, r') f(r'),

"F. Calogero, Nuovo Cnnento 27, 261 (1963).

where

dr'f(r') sinkr'

and where

1+X dr dr'G(r, r') f(r) f(r')
0 0

G(r, r') = (1/k) sinkr& coskr&

is the free-particle Green's function. By construction we
have v(X,O) =0, and we also have

n'(X, O) = k —XC dr'f(r') coskr'.

It is then clear that for any energy E there will be one
value of )I, , to be called X(E), for which e(),r) used its
derivative vanish at the origin. The number of nodes
of s(X,r) is not then a continuous function of X, but
jumps by 1 as one passes through X=X(E). It follows
that one can define i) by (2) or by (4), but that the two
definitions need not be consistent.

One can also find nonlocal potentials for which s(X,r)
and its derivative both vanish at some point other than
the origin; the number of nodes of t (X,r) as a function
of A. will then jump by 2 at the appropriate value of X.
More significantly, by considering energy-dependent
separable nonlocal potentials with kernels

L) /(E —Eo)jf(r)f(r'),
it is simple to show that continuity of g in X can be in-
compatible with continuity of g in E, that is, definitions
(1.) and (2) can be incompatible. '4

We are now in a position to analyze the definition of
g that has been given' " for the scattering of a particle
by a compound system under circumstances such that
elastic scattering is the only allowable process. To
begin with, we must recall that none of the four defini-
tions of p given above can be extended in any obvious
way, if indeed in any way at all, to the general elastic
scattering process. Thus, if we attempt to use definition
(1) we cannot go to E= oo without passing out of the
domain of single-channel scattering. If we are dealing
with identical particles, we cannot always use definition
(2). For the scattering of electrons by hydrogen atoms,
for example, any change of the strength of the incident
electron-proton interaction requires that we change the
bound electron-proton interaction and hence the ground
state of the target; if we change only the strength of the
electron-electron interaction, the incident electron will
start to see a net charge on the target, with ensuing
complications. De6nition (3) suffers from the same
defect for if we cut off the interaction of the incident
particle with the target we may have to cut off the in-
teractions of the particles within the target. This defini-

"R.G. Newton, Ann. Phys. (N. Y.) 4, 29 (1958),
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u, (q)
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Fro. 1. The projected wave function uo(q)
for the energies E1, &2, and &3.

tion also loses the advantage that it had over definitions
(1) and (2) for scattering by a local potential, for now
one would have to redo the calculation for each value
of E since the wave function for r&E. is now affected in
more than its normalization by the potential that
exists beyond r=E. Definition (4) may now be arn-

biguous, for we would have to fix the target coordinates
if we are to reduce the scattering wave function to a
function of one coordinate, and the number of nodes
of the one-coordinate function could depend upon pre-
cisely how the target coordinates are fixed. The defini-
tion that was given' " involved the introduction of an
equivalent one-body problem. Letting q represent the
distance between the incident particle and the center
of mass of the target, the function us(q) defined as the
radial part of the projection of the full scattering func-
tion onto the ground-state wave function of the target
was introduced. Since the one-body function us(q)
could easily be seen to satisfy the usual boundary
conditions of a scattering functloil up(q) was then a
function that would arise in some potential scattering
problem. An application of the nodal definition to us(q)
might then seem to lead to a natural definition of the
phase shift. It is important to observe, however, that
the equivalent one-body problem of which us(q) is the
solution is that for which the potential is the optical-
model potential, which is an energy-dependent nonlocal
interaction. I See Eqs. (22) and (23).]While the above
definition is permissible, the four definitions of q are
not then necessarily equivalent, and the assumption
that they are can lead, if used in the interpolation of nu-
merical calculations, to physically incorrect predictions.

Assume, for example, that we are studying elastic
scattering in an energy region in which the phase shift
is a rapidly varying function of the energy. The nu-
merical calculations may well then be particularly
difhcult to perform especially if one is using an iterative
procedure, and it would be very convenient to be able
to minimize the number of values of the energy at
which the calculation is to be performed, and to deter-
mine g at intermediate energies by continuity argu-
ments. Now let us assume that the (presumably
accurate) projected wave function, us(q), determined
at the energies E&, E&, and E3, where E&&E2&E3 has
the form given in Fig. 1, the Dumber of nodes of us(q)

having decreased by one at some energy between E2
and E3. If q is taken to be continuous in E, the appro-
priate curve in I'ig. 2 is abcdef. If, on the contrary, one
defines the phase shift in terms of the number of nodes
of us(q), the appropriate curve is the discontinuous
curve abcdd'e'f'. The two curves lead to identical
physical predictions. If, however, one were to apply the
nodal definition to us(q) to fix r} at b, c, and e' at the
energies E&, E2, and E3, respectively, aed to assume that
p is continuous in the energy, one would arrive at a
curve of the form abce'f', following something like the
dashed curve between c and e', and the predicted cross
section would be physically incorrect. "

The realization that the various de6nitions of q are
not necessarily compatible also requires some reinter-
pretation of the conclusions reached in the paper on
bounds on the phase shift for single-channel scattering. ~

We will discuss this point below in the broader context
of multichannel scattering processes.

3. CLOSE-COUPLING APPROXIMATIONS AND
BOUNDS ON THE E MATRIX

A standard approximation in the study of the scatter-
ing of a particle by a compound system when there are
S open channels is the close-coupling approximation.
One does a partial-wave decomposition and then ap-
proximates the true solution%' by a function of the form

appropriately antisymmetrized, where Pr (r) repre-
sents the wave function for the mth state of the target
system, with associated energy E~, and where the
M() E) terms in the (restricted) sum include all
possible 6nal states of the target, that is, all X open

I I I

Ei E2 E~

FiG. 2. The phase shift as a function of the energy. The assump-
tion that rt is determined by the number of nodes in mo(q) cad
that y is continuous in the energy leads to the incorrect curve
abce'f', with something approximating the dashed curve between
c and e'.

"The situation just described is precisely that which occurred
in a recent approximate numerical analysis of the scattering of
electrons of zero angular momentum at energies in the neighbor-
hood of a resonance, just below the threshold for excitation. At
our suggestion an additional calculation was performed at an
energy between E2 and E3 and the numerical value found was
indeed different from that which had originally been predicted.
See A. Temkin and R. Pohie, Phys. Rev. Letters 10, 22 (1963);
and 10, 268 (1963).
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channels, and M—X closed channels. If we demand that

(r) (H E—)%~(r,q)dr= 0

as
(H E)+=0-

P(II E)~= PHQ@, — —

Q(II E)Q+= QHP4—. —
(5)

PC is now an M-component wave function which
must be regular at the origin and which must have the
asymptotic form in the ith (open) channel:

P+ ~ D;Pr, (r) (a;s,g+b,gc,g)/q, , (7)

where

for each of the values of m included in the sum, we are
led to the set of M coupled equations

P(H —E)PC"=0, (3)

where P is the projection operator onto the set of M
states. The (numerical) solution of these equations,
that is, the determination of the I "(q), leads to an
approximation E for the N by S reactance matrix E.
It will be the purpose of this section to prove that E
provides a bound on E.

The proof will be a generalization to multichannel
scattering of that given in our earlier paper on single-
channel scattering. ' The proof will, however, represent
an improvement as well as a generalization for we will
remove the restriction there imposed to energies up to
the first resonance; the present proof will be valid up to
the threshold energy for the opening up of a new
channel. On the other hand, in connection with our dis-
cussion of the previous section on the absolute definition
of the phase shift, the results there obtained will be
seen to be not quite as strong as we had believed
them to be.

Though the results can be obtained under quite
general conditions, we will for simplicity assume that
the various spins are zero and that there are no net
Coulombic fields. We will also assume that all of the
open channels are two-system channels; this latter as-
sumption is required for the present approach and is
not just a matter of simplicity. We introduce the pro-
jection operator Q which projects onto all of the states
not included in the primed sum. We then have Q= 1 P—
and PQ= 0. We are interested in numerical results, and
if the formalism to be developed is to have any content
it must be possible to give an explicit and usable form
for P. This can be done for a variety of interesting cases.

The approach is the same as that for single-channel
scattering. ' With the indices i and j referring to open
channels only, we write

p; is the reduced mass and I.; is the relative orbital
angular momentum quantum number for channel i.
D, contains the factor (p;/k~)'", spherical harmonics in

q,/q, , and the Clebsch-Gordon coefficients necessary
to give the prescribed value of the total angular mo-
mentum. 8 is a parameter to be chosen for convenience, "
subject to the requirement that 0&8(2x. The a; are
arbitrary constants and the b,& are to be determined.
The vectors constructed from the numbers a; and b,g

will be denoted by a and bg, respectively. The a, and the
b;g are connected by the relationship

b,g=g' Eg,,a, , (11)

where

~=P+~+G~PHQ%, (13)

G~= tP(E H)—P] '— (1&)

is the M)&M matrix which connects the M channels
under consideration. P%~ is that solution of Eq. (3)
which is regular at the origin and w'hich behaves in the
ith channel as

P%~ +D,fr;(a,s,g+—b;g"c;g)/q;, q, —+~ . (15)

The M coupled equations which, with the prescribed
boundary conditions, determine PC~ must be solved
exactly. 6 is clearly not uniquely determined by Kq.
(14). To make it unique we note that it follows from
Eqs. (7) and (13) that in the ith (open) channel

G~PHQ%' —+ D;Pr, (b;g b;g~)c,g/q, , q; ~—~ . (16)

G~ is then made unique by demanding that G"PHQ%
not contain any s;& components.

The formal solution of Eq. (6) is given by

QC =GoQH~,
where

G'=- LQ(E-H)Q] ' (18)

If there are any solutions of the homogeneous equations
associated with Eq. (6), with energies 8, the effective
one-body potential for the incident particle is infinite
at E= 8„@, since G@ is infinite at that energy. LSee
Eq. (19).]We will see that no difIiculties are occasioned

where as indicated by the index the sum is over open
channels. The connection between the matrix Kg and the
usual reactance matrix K is given by

—sinful+ coseK
7

cose1+ sinoK

where 1 is the unit matrix. Q@ is regular at the origin
and since it contains only closed channels it decays
more rapidly than the inverse of the relative coordinate
for each of its (closed) channels. The formal solution of

Eq. (5) is

s;g = sin(k, q, ——',I.,~+8),
c;g cos(k,q, ,'I.,7r+8),—— ——

(k,gag/2pg)+E = (kgb/2ggg)+EGO ~

(g)

(9)

(10)

"It is possible to choose a different value of 8 for each channel,
as was done in the second paper in Ref. 2, but we will not do so.
It then seemed to be a useful device since it allowed one to choose
different truncation radii for the diferent channels, but we are
no longer truncating the potentials.
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by this occurrence, a fact which is perhaps made more
reasonable by the remark that it is a eoelocal potential
which is passing through infinity. lt should also be
noted that the b„ are not the resonance energies, but
di6er from them by the usual energy shift. We also
remark that as opposed to 6, the expression for 6@,
Eq. (18), is a purely formal one; Q projects onto an
infinite-dimensional space, and one cannot obtain an
expression for G~ with which one can actually perform
numerical calculations. Substitution of Eq. (17) into
the right-hand side of Kq. (5) leads to a homogeneous
equation for I'C,

PfH+HQG&QH —E)PC'= 0, (19)

while substitution of Eq. (13) into the right-hand side
of Eq. (6) leads to an inhomogeneous equation for Q%',

Q[H+ HPG"PH E]Q4=— QHE% —. (20)

Each of these equations is formally equivalent to the
original Schrodinger equation, since a knowledge of
P+ determines Q+ and vice versa by Eqs. (17) and

(13), respectively. As for single-channel scattering, Eq.
(19) will be used for the determination of a holed on Ke
while Kq. (20) will be used as the starting point for the
development of a minirNNrN prileip/e for Ke in a paper
to be submitted shortly.

Now H is given by

H(r, q) =Hp(r)+T(q)+ V(r,q), (21)

where H~ is the target Hamiltonian with r all of the
target coordinates, T(q) is the kinetic energy operator
of the incident particle, and V(r,q) is the interaction of
the incident particle with the target. (For simplicity,
the arguments will be given for distinguishable par-
ticles, but it can be extended to indistinguishable
particles. ) Eq. (19) can be written as

LT(q)1+'U(q) —(El—Ep)]u(q) =0, (22)

where 1 is the MXM unit matrix, Ep is the diagonal
matrix with diagonal elements Ep„and u(q) is the
column vector with elements I (q). The (optical-model)
MXM matrix potential 'U(q) is given by

U(q) = «4p(r)

1
X U+UQ QV gp (r), (23)

Q(E Hp T)—QVQ— —
where Qp(r) is a column vector with elements fp„, and
where we have used the fact that Q commutes with

Hp(r) and with T(q). On introducing the MXM matrix
'U(q, X) (see Appendix),

'U (q,),)= dritrp(r)

X V+X UQ QU 4pt(r), (24)
Q(E—H —T)—XQ VQ

we have

Since
'U(q)= U (q, 1) (25)

(26)

if the operators A and 8 are independent of P,

—~(q,~) = &Q(E—H, —T)Q&t,
dX

where

(27)

q(X=O) =qp&q. (33)

K- QVCp (28)
Q(E Hp T—XV—)Q-

Since Q projects onto closed channels only, it follows
that Q(E Hp T)—Q and—therefore that d'U(q, li)/dX are
negative definite operators.

Consider now the equation

LT(q)1+V(q, X)—(El—Ep)]u(q, z) =0, (29)

and the corresponding equation with X replaced by
X+dX; multiply the equation for u(q, X) by ut(q, X+dX)
and the equation for u(q, X+dX) by ut(q, X), subtract
and integrate. With Ke(X), the reactance matrix asso-
ciated with 'U(q, X), one then arrives at

—(a K&(X)a)= — dqut(q, X) —'U(q, X) u(q, li), (30)
dX dX

and the inequality then follows from the negative
de6niteness of d'U(q, X)/dX. Since a is normalized but
otherwise arbitrary, dKg(X)/dpi is a positive definite
operator, that is, that

dKgP)/dX) 0.

More precisely, the derivative is positive definite where
it exists, for since the denominator in Eq. (28) for g can
be equal to zero, x and therefore d'U(q, X)/dX and hence

dKe(X)/dX and 6nally K&(X) itself can be infinite.
To understand the consequence of Eq. (31), let

us first consider the special case of single-channel
scattering. Since Kg(X) for single-channel scattering is

tanL&P, )—8], Eq. (31) then reduces to

dg(X)—tanLqP, )—8)]=sec't rl(lw, )—8)] )0. (32)
dA. dP

Now Ke(X) is a uniquely de6ned quantity, but as
always there is an arbitrariness in the value of g. We
will for the moment only partially remove this arbi-
trariness. With the multiples of ~ in the definition of
rl(X=O) unspeci6ed, we impose the requirement that
q(X) be continuous in X as X varies from zero to one,
even if K&(X) passes through infinity. The introduction
of a phase shift is equivalent to keeping track of which
branch of Kg/, ) we are on, that is, how many times

@P) has passed through infinity. Our 6nal conclusion
is that
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It is simple to obtain a slight generalization of
Eq. (31).P is defined as before, but Q will be redefined.
Consider a projection operator I'* which projects onto
all of the states projected onto by I' and onto some
additional states, with a corresponding wave function
4'~* and matrix E~*. We again have P and Q as pro-
jection operators, but now P+Q is not defined as
spanning the entire space but just P+ space—P* can
of course be the unit operator and span all of space—so
that P'=P Q'=Q P+Q=P*) P*'=P*, and PQ=O.
Our starting point is now

P+(H —E)P*+~*=0, (34)

and all of the equations derived above in this section
are valid under the replacements 0' —+0' *, g —+q *,
Eq~ Eti~*, and with Q no longer equal to 1 Pbut-
reinterpreted as Q=P* P. Eq—. (31) is now to be
understood as meaning that Ky~(X), where it exists, is a
monotonically increasing function of X. Now as X varies
between 0 and 1, we pass from P space to P+Q=P*
space. For single-channel scattering, we then have

pg p* (35)

Since Eq. (33) becomes, on the replacement of P by P*,
qP*&g, we have

n &n'*&n. (36)

Consider for example the (elastic) scattering of elec-
trons by hydrogen atoms, with the Pauli principle taken
into account, for energies up to 4 X 13.6 eV, the threshold
for excitation. We then have

g(is)(rl(is+2s) &g(is+2s+2p) & .&g, (37)

where the argument indicates the target states included.
These inequalities are also valid for the (elastic) scatter-
ing of positrons by hydrogenic atoms for energies up
to the pickup threshold, 6.8 eV.

In spite of the existence of the inequalities given by
(36), and contrary to the claim in our previous paper,
one can never assert with complete certainty from a
study of a sequence of numerical calculations in which
more and more target states are added, that any
numerical result is in error. [We incorrectly presumed in
that paper that one could define g in terms of the nodes
in No(q) arsd that one could demand that g be continuous
in X.) The numerical calculations after all only give
the phase shifts modulo x, and inequalities of the form
(36) can always be satisfied by adjustment of the
multiples of x. The realization that such inequalities
exist can nevertheless be very helpful. If, for example,
one believes that the space spanned by I' is large
enough to include all of the very significant hydrogenic
states, one would be rather sure that the inclusion of an
additional state would have little inQuence on the
phase shift and in particular would not change the
phase shift by anything comparable with m. Since, by
assumption, the states projected onto by P* include all

of the states projected onto by I', one would therefore
predict firstly that one can then adjust g

*
by ad-

justing the multiples of vr so that p
*

will be quite close
to p, and secondly that q"* so chosen will be slightly
greater than p . In the analysis' of the numerical calcu-
lations for the elastic scattering of electrons by hydrogen
atoms, there was a total of over 30 predictions of rela-
tive magnitude of phase shifts calculated in different
approximations; all but one of these was satisfied, and
even in the light of our realization of incompatibility of
the different definitions of q, one would still believe
that that one case is in error. In fact, the precise way in
which the various authors had arrived at their choices
of the moduli of m- was never discussed in Ref. 7, nor in
many practical cases need it really be. The calculation
that was in "error" was one for which the estimate of
the phase shift (modulo ir) decreased as one included an
additional state, the decrease being by one unit in the
third significant figure. It is of course possible that
there was an increase of q by just under x, but if only
on a priori grounds it seems very much more likely
that the calculations in question were only reliable to a
few units in three significant figures. It is in fact clear
from the above discussion that one should rather
generally be able to estimate the number of significant
figures of the numerical results from the knowledge that
the estimate of q must increase as states are added. (It
need scarcely be observed, incidentally, that the authors
involved were not really concerned with the third
significant figure. )

In our previous formulation we were unable to predict
inequalities among the phase shifts in various approxi-
mations for e+H scattering for phase shifts containing
contributions from other than s states. We noted above,
however, that the inequalities (37), which relate phase
shifts which contain such contributions, are valid for
energies below the pickup threshold. The possibility of
proving these additional inequalities is a consequence
of the new method of introducing P. The previous
approach required one to prove that Q(E—H)Q&0,
for Q the projection operator onto all excited states;
this we were able to do only for s states. Kith the
present method of introducing X we need only prove
that Q(E Hr 2')Q&0, and —this —is clearly the case.
The additional inequalities that we are now able to
prove therefore include q(is+2s+2p))g(is+2s) and

g(is+2s+2p))q(is) for e+H scattering at energies
below the pickup threshold. The phase shifts necessary
to check the above two inequalities are listed in Table 3
of Burke and Smith, " for six different energies, and
6X2 inequality predictions are all verified; since the
di6erences between the various phase shifts are rela-

tively small, there is very little possibility that there
have been any jumps of x, so that the verification is
meaningful. It is perhaps interesting that at one of
the energies above the pickup threshold, an energy
domain for which the above discussion is not applicable,
the phase-shift inequalities are Not satisfied. (Above the
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pickup threshold there are of course eigenphase shifts,
and not just one phase shift, but the calculation was
performed as if one still had a single-channel scattering
process. )

We return now to the multichannel problem. One
obtains a variety of bounds on combinations of elements
of Ks by making different choices for the a; in Eq. (30).
We consider two types of choices, those which isolate a
diagonal element and those which lead to an eigenmode.

Setting 8=0 for simplicity, the first choice is simply
a, =8;,, in which case Eq. (30) becomes

dE;;(X)/d)~ &0. (38)

E,, (X) may possibly go through infinity one or more
times, that is, E',, (X) may have a number of branches
similar, for example, to the tan function, and the
monotonicity theorem will be directly useful to us only
if we keep track of which branch we are on. One way of
doing so, though by no means the only way, is simply
to define p, (X) by

tanp, () )—=Z, ,() ), (39)

with multiples of s. for p, (0) arbitrarily chosen, and with
the understanding that p, ()~) is continuous in )i as
E,, (X) goes through oo. We conclude finally that

~ '&~ '*&~', (40)

where, as always, I'* contains P.
The second choice is the choice a(X)= a"'() ), where

a'&&(X) is the jth (normalized) eigenvector of K(X),
with eigenvalue tantit'&()~), where t)t" ()~) is the jth
eigenphase shift. Equation (30) then reduces to

(d/D, ) tauri tii (X)+ 0. (41)

If we demand that the eigenphase shift tit&'()~) be con-
tinuous in P, it follows that"

in Refs. 2 and 11; it was there shown, using the nodal
definition, that as a direct consequence of the Pauli
principle ii for the (spatially antisymmetric) triplet zero-
energy scattering of electrons by hydrogen atoms has
to be at least vr. One can of course introduce an absolute
definition of g in terms of the nodes of uo, and then
take ii()~) to be continuous in ) as one expands the space
to I'+Q space. One would then retain the result that
g&x, since the Pauli principle generates at least one
node in Ne~ so that tip) 7r, and we have rj& r)~. (On the
other hand, it is disturbing that one cannot prove the
comparable result for n-d scattering. ') Furthermore,
such a definition might well be able to provide a proof
of the surmise of various authors and of Swan" in
particular concerning the absolute phase shift for the
scattering of electrons by atoms with closed shells.
The definition is not a particularly natural one how-
ever, and one strongly suspects that there must be
some more useful and natural definition of phase shifts
and, of course, of eigenphase shifts.

APPENDIX

In the present paper we proved that dKs()~)/dh,
where it exists, is positive definite for all energies up to
the threshold of excitation. (At this threshold the di-
mensionality of Ks suddenly increases. ) On the other
hand, a direct generalization to multichannel scattering
of the formulation of our previous paper, ' denoted here

by the use of primes, only allows the statement that
dKs () )d)i, where it exists, is positive definite up to the
energy b&. The difference in the two results originates
in the difference in the way in which X is introduced.
Our previous formulation corresponds to the choice of an
optical-model potential 'U'(q, ) ) which differs from
'U(q, ) ) in that there is no )~ in the denominator in Eq.
(24). It follows that

&(i)~&&(~)~*&&(7) P&j(+
4. DISCUSSION

(42) iE'U'(q, )t)
- 1

«4.(r) I'Q QI' 0"(r). (A1)
d)~ Q(E—H)Q

We have seen that the assumption that g is con-
tinuous in X as we go continuously from I' space to
P+Q space leads to some interesting consequences, but
it leaves much to be desired. As already noted, a calcu-
lation of the wave function for the given energy and
angular momentum and for the actual strength of the
potential then determines only p modulo m-. Further-
more, since we do not then have an absolute definition
of g, there is no place for a theorem such as that proved

"Equation (31) represents a monotonicity theorem in Kg(X)
and is therefore a generalization of the eigenphase shift mono-
tonicity theorem of R. Bartram and L. Spruch, J. Math. Phys. 3,
287 (1962). They showed that if ii, (g) —iiI(g) is a negative
definite operator for all q, where V and Vf, are matrix potentials,
with ordered eigenphase shifts g(&)~ and g(&)q, respectively, then
g(&)~&g(»q. The signi6cant feature of the present approach is of
course that one can prove that du(q, X)/dX is negative definite.

As opposed to the right hand side of Eq. (24), the right-
hand side of Eq. (A1) is an operator with an obvious
definiteness (it is negative definite) only for E(8i,
since for E) hi@, QHQ has eigenvalues above and
below Siq. The reactance matrices Es()~) and Ee'(X)
are in general different from one another, but they agree
at the physically significant values of X, X=0 and X= 1,
and the new (unprimed) formulation is clearly more
useful since the energy domain of validity is greater.

It is worth noting that 'U(q, X) as given by Eq. (24)
can obviously be rewritten in a form in which X and Q
appear only in the combination )~Q. As ) varies between
0 and 1, we can then think of having turned on Q space
continuously.

"P.Swan, Proc. Roy. Soc. (London) A228, 10 (1955).


