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It is of interest to note that the T=1 E+E' eRective
masses from the final states X+pK', E+7r+X'rt, and
E+pZ'~+ showed no enhancement.
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An attempt is made to understand the dynamical origin of the 1535-MeV H* hyperon. We study the
problem of scattering in the J= se+-state of the EA-channel by the X/D method. The infiuence of all other
channels are ignored. The dynamical singularities of the partial-wave amplitude are assumed to arise mainly
from the near by cut (due to the nucleon exchange in the crossed channel) and the far left-hand
cut (—~ &S&~0). The contribution of the former is evaluated explicitly in terms of the AXE coupling
constant and that of the latter, by the method of Bal6zs, through the introduction of the effective range
pole terms. The analysis is found to be quite insensitive to the choice of the h.XE coupling constant. The
D function is found to have the desired behavior for the occurrence of a resonance or bound state in the
energy region of interest. The main force for the existence of the resonance or bound state seems to arise
from the singularities associated with the far left-hand cut. The best set of self-consistent solutions for the
position and residue indicates the presence of a bound state in the J=-,+ state of EA system at Sz= 109 m '
with residue Kg*= 10.

I. INTRODUCTION

'HE discovery of the * hyperon' with S= —2 and
I= —,

' at 1535 MeV hts beautifully with the scheme
of SU(3) symmetry. ' In order that it may be identified
as a member of the tenfold representation, ' to which the
(3,3) sr' resonance belongs, its spin and parity should
be —,'+, which also seems to be true from the recent
UCLA experiment. 4 The present paper is an attempt to
account dynamically for the existence of "*. In the
present paper, we will confine our attention to the
J= ~+ state only and examine whether in this state one
should expect a resonance or bound state (depending
upon which channel one is considering) at a mass around
1535 MeV with I=-,', S= —2, and I'= —1. The cri-
terion used to determine whether or not such a reso-
nance or bound state is expected and if so with what
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mass and residue, is the vanashing of the D function
together with approximate self-consistency between the
input and output values of the position and residue of
the resonance or bound state in question. It is the same
criterion used recently in the dynamical explanations of
the 9 meson, ' ' the (3,3) E*etc.' '

In each one of the above problems, including the
present one, some of the main difFiculties from the point
of view of practical calculations are:

(1) Inadequate knowledge of the far left-hand cut
contribution to the F function.

(2) Inadequacy of the knowledge of the ratio of the
total to the elastic partial-wave cross section (the so
called Rt function) at higher energies, which through
the unitarity condition is material for the evaluation of
the D function.

(3) Presence of many channels of strongly interacting
particles.

As regards the first difhculty, Balazs' introduced a
trick by which one can approximately replace the far
left-hand cut contribution to the X function, by a few

5 F. Zachariasen, Phys. Rev. Letters 7, 112 (1961.). F. Zacharia-
sen and C. Zemach, Phys. Rev. 128, 849 (1962).

e L. A. P. Bald,zs, Phys. Rev. 126, 1220 (1962).
r V. Singh and B.M. Udgaonkar, Phys. Rev. 130, 1117 (1963).
s E. Abers and C. Zemach, Phys. Rev. 131, 2305 (1963); J. S.

Ball and D, Y. Wong (to be published).
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effective range pole terms, the positions of which are
roughly determined by inspecting the behavior of the
kernel of the N function, while the residues are de-
termined by the use of the fixed energy dispersion rela-
tion. In spite of the approximate nature of such a
procedure, there exist at least a prescription within this
scheme to choose the positions and the residues of the
effective range poles. Such a procedure has also been
successfully applied to the problem of ~m- scattering, ' the
isovector part' of the electromagnetic structure of the
nucleon and the (3,3) 1V* resonance' etc. We will,
therefore, adopt this method" to evaluate the far left-
hand cut contribution to the N function.

As regards the second difficulty, we will only mention
that, since the D-function integral is highly convergent
(the integrand of the D function behaves as 5 'i' for
large S), the bulk of the contribution to the integral is
expected to come from the nearby region to the physical
threshold. Over this region, the total cross section is
hopefully well approximated by the elastic cross section,
so that it may be reasonable to neglect the effect of the
inelastic processes in the evaluation of the D function.
In the present work, we will adopt this elastic approxi-
mation, i.e., we will put X~=1. The effect of inelastic
processes" may be considered in later work along these
lines.

As regards the third difFiculty, one is forced to con-
sider only as few channels as possible, partly because of
simplicity, and partly because the merit of the theory
would be lost, if one has to introduce too many un-
known parameters (like coupling constants) into the
theory. Firstly, of course, one considers only the two-
particle channels, hopefully, since the lack of phase
space in three or multiparticle systems is expected to
diminish their effects. The same argument applies
against considering two-particle channels with very high
thresholds as compared to those with lower thresholds,
especially if one is examining the presence of resonant or
bound states nearer the lower threshold.

In the N* problem, therefore, one considers only the
xN channel, since EA and EZ channels are relatively far
away. In the present problem, one may, hopefully, ex-

pect the most important channels to be (I) vr (thresh-
old=1455 MeV), (II) EA. (threshold=1610 MeV), and
(III) EZ (threshold= 1690 MeV), omitting still higher
mass systems like q™etc.

' V. Singh and B. M. Udgaonkar, Phys. Rev. 128, f820 (1962)."It should be stressed that Zemach and Zachariasen (Ref. 5)
and Abers and Zemach (Ref. 8) do not follow the Balazs method.
They encounter divergent integrals, for which they introduce
cutofts, which are kept as arbitrary parameters in the theory.
Even though they And that some of the results are not too sensitive
to the choice of the cuto6, there is really no direct guiding principle
to choose the cutoG in such a procedure.

"In a recent work (to be published) Balazs has considered the
effect of inelastic processes on P wave 7(.7f- scattering by utilizing the
idea that high-energy contribution is the s channel can be ap-
proximated by Regge poles in the t and u channels. He Qnds that
this improves the result on the position and the width of the p
meson. However, the change, especially in the position, due to the
inclusion of the inelastic eGects, is not too drastic. (It is found to
be less than 16%.)

As regards the m channel, it is well known that a
Chew-Low type theory applied to this case with ex-
change in the crossed I channel gives rise to repulsion in
the I=—,'state of the direct channel. Secondly, the decay
width of * to (vr ) system is found to be (7&2) MeV. 4

This is a rather small width as compared to a width of
about 100 MeV for the (3,3) 1V* resonance (even taking
account of the difference due to kinematic factors" in
the two cases). This means that e is rather weakly
coupled to the ~ channel. These two facts together
suggest that the main part of the attraction, which is
responsible for the formation of the observed ™*,prob-
ably does not arise from the z™channel. It decays to the

system, since that is the only open channel it can
decay into. As regards the EZ channel, here again, the
nucleon exchange in the crossed I channel, leads to
repulsion in the I=—,

' state of the direct channel. So, by
the same token one may expect that the driving force
for the existence of ™*does not owe its origin to the EZ
channel either. "Without any further apology, we will
therefore omit, as a first approximation, both the x and
the EZ channels and confine our attention to the iso-
lated model of scattering in EA channel only, unin-
fluenced by the presence of any other channel. As a first
remark, let us note that in this case nucleon exchange in
the crossed I channel does give rise to attraction.

In Sec. II we discuss the kinematics and the singu-
larities of the J=—,

'+ partial-wave amplitude. In Sec. III
we introduce the X/D equation for the partial-wave
amplitude; the N function is assumed to receive its domi-
nant contribution from the nearby cut (due to nucleon
exchange) and the far left-hand cut (—~ (5~&0); the
former is denoted by 1V~» (5) and the latter by 1V&r& (5).
1Vt»(5) is evaluated explicitly in terms of the AXE
coupling constant, while 1Vt&l (S) is approximated by the
effective range pole-terms. The positions of the effective
range poles are chosen by inspecting the behavior of the
kernel of the 1V function, while the residues (called bs
and b4) are treated as unknown parameters. In Sec. IV
we write down the partial-wave amplitude given by the
fixed energy dispersion relation and in Sec. V we de-
termine the unknown residues b3 and b4 through the use
of the fixed energy dispersion relation. The D-function,
which can then be evaluated exhibits desired behavior
for the existence of a resonance or bound state in the
system under consideration. The best set of self-con-
sistent values for the position and residue is found to be
S&=109m ' and K-.*=10, respectively. In Sec, VI we
list a few possible improvements on the present calcula-
tion. In Appendix A we demonstrate the unimportance
of cu and p contributions to the fixed energy dispersion
relation which was assumed in Sec. IV, and in Appendix

"The kinematic factors favor the Ã* width over * width by
less than a factor of 4.

"In each one of these cases, we are assuming that the baryon
exchange in the crossed channel primarily determines whether or
not the channel is attractive, if one were to consider scattering in
this channel as an isolated problem. The influence of other chan-
nels is, of course, expected to alter the situation,
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8 we discuss the results for a matching procedure, which
is different from that introduced in Sec. V.

II. KINEMATICS AND SINGULARITIES OF THE
PARTIAL-WAVE AMPLITUDE

The kinematical considerations for baryon-meson
scattering has been developed extensively by many
authors. Following the notations of Frautschi and
Walecka, '4 we denote the four momenta of the incoming
A and E by pi and qi, and those of the outgoing A and E
by p2 and q2, respectively. The Lorentz scalar T matrix
defined as usual (with uu= 1) has the general structure

T= —A (S,t,u)+-', (qi+q2)B(S, t,u), (1)

where A and 8 are the invariant amplitudes and S, t, I
are the Mandelstam variables given by

S= (pi+ qi)'= W2

t = (qi —q2)'= —2q'(1 —cos8), (2)

(P2 q ) —2(A +E ) W +2q (1 cos8)

where 8', q, and 0 denote the total energy, the three-
momentum and the scattering angle, respectively, all
measured in the center-of-mass system. We have

(S—(A+E)'}(5—(A —E)'}

S

Following Frautschi and Walecka, ' we choose the
partial-wave amplitude to be

gi' ——lf/"e'"+ sinai /q'

1
[((WyA) —E'}(A,+ (W—A)B,}

32K'q

+((W—A)' —E2}( —A2+ (W+A)B2}7, (4)
where

/
/

/
I

XXX%%XXX%%X%30

S PLANE

58.2 )07.5 12I l52P

s.xexxa.wwwixxv. xxa 6%.i%9iVV
L, S~ u+~)'

Pro. 1. Singularities of the partial-wave amplitude g&+(Sl in the
S plane. The figures are given in units of m '.

(these cuts are not shown in Fig. 1).
(ii) t cha222/et -singularities Th.e lowest mass inter-

mediate state in the t channel is the two-pion system,
which gives rise to three branch cuts:

(a) A circular branch cut with radius ~5~ =82 E2-
and center at the origin.

(b) A cut on the real axis (not shown in Fig. 1):
A2+E2 2~2 L (A2 ~2) (E2 ~2)71/2 (5

(A2+E2 2~2+L(A2 ~2)(E2 ~2)71/2

and

(c) a cut from —co &5(~0.

Higher mass states like o/ or p exchange (p exchange is
forbidden in the present problem by isospin conserva-
tion) contribute to the discontinuities along the circular
cut (~5~ =A' —E') and the cut from —~ &5&~0.

(iii) 5 cha/222et -singularities The .S-channel inter-
mediate states give rise to the usual physical cut along
the real axis for 5)~ (A+E)', as well as poles below the
physical threshold, corresponding to presence of bound
states. The only possibly known bound state in the KA.
system with J=-,'+ is "~, which is located at

exchange in I channel gives a branch cut along the real
axis

—~ &S~& 2(A'+E') —(N+2r)2

(A i,B/)=— (A( St, u), B( St,u)) I (tc os )8d(c os )8. (5) S=Sg 121m '.

The singularities of the partial-wave amplitude
(shown in Fig. 1) arise as follows:

(i) u clta/2net si/2g-ularities. The lowest mass inter-
mediate state in the I channel is the nucleon, which
gives rise to (as cos8 varies from —1 to +1) two branch
cuts along the real axis in the S plane.

—op (S&-0
and

L,= (A' —E2)2/N2~58. 2m '&S&L2
= 2 (A2+ E')—N2~107.5m~2.

Higher mass exchanges in the I channel give rise to
continuous cuts further to the left. For example, xS

' S. C. Frautschi and J. D. Vfalecka, Phys. Rev. 120, 1486
I,'1960).

gi+= gD ) (6)

where the X function, as usual, has the left-hand
unphysical cut and the D function, has only the right-
hand physical cut.

As in the case of the dynamical explanation' of the
(3,3) N*, we will assume" that the most important

"In doing so, we are undoubtedly dropping the contributions
from some of the other nearby singularities. For example, we are
ignoring the contribution from the circular branch cut arising from
the exchange of two pions, co or p mesons etc. , in the t channel. The
inclusion of such singularities would, of course, have introduced
undesirably too many unknown parameters into the theory. Their
omission may, however, be justified a posteriori, since one 6nds at
the end of the calculation that the E function receives its dominant

III. N/D EQUATION

Given the singularities of the partial-wave amplitude,
discussed in the previous section, one can write it as
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l.6-

l.4—
=-L53m~:

YVe will write a once subtracted dispersion relation for
the D function, normalizing it to unity at the subtrac-
tion point Sp. Thus, we have

l.2-

) I.O-

3
0.8—+

0.6-

S—Sp
D(S)= 1+

S—Sp

{Imgt '(5') }1V(S')
dS'

&~+xl' (5'—5) (5'—Sp)

(q"/5')A'(5')
dS',

~+rc) 2 (5'-5) (S'—Sp)
(13)

0.4 -.

0.2-

0 xg
t I

OJ xs 0.2
X

FIG. 2. Balazs —curves for the kernel of fbi(J) (S).

contribution to the X function comes from: (a) The
discontinuity across the far left-hand cut (extending
from —oo (5(&0) which arises due to a variety of
particles (X, &p, p etc.) exchanged in both u and t

channels, and (b), the nearby branch cut from I.t &5
~& L2, which arises solely due to the nucleon exchange in
the I channel. Thus we have"

where we have used the unitarity condition in the elastic
approximation to write the last step of Eq (1.3).

ECective Range Pole Approximation
fol )V&1& (S)

Following the method of Balazs, ' let us change the
variable by putting

S=A'+E'+2A&p,

&p= —1/x,

so that by Eq. (8), we may write

where
1 ' {Imgt+(5') }D(5')

iV&1 ) (5)=— dS
S'—S

1 ~' (Imgt+&~'(5')}D($')
&"vn (5)=- dS'.

S' S

1 '. e(x')
IV& r, & (5)=— dx',

7I p 1+XG7

(8) where C (x') stands for LImgt+(5')D($')&p'j, and

xI.——2A/A'+ E'~0.20m. '.

(15)

(16)

g~+&~& is the contribution to the partial-wave amplitude
g~+ due to the nucleon exchange in the crossed I channel
and is given by

gt'"' = (g~xx'/32~q')

XL{ (W+A)' —E'}(W+1V—2A)Qr(a)

+{(W A)' E'}(W+2A —Ã—)Q, (—a)j, (10)

where
a= {2(A'+E')—W' —1P}/2q'+1.

Q&(x) denotes the I.egendre function of the second kind
and g~~~ stands for the ASK coupling constant. "From
Eq. (10)

Imgr'"'= —
(g~w r&'/64q')

X t ((W+A)' —E'}(W+E—2A)&&(a)

+((W—A)' —E'}(W+2A —E)P,(a)j. (12)

contribution from the far left-hand cut anyway. For example, the
contribution from the nearby nucleon cut (L& &~S ~&L~) is found to
be, at most, 5% of that from the far-left-hand cut (—~ &5~&0),
for gp~~'/4m=1 (see Table II).

"Note that N(s) does not receive any contribution from the
bound state at S@, since the D function is identically zero at Sz.' In our convention the pion nucleon coupling constant is
given by g~~ '/4z =15.

l50—

I40—

ogle

C

t
~ I50-a

CA

I20—

I IO
0

I

l6« "&lS-

FIG. 3. A typical plot of the output value of the position of the
bound state as a function of the input value of the residue (K.*);,.
This particular plot is for S0=55m ', (Sg); = 121m ' and
g~~x'/4z =1.The form of the curve is roughly the same for other
choice of Sp, (Se);, and gz~ P/4 ,rz
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If one now plots the kernel y=1/(1+xo&) versus
x(0~&x&&xz,) for various values of o& in the region of
interest" (mrs(o&&8m, say) one notices (see Fig. 2)
that the kernel can be approximated to a fair accuracy
by straight lines passing through two points whose x
coordinates are

1.0

0.8

0.6

x3 0.17m ' and F4~0.02m (17)
0.4

The approximation, of course, continues to be reason-
able for much higher values of o&. (It is also good for
values of co much below the physical threshold, for
example, co~2.1m or cv —1.3' corresponding to two
of our matching points S=SM2=110m ' and S=SM~
= 55m ', respectively, to be introduced later. ) With this
approximation, therefore,

0.0

-0.2

&L

Ã, (S)=- dx'C (x') -0.4

(x' —x4)/(xs —x4) (x' —xs)/(x4 —xs)
X

1+xso& 1+x4(d

= bs/S Ss+b—4/S S4, — (18)

-0.6

-0.8
55 75

l

95 I I5 I 55 I55
S =(IN e )

where b3 and b4 are unknown constants, independent of
S. The positions" of the eRective range poles S3 and S4,
corresponding to xs and x4 given by Eq. (17) are (by
Eq. (14)7,

S3 —17.6m ' and 54 —722m '. (19)

b3 and b4 will be treated as unknown parameters and
will be determined by the use of the fixed energy dis-
persion relation (see Sec. V).

Two-Pole Approximation for
fV&» (S) (S~&(++J )')

In the present problem 1V&»0($) Lgiven by Eq. (9)$
involves the contribution from the discontinuity across
the cut from Lr ~& $~& Ls, which is rather long (about
50m ') compared to its mean distance from the physical
region. It may be recalled that the analogous cut in the
m Xproblem (f(1P—s')/Ej' &~$ ~& E'+2 r') 7was so short,
as compared to its mean distance from the physical
region, that one could always replace it by a pole with
6xed residue. Such a procedure is, of course, quite

' The dominant contribution to the D integral is expected to
come from the region (A+E)'=133m '~&S&200m ', which is,
therefore, the range of values of S for which X(L) t'S) needs to be
evaluated as well as possible. This range corresponds to md &&co

&Sm, say."It may be noted that, even though one has a certain range for
the choice of the values of S3 and S4, this range is rather limited.
This is because, while X3 and X4 should lie in the range 0~&@
~&0.2m ', they cannot be chosen either too close or too far apart
within this range, since in either case the accuracy becomes poorer
as is clear by mere inspection of the curves in Fig. 2. As S3 and S4
are already so far to the left, small variations in their values are
not expected to be felt in the physical region. This has been
explicitly checked by Balazs and Singh and Udgaonkar in the m~
and 2V* problems, respectively (private communication).

Fxo. 4. A typical plot of D(s) versus S. This particular plot is for
So——55m ', (Sg);„=109m,', (Kx*); =10, and gs~x~/4s. =1.

inadequate in the present case. The main problem is,
firstly, that the integral running over the region from
LI to 1.2 involves the D function, which is not known,
and secondly, for convenience in the calculation of the
D function that involves 1V&»o($), one needs a suitable
form for 1Vi» (S).Thus, to avoid essentially the problem
of solving coupled integral equations, we will proceed as
follows: Insofar as we want to calculate X&~&($) for
evaluating the D function, we will assume a linear form
for D(S), which is unity at the subtraction point Ss and
zero at the input value of the position of the bound
state ($&e);„. Thus, for S in the physical region, we
will put in Eq. (9),

D(s') =1—(s' —$.)/(($.);„—s.]. (20)

' This is to test the degree of self-consistency in the position and
residue of the bound state or resonance in question as a function of
the input value (S~);n.

We do not expect to make an error by more than 10—

20%%u~ in the evaluation of X&~&($) due to such an ap-
proximation. The form of the D function (see Fig. 4)
obtained at the end of the calculation for the self-
consistent solution does not diRer much from the above
linear form )Eq. (20)], which is at least consistent with
the initial assumption. In any case, an error of 10-20%
in 1V&~& (S) is quite irrelevant for the over-all conclusion,
since X&r& (S) involving the effective range pole terms is
found to be much more important than Et~&(S).

Ke took two values for the subtraction point So,
namely, 55 and 11(bn ', and used three diferent values"
of ($&r); =109, 121, and 145m ' for each value of Ss.



8392 JOGESH C. PATI

TABLE I. Residues for nucleon-cut poles.

(&a) in
(in' ')

b~ (4~/gsrrac')
Sp=55m ' Sp ——110m '

b2(4~lg~rrrr')
Sp= 55m ' Sp ——110m„'

1 L2

E,(s,sp) = —— Imgi t~'(5')F(5', S,,Sp)

109
121
145

1.22 —65.4
1.34 8.04
1.48 3.82

0.54
1.14
1.86

—29.0
6.82
4.8

X O'5'. 27

Evaluating now Eo» (5) )by Eqs. (9), (12) and (20)j,
we find, rather surprisingly, that for (A+E)' & 5.

&300tts ', and for each choice of Sp and (5~);„, iVuv& (5)
can very well be represented (to better than 5% accu-
racy) by a two-pole formula of the form,

where
$(x) (S) bi/5 51+—bs/8 Ss, — (21)

Si= 70m ' and Ss= 102m '. (22)

Ntiir) (S) foi' S & (A.+E)
As will be discussed later, we need the values of

iVt~&(5) at the two matching points SMt ——55m„' and
S3f2=110m ' which are below the physical threshold.
Since these two points are so close on either side of the
nucleon cut (Lt~&5~&Ls), the two-pole formula $Eq.
(21)]for Ecv& (5) cannot be applied at these two points.
We will, therefore, evaluate Et~& (5) at either of the two
matching points S=SMl or 5=SM2 as follows:

By Eqs. (13), (18), and (21) we have

5—Sp
D (S)= 1— Q b,F (5,5,,5p),

where

F(S,S,,Sp) =
QO (V"/5')

ds'. (24)
, * (s' —s) (s' —so) (s' —s,)

Substituting Eq. (23) in Eq. (9) we have

where

&(~) (5)=Po(5)+ 2 b'E'(5 Sp)] (2.~)
a=1

r.s Img +(N) (5 )
dS'Ep(S) = (26)5' —5

2'A pnori, S1 and S2 are also expected to depend upon the
particular choice of Sp and (Sg);, quite apart from the possibility
that a two-pole formula may not be adequate in each case.
Luckily, however, they are found to be hardly sensitive to the
choice of Sp and (S~); and for the choice of Sp and (Sg);, that we
tried (i.e., Sp ——55 and 110m ' and Sg=109, 121, 145m '), it was
found that a two-pole formula is quite adequate in each case with
the positions of the poles being nearly fixed at 70 and 102m ',
respectively.

The accuracy continues to be reasonable for higher
values of S also. The residues bl and b2 are proportional
to g~~rc'/4m and depend" upon the particular choice of
Sp and (Sir); . Their values, evaluated for the various
choices of Sp and (Sir);„are given in Table I.

We will use Eq. (21) to evaluate 1Vtz& (S) for S in the
physical region.

Now, since we can evaluate" F(SS ,Sp) E'p(5), and
E,(5,5p) explicitly, we will use Eq. (25) to evaluate

Etre&(5) at the matching points. This will give us

iVtrr~(S) linearly in terms of b,'s. The unknowns bs and

b4 will be evaluated through the matching conditions
(Sec. V) given by the E/D equation and the fixed-

energy dispersion relation for the partial-wave ampli-

tude, which we discuss below.

IV. FIXED-ENERGY DISPERSION RELATION

The fixed-energy dispersion relation for the invariant
amplitudes (in our case A and 8) is given by

R~ R -. ~ E„Eg
A(s, i,e)=- + + +

Q SS+ D '5c g+ j~ PE(g $ Pl/
2 2

A „(e',5)
dN

W, (i',5)
(28)

t' —3

where R~, R-.*, R„, and R~ are the appropriate residues
at the respective poles. " A similar relation holds for

B(s,t,m)

We will assume that the integral terms on the right
hand side of Eq. (28) are not important as compared to
the remaining terms. This is partly based on the observa-
tion that there are no known resonances (or bound

states), at least for reasonably low values of u' and i'

contributing to the said integrals. For example, the
lowest mass resonance, which may contribute to the
u' integral is the Xi/2"' at 1512 MeV. Similarly, in the
t channel, once we have taken out the rp and P contribu-
tions, there are no known resonances having I=0, S=0
below the f' at 1250 MeV. Thus, insofar as one may
hope that such high mass contributions to the dispersion
integrals may not be important, it may be legitimate to
drop them.

Furthermore, for reasons discussed in Appendix A,
the rp and p contributions to the J=ps+ partial-wave
amplitude are found (for reasonable choice of coupling

"We used an IBM-7090 computer to evaluate these integrals
for various values of S, S;, and Sp.

"Note that we have neglected the width of *, since we are
ignoring the w™channel. Insofar as the EA. channel alone is con-
cerned, * has to be treated as a bound state and hence should
have zero width. Note also that we have taken out the co and p
contributions from the J'Ck' term in Eq. (28) and have neglected
their widths since they are small compared to their masses.
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constants) to be totally negligible" compared to the
nucleon and ™*contributions. Therefore, in order to
simplify the discussion in terms of fewer number of
parameters, we will drop the ~ and p contributions
altogether from the rest of the paper. Thus, finally, the
J=-,'+ partial-wave amplitude, given by the 6xed-
energy dispersion relation reads

choose the two matching points at

S3II2= 110m '

We will choose" the subtraction point at

SO=55m '.

(31)

(32)
gr (S) gr

" (5)+gg -' (5)

where g&+'~'(5) is given by Eq. (10) and

(W+h)' E' . — 1
gr"'=*'(5) = (—K=*)

(W~+A)' —E' W —W~
(30)

tV~ stands for S~'~' and denotes the mass of ™*,K-.*
is a real positive number denoting the residue of the
partial-wave amplitude at the bound-state pole term
(corresponding to *) and is proportional to the square
of *RA coupling constant. K„-.* is not an experimentally
accessible quantity until one has a reliable relationship
between binding energy and coupling constant of a
bound state.

"It is worth noting that a similar situation is encountered
(Ref. 7) in the case of fV*, where the p contribution to the fixed-
energy dispersion relation is found to be unimportant."It may be noted that we are following a matching procedure,
slightly different from that in the previous analogous calculations
of the 7f-m and ~1V (Refs. 6 and 7) problems, where the two matching
equations came from matching value and derivative at a single
point rather than matching values at two points. We feel, since
our scheme is approximate, that it is perhaps a slightly better
procedure to match values at two points rather than the value and
derivative at a single point. However, for the sake of comparison,
we mention the results for matching the value and derivative at
the same point (SKI or S3f2) in Appendix B.

'6 I am grateful to L. A. P. Balazs for communications regarding
this point.

'7 We intentionally avoid the choice of matching point on the
cut L1 ~&S~&L& to eliminate the necessity of evaluating principal
valued integrations for 1V&N&(S) and its derivative.

V. MATCHING CONDITIONS AND RESULTS

We first wish to choose two matching points at which
we will equate the values" of g&+(5) given by the fixed-
energy dispersion relation with those given by the E/D
equation. These two matching points are chosen so as to
satisfy" roughly the following two criteria. (1) Since, in
practice, one makes a partial-wave expansion of A & and
A„, occurring in Eq. (28), the respective partial-wave
expansion should be convergent at the matching points.
However, this expansion diverges for 5)Sr s= (A.+jt)'
due to the unknown singularities in A ~ and A „.Thus, it
is desirable to choose the matching points as far away
from this region as possible. (2) The partial-wave
amplitude given by the E/D equation contains un-
known singularities for $(Sz,, where S~ is the point to
the left of which the singularities are approximated by
the effective-range pole terms. lt is thus desirable to
choose the matching points as far above Sl. as possible
also.

With these two criteria, we find it convenient" to

Our matching equations are now provided by equating
the values of g&+(5) given by the fixed-energy dispersion
relation t Eq. (29)7 at S=SMr and SMs with those
given by the X/D equation LEq. (6)7, where the 1V

function is evaluated by using Eqs. (7), (18), and (25),
while the D function is evaluated" by using Eq. (23).
These two equations determine the two unknown
residues b3 and b4 in terms of the input values of
gq~z'/4z. , K-„.~, and S~, which, in turn, gives us the D
function t by Eq. (23)7. The obtained behavior of the
D function, then, tells us (a), if one should expect a
resonance or bound state in a certain energy range in the
system under consideration corresponding to the vanish-
ing of the real part of the D function in this energy
range, and (b) if so, then the output values of the
position and residue of the resonance or bound state are
given by"

ReD[(5,).„„7=0,

(K-..).„,=—

(33)

1VL(Sg).„t7 ( 1
(34)

ReD'L(5~)..~7 &2(Wn)..»

The results obtained for the behavior of the D func-
tion and the corresponding solutions of Eqs. (33) and
(34) for various input values of the parameters gq~x'/4,
S~, and I-.* can be summarized as follows:

(1) If we keep the input values of K-.* and S~ fixed at
any reasonable values, the values of b3 and b4 and hence,
the behavior of the D function as well as the output
values of K„-.* and S~, are found to hardly depend upon
the value of the ASK coupling constant. We varied the
value of g~~rc'/47r from 0.25 to 8.0 and found almost no
difference (less than 10/o) in the results. This is a rather
lucky situation in view of the fact that the ASK
coupling constant is not so well determined experi-
mentally. Thus, since the conclusion is quite insensitive

ss Since So is just a normalization point for D(r), the results are
not expected to depend sensitively upon the choice of So. We have
examined explicitly how far this is true by taking a diferent value
of So= 110m ', but keeping the matching procedure the same (i.e.,
matching values at S=SM& and S3II2). The results, qualitatively,
are just the same as for S0——55m '. The best set of self-consistant
solutions (for S0=110m ) for the position and residue of the
bound state are Sz=124m ' and K".*=8.5. These values may be
compared with those obtained for a choice of So——55m ' Lace Eq.
(36)J. The degreevof self-consistency obtained in either case is
nearly the same.

"At this stage, the D function is evaluated only in terms of the
unknowns b3 and b4.

"E(~)L(Sji')plltj occurring in Eq. (34) is evaluated by using
either Eq. (25) or (21) depending upon whether (Sz),„«(A+E)'
or )(Jt+E)'.
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TAsr. E II. Results for the output values of the position and residue of the ™*hyperon.

(Sa) '.
(in m ')

109
121
145

g~' '(s)
(K=+);, S=SMg S=SMs

10 —0.16 0.73
10 —0.16 0.73
10 —0.16 0.73

2.3
1.8
1.25

—210
18.5
5.5

b3

—574—432—276

b4

7832
5982
3923

(Sa)„c
(in m ') N(v)

109 0.13
120 0.10
140 0.08

N(L) (K"+) out,

4.9 10.3
4.0 9.1
2.8 7.0

These results are for a choice of the two matching points at S =SMz =55msrn and S=SMu =110m'~ with the subtraction point Sp =55m&„~. The quantities
N(N) and 1V(1,) given above are evaluated at S = (Sz)ollt. The above results correspond to the choice Rg~~~/4x =1.

to the choice of this coupling constant, the quantitative
results to be given below will be only for a given choice,
namely

gxivx'/4' = &, (35)

(Sa),„, 109m.',
(K-..).„,=10, (36)

which, therefore, indicates the existence of a bound

"For experimental data on associated photoproduction see B.
D. McDaniel et a/. , Phys. Rev. Letters 1, 109 (1958).For Polology-
analysis of the data see, M. J. Moravcik, Phys. Rev. Letters 2, 332
(1959)."Hence a finite value for K=~.

"This comes about due to the fact that N* occurs both in the
crossed and the direct channel, the former giving rise to attraction
and the latter to repulsion.

which seems to be roughly the experimental value. "
(2) Irrespective of the value of Kg~(&~0) and for any

reasonably finite value of gz&z'/4a()0. 25, say), the
real part of the D function is found to decrease mono-

tonically with S, being unity at SO=55m ' and zero at
some point above 55m . This itself, therefore, indicates
the occurrence" of a resonance or bound state in the
system under consideration. The position of the zero, or
in other words, the rate of decrease of ReD(S), of course,
very much depends upon the input value of K-.~. In fact,
as one should expect physically, it is found that the
higher the input value of K™*,the lower is the position
of the zero. Thus, one can expect either a resonance

L(Sa),„t)(A+X)'j or a bound state ((Sa),„„&(A+X)'j
in the system under consideration depending upon the
strength of the residue K-. LA typical plot of (5&),„,
versus (K-.~); is shown in Figure 3.j

(3) Hoping that our model is not far from reality, we

demand that the physical values of Sz and Kz* should

be those for which there is at least approximate self-

consistency between their input and output values. In
the first place, it is rather interesting that even though
the stabilizing condition" encountered in the E~ calcu-
lation~ does not occur in the present case, the degree of
self-consistency does vary depending upon the input
values of Sg and K-.*. Table II gives the output values
of Sz and K-..for different sets of input values. It may
be inferred from the table that with the demand of self-

consistency, there is a relatively narrow range of values
for choosing these parameters. The best set of self-

consistent solution (self-consistency is better than 5%)
for the position and residue is found to be

state rather than a resonance. Figure 4 shows a plot of
the D function for the above self consistent solution.

(4) It ought to be emphasized that the effective-
range pole terms, denoting the far left-hand cut con-
tribution, are found to be much more important than
the nearby nucleon cut contribution at every stage of
the calculation. For instance, Nil, l(5) is found to be
bigger than Nt»(5) at least by an order of magnitude
(see Table II) and the contribution of the sum of bs and
b4 terms to the D function LKq. (23)j is found to be at
least two orders of magnitude bigger than that of the b1

and b2 terms. Thus, no resonance or bound state is
obtained if one includes only the nearby nucleon cut
contribution ignoring that of the far left-hand cut.
These clearly indicate the importance of the singu-
larities associated with the far left-hand cut for the
dynamical understanding of the ™*hyperon.

VI. CONCLUSIONS

%e have studied the problem of scattering in J=-,'+
state in the EA channel, ignoring the influence of all
other channels. We have considered our dynamical
singularities to be represented by the nearby nucleon cut
(Ii~(5~&Is) and the far left-hand cut (—~ &5~&0).
The contribution of the former was evaluated explicitly
in terms of the AXE coupling constant and that of the
latter, by the method of Salazs, through the introduc-
tion of effective-range pole terms. The analysis is found
to be quite insensitive to the choice of the ATE coupling
constant and one 6nds that the D function has the
desired behavior for the occurance of a resonance or
bound state in the energy region of interest. The main
force for the existence of the resonance or bound state
seems to arise from the singularities associated with the
far left-hand cut. '4 The best set of self-consistent solu-
tions for the position and residue indicates the presence
of a bound state at Sg 109m ' with residue K-.* 10.35

Indeed, the obtained position is remarkably close to
the experimental value of 121m„'. Furthermore, it is

4 The discontinuity across the far left-hand cut, as mentioned
before, arises due to a variety of exchanges in the crossed channels.
The effective-range pole-terms method, while in a sense includes
the contributions due to all such exchanges as well as possible,
precludes the necessity of specifying the contributions from inCh-
viduul exchanges,

' It may be noted for comparison that in the unitary symmetry
model, the observed width (100 MeV) of N* gives a value of
Kp~ =4. However, it is hard to draw any conclusion in view of the
seemingly large violation of unitary symmetry with regard to
YNE coupling constants (F stands for it and Z).
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rather striking that there does exist a solution with
excellent self-consistency (better than 5%) between the
input and output values of the parameters of the bound
state. Both of these may point to the success of the
present dynamical model for ™*.However, neither of
them can be taken too seriously in view of the many
approximations adopted in this paper.

In our opinion, the major point which ought to be
investigated carefully is the influence of other channels.
The main handicap in such an attempt, however, is the
presence of many unknown coupling constants. At this
point, let us draw attention to the work of Martin and
Wali, "who considered a grand bootstrap mechanism
for the J=~3+ tenfold resonances X*, I"~*, *, and 0
(yet to be discovered) as arising from the mutual in-
fIuence of all 'possible two-particle baryon pseudoscalar-
meson channels. They find that for a suitable choice of
the unknown mixing parameter (f/d ratio) in the SU(3)
symmetric coupling, they can qualitatively reproduce
the gross features of all the above tenfold resonances.
They, however, approximate the dynamical singularities
by those arising from the single-baryon exchange graphs
only. In view of the fact that in our calculation we do
find that the far left-hand cut contribution is important
(see end of Sec. V), it is not clear how the results (either
of Martin and Wali, or ours) would change for a more
complete calculation which considers the mutual in-
fluence of all the important channels and also includes"
the dynamical singularities other than those arising
from the baryon exchange only. Undoubtedly, such a
calculation will be of considerable complexity. A second
point which needs to be examined is the effect of
inelastic processes on the D function. Furthermore, it is
worth investigating how the results would change if one
introduces three or more eGective-range poles, instead of
just two.

As a parenthetical remark, however, from the success
of the present (EA)model, one m. ay be tempted to
guess that somehow the net effect of other channels is
not important.

In conclusion, while one ought to reserve one' s

opinion on the success of the present model until one can
ascertain that the results are not very much a6ected by
improving the approximations, as for instance men-
tioned above, we feel that the results obtained in the
present model are sufFiciently interesting in themselves;
and together with those of xx and ~X problems point to
the success of such dynamical methods, in general, for
the understanding of bound states and resonances.
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APPENDIX A

In this Appendix we will mention an estimate of the
order of magnitude of the ar and g-contributions to the
fixed-energy dispersion relation t Eq. (28)g. In particu-
lar, we try to justify the assumption made in Sec. IV
that the ~ and p contributions to the partial-wave
amplitude g~+ is negligible compared to those of the
nucleon and ™~.

The co and p contributions to the partial-wave
amplitude are given by (we retain only the charge
couplings of co and p to the AX system)

gr"(5') = (g«—-g~a-/32~9') L( (II'+A)' &')—(ll' A)—
XQt (1+its~'/2qs)+ {(W—A)' —E')

X (g +A)Qs(1+m /2g )j (A1)

gi""(~)= gt"'"'(5') (~ ~ 4) (A2)

where g~~„and g~g„denote the coupling constants of
the co meson to the EE' and AA. systems, respectively,
and similarly for the p meson.

There is no experimental information on the products
of coupling constants g~~„gj,~„and g~~~g~~~. If we
partly appeal to the hypothesis of unitary symmetry"
and consider bare ps and cps mesons, where ps belongs to
the unitary octet together with p and E*,while ~0 is the
unitary singlet coupled to the baryon current and as-
sume that the coupling of the unitary octet vector
mesons to the baryons is of the Ii type, "then" g+&~,= 0
and gxx„,——0. Thus, bare gs and &us mesons cannot
contribute to KA scattering. It is easy to check that in
this picture, physical (&+a&) also do not contribute to
EA scattering if we put mq= m„. Without entering into
this picture of p—

&o mixing, we may adopt for a rough
order-of-magnitude estimate the values

gKK&gAL&/47r gKK(ugahco/4K 1 ~ (A3)

's M. Gell-Mann, Phys. Rev. 125, 1067 (1962). J. J. Sakurai,
Phys. Rev. Letters 9, 472 (1962). Enrico Fermi Institute (EFINS
63—28) (unpublished).

"The D type coupling bears no resemblance to the hypothesis
that p is coupled to the conserved isospin current, etc.

0 Since @0 is supposed to be coupled to the hypercharge current
and coo to the baryon current, the former is not coupled to AA and
the latter is not coupled to EK.

As we shall see, the results are hardly affected, even
if we are wrong by a factor of 2—5 (say) in the above
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choice. In fact, we find that it makes no difference, even
if we drop the a& and p contributions altogether. The
reason essentially is: Using the values given by Eq.
(A3) for the &o and P couplings and using gq~rr'/4n. = 1,"
we find that the sum of ~ and g contributions to gi+(5),
evaluated at either of the two matching points (55 and
110m ') is less than 15% of the nucleon contribution
LEq. (10)], evaluated at the same points. However, the
nucleon contribution, itself, is much less than the
contribution LEq. (30)] for any reasonable value of
K-.*, and especially for the self-consistent value of
K-.~ (=8 10). The * contribution is inore or less an
order of magnitude bigger than the nucleon contribu-
tion. Thus, the over-all contribution of pp and p terms to
g,+(5) is of the order of 1—5% of the sum of the nucleon
and ™*contributions, and hence may be ignored.

APPENDIX B

In order to examine whether the results depend
sensitively upon the choice of the matching procedure,
we also matched the value and derivative of the partial-
wave amplitude at a single point, given by the 1V/D
equation with those given by the fixed-energy dispersion
relation, instead of matching values at two points. In
this procedure it is convenient to choose the subtraction
point So at the matching point S3E. This simplifies the
evaluation of the derivative of the D function. Using
Eqs. (7), (9), (18), and (23), we have

where

Lp(SM) =
' Imgi+ ~ "&(5')

dS',
(5'—SM)'

(B3)

1 ~' (Imgi+&"' (5'))F (5', 5,, Sp ——SM)
L,(SM) =- —— dS'.

(5'—SM)
(B4)

We evaluated the quantities Lp(SM) and L;(SM) by
IBM-7090 in the same way as Ep(SM) and E,(SM).
The unknown residues b3 and b4 are then evaluated
straightforwardly by the use of the two matching equa-
tions obtained by matching the value and derivative of
the partial wave amplitude at a single point (SM=SM i
=55m ' or SM=SMp 110m ——') given by the E/D
equation and the axed-energy dispersion relation.

The results obtained by this matching procedure are,
qualitatively, just the same as those for the alternative
procedure of matching values at two points. In fact, all
the qualitative features of the results summarized at the
end of Sec. V are common to both the procedures. There
are, however, some quantitative differences in the re-
sults. The best set of self-consistent solutions obtained
by matching value and derivative at a single point
(SM= SMi or $3IIp) are

Sg=100m ',
Kg*=14 (fo SM=SM =5 =55 .')

4

D'(SM=Sp) = ——$P b,F(SM, 5,, Sp ——SM)], (B1)

-and

Sg = 126m„',

K-.*=6 (for SM=SMp ——Sp ——110m ').

(B5)

S'(SM=Sp) = —Q
i=a (SM—5 )2

It is interesting that the results obtained by matching
4 b; values at two points SMi and SMp )see Eq. (36)] are

somewhat a mean between the above two results, which
may be expected a priori This furth. er justifies our

1 intuitive reasoning )see Ref. (25)] that, in general, in an

p, (SM)+. p b.L.(SM)] (B2) approximate scheme, it may be better to match values
7r i=I at two points rather than at a single point.


