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state and the low-lying states. But since the most
strongly interacting configurations are the ones which
we have considered here, we feel that this may not make
any big improvement in the results and will rather make
this calculation more complicated. Probably the best
way will be to use a di6erent two-body potential. The
nucleon-nucleon potential which we are using here has
been fitted by the bound state properties of the very
light nuclei, 2~& 3 ~&4. It may be that these parameters
are not as good for the nuclear levels which we are con-
sidering here. A new set of parameters can be chosen by
a least-square fit of the ground-state properties and low-
lying states of one of the nuclei in which the closed 1p
shell is either missing one or two nucleons or has one or

two additional nucleons outside. Once these parameters
are fixed they can be used for other nuclei and by
comparing the results with the known experimental
values we can check the accuracy of this type of calcula-
tion. Since in the HamiItonian of this calculation we
have not included a two-body spin-orbit interaction,
therefore, another possibility which must be considered
is that the nuclear Hamiltonian should contain an ex-
plicit two-body. spin-orbit interaction.
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The pairing interaction in nuclei is investigated by using a model Hamiltonian II—X&X—'A&lP, where H
is the original Hamiltonian and X is the nucleon-number operator. The introduction of the term ) ~1P
enables one to suppress the effect of the nucleon-number fluctuation, which is inherent in the Bardeen-
Cooper-Schrieffer (BCS) approximation and. is a main source of its inaccuracy. A prescription is given to
determine the parameters ) i and ) 2. The method is first illustrated in the case where all levels are degenerate,
and then applied to realistic cases with nondegenerate levels. Quadrupole and other interactions are not
considered. Excited states with seniority zero as well as those with nonzero seniority are discussed. The re-
sults obtained by this method are compared with those of Kisslinger and Sorenson and of Kerman, Lawson,
and Macfarlane. For the ground-state energy an excellent accuracy is attained easily. It is observed that
the BCS states obtained by Kisslinger and Sorenson are much better approximations to eigenstates of our
model Hamiltonian rather than to those of their Hamiltonian. A new light is shed on the problem as to
why the projected and renormalized BCS states are very good approximations to the true eigenstates.

1. INTRODUCTION

'HE physical ideas and mathematical techniques
developed in the theory of superconductivity'

have been applied to the problem of the pairing interac-
tion in nuclei to explain low-lying energy levels of heavy
nuclei. ' According to this theory, a system of nucleons
which have pairing correlations between them can
approximately be described as an assembly of free
quasiparticles which are connected to the original
nucleons by means of the Bogoliubov-Valatin trans-
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formation. It is characteristic of this method that the
Bogoliubov-Valatin transformation is not commutable
with the nucleon-number operator, and consequently
the wave function which results does not correspond to
a system having a definite number of nucleons. Energies
and other quantities which are calculated with this wave
function are then interpreted as averages of the corre-
sponding quantities over a set of neighboring nuclei.

Once the 8ogoliubov-Valatin transformation is
exercised, it seems di%.cult, if not impossible, to remove
the nucleon number Quctuation from the wave function
without losing the essential merit of the theory, the
energy gap. Lipkin' has suggested, however, that
it would be possible to eliminate this effect from
energy eigenvalues. He has proposed to use the model
Hamiltonian

where H is the original Hamiltonian, X is the nucleon

s H. J. Lipkin, Ann. Phys. (N. Y.) 9, 272 (1960}.
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number operator, and f(N) is a function of N which
will be specified below. Ke consider interactions only
between like nucleons but not between proton and
neutron. Since any eigenstate of H is an eigenstate of
g, it is also an eigenstate of BC, although the converse
is not true in general. Denote by C&p(n) the lowest
eigenstate of H with an eigenvalue Es(n),

Then we have

seep(n) = (Es(n) —J(n)}Co(n). (1.3)

If f(N) is chosen in such a way that 4 s(n) with different
e are all degenerate eigenstates of X, in other words,
if (Es(n) —f(n)} is independent of n, then the model
ground state which will be a superposition of Cs(n)'s
belongs to the same eigenvalue of X as that of the true
ground state which has a definite number of nucleons.
As far as the energy of the ground state is concerned,
this model Hamiltonian de6nes an eigenvalue problem
which is equivalent to the original one, and the nucleon-
number fluctuation will not do any harm.

The problem is then to find the function f(iV). If
f(N) is a slowly varying function of N, a power series
expansion

f(N) =)I,iN+XsN'+
with

X =X„(0), )I, (n)= (m!) 'd"f(n)/dn" (1.5)

will be useful. We suppress the argument n of X (n,)
when m=0 or the e dependence is irrelevant. Perhaps
f(N) will be accessible only in this form. For a system
of very large number of particles, the linear approxima-
tion to f(&V) as in the BCS theory will be sufficient.
The number of nucleons outside of the closed shells is,
however, not very large and f(N) may considerably
deviate from its linear approximation. An extensive
calculation was done by Kisslinger and Sorenson' (KS)
using the BCS theory and many detailed properties of
low-lying levels of singly-closed-shell nuclei were
explained. Kerman, Lawson, and Macfarlane' (LKM)
examined the accuracy of KS's result and found tha, t
the ground-state energies are usually not given to better
than 500 keV, while excitation energies of the low-

lying states are correct within 200 keV. The inac-
curacy seems to be mainly due to the nucleon-number
Quc tllatlon.

In this paper we study the pairing interaction in
nuclei using a model Hamiltonian

but we use for simplicity the same X& and X2 as deter-
mined with respect to the ground state. The method is
first illustrated in Sec. 2 in the case where all levels are
degenerate' and then applied to realistic cases with
nondegenerate levels in Sec. 3. Quadrupole and other
interactions are not considered in this paper. Only
spherical nuclei are treated but the extension to
deformed nuclei will be straightforward. The result is
compared with those of KS and KLM (Sec. 38). It is
observed that the eGect of the nucleon-number Ructua-
tion is satisfactorily suppressed and an excellent
accuracy is attained for the ground state. In addition
to the ground state and excited states with nonzero
seniority, our theory can describe excited states with
seniority zero concerning which the BCS approximation
says nothing (Sec. 3C). The spurious states can satisfac-
torily be removed. Odd nuclei are discussed in Sec. 3D.

In the BCS approximation the residual pairing
interaction between quasiparticles is ignored, but it is
in fact not very small. Because of this residual interac-
tion the number of quasiparticles is not conserved and
the quasiparticle vacuum state, which is regarded as
the ground state, is prevented from being a good eigen-
state of the BCS Hamiltonian. ' An advantage of our
model Hamiltonian is that the part of the residual
interaction between quasiparticles which does not
conserve the number of quasiparticles is strongly
suppressed compared with that in the BCS Hamiltonian.
Another important feature is that our equation which
determines the wave function deviates on)y slightly
from the corresponding equation of the BCS theory.
Our wave function will therefore agree closely with
that of BCS. On the basis of these facts, a new light is
thrown on the problem of the projected and renormal-
ized BCS states4 ' (Sec. 4).

2. DEGENERATE MODEL

We consider the case where m nucleons are in the
configuration (j)". There is no essential difference
between this and a more general case where there are
several degenerate levels with different j's. The pairing
Hamiltonian is

H= —G P ( )' m( )i'—m'a ta—ta a ~, (2.1)
m, m'&0

where G is the (positive) coupling constant and a„t(a„)
is the creation (annihilation) operator for a nucleon
specified by the magnetic quantum number m.

The model Hamiltonian is

3C=H —Agg —A2S' sc=H —XgS—X S' (2.2)

A prescription is given to determine the coefficients X~

and X2. Strictly, for excited states different values of A&

and X2 than those for the ground state will be required,

A. K. Kerman, R. D. I awson, and M. H. Macfarl@ne, Phys.
Rev. 124, 162 (1961). KLM will hereafter mean this paper or its
authors.

where N=g a„ta (the sum is over, m~~0) is the
nucleon number operator, and A, i and P 2 are unknown as

A brief discussion of this case was given by V. Nogami, Progr.
Theoret. Phys. (Kyoto) 29, 938 (1963).

We mean by the BCS Hamiltonian the one of the form
H —A,g.
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yet. Let us rewrite X in terms of the quasiparticle
operators which are defined by the Bogoliubov-Valatin
transformation (with positive zzz),

n =ua„—(—)&-Wa „t,
n „=ua +(—)&-"pa„', (2 3)

whre u and e are real and satisfy us+v'=1. Then X
takes the form

Xpo+Xll+X20+Xzs+Xzi+X4o, (2.4)

where the subscripts refer to the number of creation
and annilihation operators, respectively. Explicit ex-
pressions of X„can be obtained as a special case of
Eqs. (3.8)—(3.12). The terms X», X», and X4p are the
residual interactions between quasiparticles. The term
X20 is the so-called dangerous term, but X40 is also
dangerous.

We want to determine Xi(N) and lIs(zz) by a succes-
sive approximation. The ith approximation to 'Ai(zz)

and Xs(zz) will be denoted by Xi&'i(zz) and ) s1"(zz),

respectively.
The first step: Putting Xo&'i(zz)=0 and ignoring

X40, we calculate the ground-state energy by the usual
BCS method. The term X20 can be eliminated by taking
lI.r"i(zz)= —-,'G(0—zz+zz0 '), where 0=j+ ', , and zz is-
the nucleon number which is set equal to (Ã) „, the
expectation value of S in the ground state, i.e., the
quasiparticle vacuum state. The first approximation
to the ground-state energy Ep&'&(I) is given as Ep" (zz)
=—4zGzz(20 —zz+zzQ ')

The second step: We put Xsi'i (zz) =-(d'/dzz')Eo&'i (zz)
= z4G(1 —0 '). The condition Xoo ——0 then gives Xi&"(I)
= —-',G(0+1—0 '(zz+1 —zzQ ')) . Again X4p is ignored.
The ground state energy is Ep&" (zz) = —pGN(20 —8+2
—0—'(2—NQ ')).

Repeating this procedure, we get at the ith step,

Xi "& (zz) = —-',G(0+1—0 '+'(zz+1 —zzQ-'))

Xo&'i(zz) =-',G(1—0 '+') (2.5)

Eo&'&(I)= —sGzz(20 —zz+2 —0 '+'(2 —zzQ ')) (2.6)

In the limit i —+ ~, we obtain

successive procedure. They are given correctly from the
outset. One may wonder that this situation is peculiar
to the degenerate model and the above procedure may
not be useful in nondegenerate models. It will be shown,
however, in the next section that the same situation
arises in nondegenerate cases in a good approximation.
With Xr and Xs given by Eq. (2.7), we have

Xoo=Eo (zz) —)iizz —l1zzz' =0,
X20 X31 X40—0

y (2.9)

Here the important point is that not only the dangerous
term X20 but also all the quasiparticle nonconserving
terms, Xsi and X40, have disappeared, so that the
number of quasiparticles becomes a good quantum
number of X. The BCS vacuum state is an exact
eigenstate of X, whereas it is only an approximate
eigenstate of the BCS Hamiltonian (with ho=0).

It is interesting to note that the right-hand side of
Eq. (2.10) is obtained from Eq. (2.2) by replacing a
in it with o, . This means that X is invariant with respect
to the Bogoliubov-Valatin transformation. This can
be checked as follows. The Bogoliubov-Valatin trans-
formation can be written as'

where

n~„exp(i——S)a+ exp( —iS), (2.11)

S= z8+ (——)i— (a„"a „'—a „a„)
m&0

= —zgg (—)' "'(n tn t nn —) (2.12)
m&0

with cos8= I and sin8= v. S satisfies

i8 'fX)Sj=—(GQ+2Xi+4Xs) Z (
m&0

X=Xri+Xzz

G P ( )j m( )j'—m' t t
m, m'&0

—)sign 'n„—l1s(gn„'n )'. (2.10)

X,(u) = —-', G(0+ 1), X, (u) =-',G,

which are independent of e, and

Ep(zz) = —-Gzz (20—0+2)

(2 7)

(2.8)

X(a ta 1+a „a )+(G—4lb, z)

X Q (—)&'— (aJa,„tX+Sa „a„), (2.13)
tn&0

which is the exact ground-state energy. ' As is seen from
Eq. (2.6) the error in the energy is reduced by the factor
0 as the approximation is pushed one step further.

The above calculation is simple because the wave
function, or I and v, remain unchanged throughout the

A. F. de Miranda and M. A. Preston, Nucl. Phys. 44, 529
(1963).' G. Racah, Phys. Rev. 76, 1352 (1949);B.R. Mottleson, in The
3/Suey Body Problem, edited by C. DeWitt and P. Nozieres
(Dunod Cie. , Paris, 1959), p. 283,

which vanishes because of Eq. (2.7). Therefore X(n)
=exp(iS)X(a) exp( —iS) =X(a).What is true for X(a)
is also true for X(n) with the interchange of the words
nucleon and quasiparticle. The eigenvalues of X are
degenerate with respect to the quasiparticle number as
well as to the nucleon number. This simple symmetry
between nucleon and quasiparticle does not hold in
general cases with nondegenerate levels.

Our next task is to obtain energies of excited states.

' K, Yoshida, Phys. Rev. 111, 1255 (1958).
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xe.(e) = (—x s—lj, s')e, (tt). (2.15)

The eigenvalue in Eq. (2.15) does not depend on the
number of paired quasiparticles in the state +, (ts).
Since C, (n) and %,(e) are supposed to be degenerate
eigenstates of K, we get

Denote by C, (e) the eigenstate of H with seniority
s(=2,4, ,n), and by tlat, (ts) the model state which
contains s unpaired quasiparticles. Then we have

XC, (u) = {E,(u) —X,u-X,n'}C,(u), (2.14)

t, number,

Xoo= 2 Q QjvjsEj G—' jt,' G—Q QP,'
—littd —Xstt' —4Xs P Q, (up, )'. (3.8)

X„=g{(u;s—.,') (.,—X)+ X,+ 2~u,',}X,, (3.9)

Here the last term is equal to —Xs((X') „—(1V)„,'),
which is the correction for energy due to the nucleon-
number fluctuation. The other terms in X are

Xss —P Q, l/2{ 2ujv~ (e g)—/tr (u .2 v, s) }E,(s) =li (8—s)+X (tv' —s')

= —-',G(tv —s) (2Q—I—s+2) . (2.16) X (ejt+ e,), (3.10)

Xss ———g{Gujvjuj vj +lie(uj' —v, ') (u, '—vj')}
This gives the complete spectrum of the degenerate
model. ' XQ(+.+.,) Q(Q.Q.,)1/2{G(u,su, , 2+v, sv, ,2)

3. NONDEGENERATE MODEL

A. Basic Equations

Ke consider the Hamiltonian

&=2 Z ~ o -'~ -—G Z 2 (—)™(—)" "'
j,j' m, m')o

X&jm /jj m&j' m'/Jj'—m' (—3 1)

where E, are the single j-shell particle levels, G is the
coupling constant, and aj t(/rj„) is the creation (anni-
hilation) operator for a nucleon specified by j and ttt.
Our model Hamiltonian is given by Eq. (2.2) where

asjt//j Opera.tors of quasiparticles are
introduced by means of the Bogoliubov-Valatin trans-
formation (with positive m)

nj m uj//jm ( ) vj/rj m—

+SXsujvjuj v, }Ojt Rj. , (3.11)

Xst ——Q {Gujvt (uj. '—vj. ') —its (uj —vj') uj.vj.}

X (O,j.tm,+at, o:, ), (3.12)

X4p ——P (QjQj ) '/'{-', G(uj'vj '+vj'uj ') —4lisujvjuj. vj }
X (0',jt Sj t+ Ot Qj ) . (3.13)

In Eq. (3.11), X( ) stands for a normal product. The
number of quasiparticles is conserved by X~~ and X22,
but not by X2o, X» and X4o.

The coefficients Nj and vj are chosen in such a way
that the dangerous term X~o vanishes. We assume that
the ground state is given by the quasiparticle vacuum
state 4„,and its energy by Xoo+Xttr+li&rP The co. n-
dition X~o ——0 is equivalent to minimizing Xoo. This
procedure goes in parallel with the usual BCS theory. "
The result is the equation

nj—m= uj/jj m+ ( )' Vj-//j m t

where u, and v, are real and satisfy uj-'+vjs= 1.
Introduce the notations

(3.2) 2(e,—).)ujv —A(u' —v') =0

which is equivalent to the gap equation

-'G Q Q {(e —X)'+j1'}—'"= 1

(3.14)

(3.15)

A=G P Q,u, v, , (3.3) combined with Eq. (3.3). The u, and v; are given as

ej=Ej+ (4Xs—G)vjs, (3.4)
u '= —,L1+ (e,—X){(e —X)'+g'}—'"j

(3.16)
vj'= sL1 —(et —lt){(et—lt)'+~'} '"j.

X=X,+2K, (tv+1), (3.5)

8,=Q, i/'P ( )™n,—n, (3.6)«j= ~O'jm O'jm&
cur .

mpo

tt=(Ã) „=2+Qjvjs. (3.7)

In terms of the quasiparticle operators, X can be
written in the form of Eq. (2.4). The first term is a

where Q, = j+-'„and I is the nucleon number which is
set equal to the expectation value of S in the quasi-
vacuum state.

These equations have exactly the same form as the
corresponding ones in the usual BCS theory. The only
difference is the appearance of the term 4X2vj' in 6j
(3.4). The role of the chemical potential is played by
X (3.5) which is determined so that the condition (3.7)

'0 There is a subtle difference. In the BCS theory one minimizes
GCop taking its variation with respect to v;. Later one chooses P so
that Eq. (3.7) is satisfIed. These two things cannot be done
simultaneously because the Lagrangian multiplier A, is supposed
to be independent of the variational parameter v;, whereas A,

depends on v; through Eq. (3.7). In our approximation, however,
these two procedures can be done simultaneously because 21 and
Xr can be regarded as constants. Bayman's method PNucl. Phys.
1St 33 (1960)]can be reformulated to give our procedure,
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is satisfied. Using Eq. (3.14), Xii can be rewritten as

X&1 QL((e~. )&)2++2)1/s+g $0I. (3 17)

If the function f(1V) were known here which would
completely eliminate the effect of the nucleon-number
fluctuation, it would be unnecessary to invoke the
condition (3.7). The values of )&i(m), )&s(e), . should
then be independent of e. We saw an example in the
preceeding section. There, exact )&i(n) and ) s(e) given
by Eq. (2.7) are independent of &s. The average number
of nucleons in + „is irrelevant, although the condition
(3.7) has been used in the successive steps which has
led to the exact answer. Eq. (2.5) shows that the
dependence of )&i(1) and )&s(e) on ri decreases as the
approximation is improved.

KS have shown that their X, which corresponds to
our X (3.5), increases almost linearly with increasing ri.
As we shall see in Sec. 3.8 our )&s(m) is not sensitive to
the change of m, implying the approximate linear
dependence of X on m. A merit of the second quantization
formalism is that the same Hamiltonian can describe
systems of arbitrary number of particles. The param-
eters in the Hamiltonian are usually supposed to be
independent of the number of particles in the system.
In this sense the BCS theory which involves the
number-dependent parameter X is not quite satisfactory.

In solving their gap equation KS put cj =Ejy ignoring
the self-energy correction —Gej2. According to KI M,
however, although this self-energy correction has an
appreciable effect on X and 3,, its inhuence on energies
and wave functions is negligible. This is an important
character of the gap equation. Our ej has another
additional term 4X2'vj2. As will be seen in Sec. 3.8, X~

seems to be larger but only a little larger than ~G, thus
(4)&s—G)&&P is smaller than Gr&P. Presumably it will be
permissible to put e; =E, as it is so in KS's case."'

Once we put e, =E;, then A. ~ and P2 appear in the
combination )& (3.5) in the gap equation and con-
sequently our uj, vj and X agree with those of KS. This
will furnish us with an enormous simplicity in our
successive approximation.

B. Successive Approximation

Before describing the successive procedure, it will be
appropriate to discuss a special choice of )&s(e). If
44=G, the (j~ j) elements of X» and X«& vanish.
This is already a considerable improvement over the
BCS approximation. Moreover, ej=E, holds exactly.
What KS solved is in fact the gap equation of this case.

In the nondegenerate model, it is obviously impossible
to completely eliminate X»+X«with any value of
)&Q(N) ~ A (j~ j'W j) element of X» or X&&& may vanish
for some )&s(&s)) 4G, but then their (j—& j) elements
will survive. For some ).2(r&)) —'„G, however, the effect

'0 Pote added in proof. This has been confirmed by solving the
gap equation without ignoring the self-energy correction. This will
be reported in Nuclear Physics by Y, Nogan&i and I. J. Zucker.

of Xsl+X40 may be strongly suppressed in the average
as compared with that in the BCS approximation which
assumes )&s(e) =0.

Now we want to determine ) i(n) and )&s(e) by a
successive procedure as was illustrated in Sec. 2. Instead
of starting with )&s&i& (e) =0, we may assume first that

)& &'&(tr) =-',G, (3.18)

and calculate KM+X&&'&m+)&s&i&n', the ground-state
energy, which we denote by E&&&i&(e). From Eq. (3.8)
we see that

= 2 Q Q&&&&sE, G'6'—', Grl, . ——(3.19)

Here EOKB stands for the ground-state energy obtained
by KS using the BCS approximation. Now one can
easily show that

dE&&&'& (e)/dm =)&——',G. (3.20)

which can be derived by using Eqs. (3.7) and (3.15).
An advantage of this formula over Eq. (3.22) is that it
is free from the error which m.ay be caused by the error
in the neighboring nuclei. "We used Eq. (3.22) because

"KS gave only two or three figures to X and 6, which may
introduce an error of the order of 20 keV in the energy. Because
the error in Pp()(n) may be amplified through Eq. (3.22), KS's
values of X and 6 are not sufficiently accurate for the present
purpose. We did not attempt to refine KS's result but adopted
slightly different values of ), namely ) =0.60 and 1.08 for n=6
and 8, respectively, instead of ) =0.59 and 1.09. The value of 6
is insensitive to these changes. If we took ) =0.59 for n =6, then
(1V),0=5,98(6, while for all other n, (N) „deviates the other
way. This Auctuation in the error causes an appreciable error in

through Eq. (3.22). For n=8, &&=1.09 gave (E) „=8.05
which is less accurate than the one adopted here. In determining
X2 by Eq. (3.22), we put (Ã) „=n.To obtain FKI,M12 we used the
orjginal values of 'A and 6 of KS,

Combining this with Eq. (3.5) one gets

dE&&&'& (0)/dN = Xi&'& -'d'Eo&'& (0)/dn'=)&s&'& =-,'G. (3.21)

With the exception of the degenerate model, X does
not vanish for m) 2 in general, and hence ) s(&s) deviates
from 4G for e&0. It is, therefore, a better approximation
to expand f(&s) around the nucleon number of the
nucleus under consideration than to expand it around
r&=0. The Xs in the formulas (3.8 13) and (3.17)
should then be understood as )&s(e).

Next step is to assume

)&s" (e) =-'(d'/dn, ')E&&" (n)= fE&&" (v+2)
+E&&"'(e—2) —2E "'(n))/8. (3.22)

Or we may use the more convenient formula

Xs&'& (r&) = ,'d)&/dm-

=-,'(p n,E,-s)(z'(p n, E,-s)s

+(Q 0;(E;—)&)E, ')') ', (3.23)
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TABLE I. The ground-state energy (MeV) of the even-even
nickel isotopes Ni"-Ãi". EKLM is the exact energy. ~ EKs is KS s
result. b Eo(') and Eo&') are of our first and second approximations,
respectively. The coupling constant G was taken to be 0.331 MeV
and the positions of the single-particle levels were chosen as
E(pg/g) =0, &(fs/g) =0.78 MeV E(p g/)g=1.56 MeV and E(gg/g)
=4.52 MeV. The fourth figure of the energy has little significance.

58
60
62
64
66

2

6
8

10

EKS

—1.127—1.510—1.087
0.223
2.476

O(1)

—1.382—1.904—1.540—0.207
2.165

Eo(2)

—1.458—2.037—1.750—0.440

EKLM

—1.494—2.i i 1—1.751—0.508
1.698

'See Ref. 12.
b See Ref. 11.

This method has been applied to the even-even
nickel isotopes, Ni"-Ni, which have been treated
approximately by KS and exactly by KLM. The same
coupling constant G and single-particle energies E,
as those of KS and KLM have been used, namely
G=0.331 MeV, E(pg/g) =0, E(fs/g) =0.78 MeV, E(pt/g)
=1.56 MeV, and E(gg/g)=4. 52 MeV. In Table I the
ground-state energies of KS and of our first and second
approximations are listed and compared with KLM's
exact answer EKLM." It is seen that an excellent
accuracy is attained at the second step. There is an

TABLE II. Quantities relevant to the calculation. The unit for
X, 6 and X2(2) is MeV. X and d, were taken from KS but X for
n=6 end 8 were slightly tnoditied. ' (an)g=(Ng)„, —(N),, '. The
coupling constant G and the single-particle energies are the same
as those in Table I.

we did not notice Eq. (3.23) before the calculation.
Since both formulas give almost the same values for
hg "&, we did not repeat the calculation using Eq. (3.23).

We neglect the self-energy correction for E; (3.4)
and put e, =E,, then as was noted before the gap
equation and consequently I, and v; of the second step
remain the same as those of the first step. This is an
essential simplifying factor of our successive procedure.
We ought to solve the gap equation once and only once.
To proceed further is almost trivial. The ith approxima-
tion to the ground-state energy takes the form

E,(o(gg) —Eexs(n) )t, 'g& p Q. (N/t/J)' (3 24

irregularity in the error, namely Ep") is very close to
EKz,M at n=6 whereas it is less so for m/6. We believe
this comes from the insuS. cient accuracy of the ) and
6 used. To proceed further requires little effort, but it
will not make much sense unless a more accurate
solution of the gap equation is available. The value of
Xg&g&(gg) and other relevant quantities are listed in
Table II."

It has been assumed throughout that the ground
state is given by the quasiparticle vacuum state 0„„
which is not an exact eigenstate of X because X4p&0.
However, the fact that Ep(2) is very close to the exact
energy E«M implies that the term X4p has been
strongly suppressed so that 4 „is a good approximation
to the ground state of X. As its form suggests, X31
will also be well suppressed at the same time. It should
be noted that this +„„which is the same as KS's is
a rather poor approximation to the ground state of the
BCS or KS Hamiltonian which does not contain the
term X~X'.

+11++22 (3.25)

which conserves the number of quasiparticles. The
vacuum state +„,is the exact ground state of X', and
excited states are constructed by operating et's on 4 „.

Let us introduce an operator

of which a special case is 0',t(jj00)= Q,,t. An excited
state of seniority 2 is given by

4 g(j t jsJM) = 8 (j tj gJM)+ (3.27)

where J/0 and the suffix 2 refers to the seniority.
4's(jt jgJM) with JWO is an eigenstate of BC' because
QP'g(jtjgJM)=0 for JWO. Denote by &Eg(jtjs) the
excitation energy of %g(jrjgJM) with JWO which are
degenerate with respect to J and 3E. Then we get

&Eg (Jg) =2 f (e; X)'+6'—)"'+2(4X Gg) (sggtI, )', (3.28)

C. Excited States

Having determined X and P, g(n) by the preceeding
procedure, we may ignore X31and X4p. The Hamiltonian
to be considered now is

2

6
8

10

—0.31
0.14
0.60
1.08
1.64

0.80
1.04
1.15
1.14
0.99

2.01
4.02
6.02
8.01

10.03

0.77
1.19
1.37
1.30
0.94

4X,(»

0.430
0.443
0.484
0.520

a See Ref. 11.

"ELM listed the difference between their exact energy and
KS's approximate one, but not the exact energy itself. Hence, we
first obtained KS's energy using A, and 6 given by KS and then
added the difference to it to get KLM's exact energy, which is
Listed in Table I. The fourth figures will be of little significanceg

DEg(gtJ ) = {(e, P )2++2)1/2+ j (e. $)2++2}1/2

fol $1+g~.
Excitation energies of low-lying excited states of

Ni"-Ni'g have been estimated by Eqs. (3.28) and
(3.29). The )tg&g& (gg) listed in Table II has been used for
X2. The result is shown in Fig. 1 together with those of
KS and KLM. Our excitation energies are nearly the
same as KS'st. This means that the residual pairing



I MPROVED SUPERCONDUCTIVITY APPROXIMATION'

2,5—
S
2 ~ 2

FIG. 1. Low-lying excited states in
the even-even nickel isotopes. The
notation (-', ,—,*),etc., denotes the single-
particle levels occupied by the un-
paired particles, while 0* labels the
first seniority=zero state. The entries
above ELM are exact positions
obtained by Kerman et ut. ,

4 while
those above KS were given by Kiss-
linger and Sorenson. ' Our result is
shown by arrows. The same coupling
constant and single-particle energies
as in obtaining Table I and ) 2('& given
in Table II have been used.
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interaction between quasiparticles which is neglected in
the BCS theory is in fact not important for the excited
states with nonzero seniority. It seems that the error
is mainly due to the nucleon number Quctuation.

The excited state with seniority zero is constructed
by adding paired quasiparticles to the vacuum. This is
a sort of collective excitation caused by the last term in
Xss (3.11).In the degenerate model discussed in Sec. 2

eigenvalues of X are independent of the number of
paired quasiparticles. Here it is not true as it is, but is
related to the appearance of spurious states.

Let us look for an operator Q which gives an excited
state with seniority zero by

'kp =Q%'vs with Q=Q cjSj (3.33)

which satisfies

t
X',Qj+„,=AEpQ%„„. (3.34)

It is interesting to see that, if we replace the coeScient
of 8;tQg in EIss (3.11)

(m=0, 1,2, .) are degenerate eigenstates of X. These
spurious states (m/0) appear because of the uncertainty
of the nucleon number and may be discarded.

Our approximation is to ignore X3~ and 3'.40 and to
replace 0 0 by 4 „,and to look for an excited state

+o'= ~o G(u,'u +tv, ')+8) su;v, u, si (3.35)

where +o is the model ground state which is the lowest
eigenstate of X. The Schrodinger equation is

by G, Eq. (3.34) can be reduced to the simple equation

G Q n&{aEs(jj) GQ& aEo) '=—1 —(3 36)

LX)Qj@o=AEp(N p, (3.31)

where AEO is the excitation energy. Now it is important
to note that there are a set of spurious states which are
degenerate with %p, i.e., which satisfy Eq. (3.31) with
AEO=O. As was pointed out by Anderson and by
Baranger" this is due to the fact that the nucleon
number operator

X=P {2Q,s;s+ (u,'—s,')X; where
(&,; —&&o&;; )

=o, (3.37)

which may be solved graphically. This is not very
misleading because the value of Eq. (3.35) is in fact
fairly close to G. However, we solve Eq. (3.34) ac-
curately. This can be reduced to a standard problem
for a computer, namely to solving the secular equation

+2Q'I'us (o, t+8)} (3.32)
X{G+2(O'A —G) (u, s,)'), (3.38)

is commutable with X, and hence the states S %0

"P.W. Anderson, Phys. Rev. 112, 1900 (1958); M. Baranger,
ibid 120, 957 (1.960). See also J. Hogaasen-Feldman, Noel.
Phys. 28, 258 (1961).

and for j4j'
h,y = (Q,,X'8,,"),.= —(Q,Q,')"'{G (u up'+ nPsi. ')

+Q.,up, u;.s,') . (3.39)
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TAsLE III. The excitation energies (MeV) of states with
seniority zero in the even-even nickel isotopes Ni58 —Ni'4. These
are the roots of Eq. (3.37). The lowest state with nE,„is spurious.

sed, but it does not necessarily imply that Xpt+X4p
has been suppressed. However, the above comparison
(Fig. 1) with ELM s exact answer will justify the neg-
lect of BC3~ and X4p.

0.041
0.063
0.113
0.154

2.14
2.16
2.46
2.45

3.88
3.38
2.87
2.94

8.50
7.67
6.77
5.77

D. Odd Nuc1ei

The odd nucleus or the state of seniority one may be
given by

(3.41)

Eq. (3.34) combined with Eq. (3.33) has a spurious
solution. Since Eq. (3.34) is an approximate equation,
the excitation energy of the spurious state does not
vanish exactly, but its deviation from zero may give a
measure of the accuracy of our approximation.

Four solutions of Eq. (3.37), of which the lowest one
is spurious, are listed in Table III. The excitation
energies are denoted by DE,~, DEp

&
DEp and AEp"'.

The spurious excitation energy AE.,„ is satisfactorily
small. The excitation energies are compared with
KLM's in Fig. 1. The agreement is rather good. The
normalized coefficients c; of Kq. (3.33) are listed in
Table IV. The normalized coefficients of the state

The interactions Xpt and X4p being ignored, %1(J) is
an eigenstate of X and the additional quasiparticle
moves independently in the orbit (jttz). The difference
between the energy of the seniority-one state and that
of the seniority-zero state is given by

DEI(J) ={(e~' )1)'+6'}"'+X (3.42)

In our approximation the ground-state energies of
the even and odd nuclei are given as

Ep(B) =Xpp+Xls+X2B (even I)
EI(ts) =Xpp+Xts+)ape'+HEI. (odd tI) (3.43)

Q Qq I/sp'8/ %v~~ (3.40)
Here Xpp is very small and in particular its dependence
on e is negligible. The even-odd mass di6erence is then
given as

which will be closer to an exact spurious state p; Q,Ils

&&Up, o',, 4'p than our spurious solution is, are also shown
in Table IV.

Strictly, the smallness of the DE„obtained shows
that the commutator )IV,Xpt+X4pf has been suppres-

j Eq. (3.40) Sp. sol. 1st 2nd 3rd

g=2
P3/2
JF5/2

P1/2
g9/2

x=4
P3/2
f5/2
P1/2
g9/2

m=6
P3/2
f5!2
Pl/2
g9/2

m=8
P3/2
f5/2
P1/2
g9/2

0.751 0.751
0.584 0.595
0.225 0.218
0.212 0.187

0.643 0.622
0.677 0.709
0.271 0.271
0.236 0.194

0.535 0.508
0.731 0.776
0.328 0.320
0.269 0.193

0.450 0.422
0.734 0.782
0.404 0.416
0.309 0.194

—0.650
0.743
0.139
0.083

—0.777
0.612
0.135
0.066

—0.852
0.515
0.081
0.040

—0.110—0.432
0.892
0.073

—0.087—0.263
0.958
0.071

—0.076—0.313
0.944
0.069

—0.108—0.333
0.933
0.078

—0.898
0.428
0.094
0.025

—0.082—0.158—0.123
0.976

—0.066—0.160—0.130
0.976

—0.057—0.148—0.141
0.977

—0.052—0.134—0.151
0.978

TABLE IV. The normalized amplitudes of the various compo-
nents in the spurious state and in the excited states with seniority
zero in ¹~~Ni'P. The column "Kq. (3.40)" shows the normalized
amplitudes of the state (3.40). Other four are for four solutions
of Eq. (3.34) with the excitation energies hE,„, dE', nE", and
AE"/, respectively.

P„=31(11)—-,'{M(tI+1)+3f(I—1)}
=EI(11)——,'{Ep(11+1)+Ep(ts—1)}
—{(e, )1)p++2}1/2 (3.44)

which agrees with KS's result. For excited states of odd
nuclei, our result does not show any remarkable devia-
tion from KS. Recently Pano et a/."have attempted
to account for the observed pairing energies or the
empirical even-odd mass differences in several light
spherical nuclei and deformed nuclei by using realistic
interactions combined with the BCS plus Hartree-Pock
model, but their resulting theoretical pairing energies
are in general much smaller than the observed values.
They then suggested that the most important reason
for this discrepancy will be given by the effect of the
residual interaction between the quasiparticles.

In our treatment the major part of the residual
pairing interaction between quasiparticles has been
taken into account, nevertheless we have got the same
even-odd mass difference as KS. The discrepancy of
Pano et a/. may imply that the effect of the residual
interaction between quasiparticles on the excitation
energies is important if realistic interaction are taken
instead of our simple pairing interaction.

'4 G. Fano, J. Sawicki, and A. Tomasini, Nuovo Cimento 29,
309 (1963).

4. PROJECTED BCS STATES

It has been shown by KLM that projecting out and
normalizing that part of the HCS state that corresponds
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to the correct number of nucleons yields a remarkably
close approximation to the true eigenfunction. 4 ~ This
may sound surprising in view of the fact that the BCS
state does not give a very good approximation to the
energy. Now we may understand this as follows.

Suppose C 0(e) de6ned by Eq. (1.2) are all degenerate
ground eigenstates of X, and that the BCS vacuum
state 0 „agrees with 0'p which is the lowest eigenstate
of X. Then 4,„,is a superposition of C o(N)'s,

@...=Q c.Co(N').

The point is that no excited state enter here, and after
projecting out obviously only Co(n) remains, which is
the true ground state having desired nucleon number n.
The preceeding analyses show that this is realized in
a good approximation. Decisive factors in our argument
are that (i) the gap equation and consequently the
wave function are little inQuenced by the introduction
of the term X2Ã', and that (ii) the other dangerous
term X4p is strongly suppressed by suitably choosing
'A2. Because of (i), the BCS vacuum state is very close
to our vacuum state. Actually in the course of the
successive approximation to get P2, we have assumed
that they are the same. Because of (ii) the vacuum state
becomes a very good approximation to 0'p.

For the excited states with nonzero seniority our
treatment does not give better results than KS, but it
may be possible to readjust X& and ) 2 so that accurate
energies of excited states are obtained but at the
sacri6ce of the accuracy for the ground state. Then the
above argument may be applied to the excited states.
At the present, however, it still sounds intriguing that

the projected and renormalized BCS excited states are
very close to the true excited states.

5. CONCLUSION

We have investigated the pairing interaction in
nuclei using the model Hamiltonian X=H —X~X—A2S',
where the parameters 'A~ and ) 2 are chosen so that the
effect of the nucleon number Quctuation on the ground-
state energy is eliminated.

An excellent accuracy has been attained for the
ground-state energy, and at the same time the quasi-
particle nonconserving interaction has been strongly
suppressed. On the basis of this result an explanation
has been given to the problem of the projected BCS
states. For the excitation energies of the excited states
with nonzero seniority our approximation has given
more or less the same result as that of KS. The excited
states with seniority zero have been obtained easily with
fairly good accuracy. It is concluded that the introduc-
tion of the term X2S' makes the theory more powerful
and transparent without causing mathematical
complication.
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