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An approximate Hartree-Fock self-consistent-6eld calculation. is carried out on the N'4 nucleus using the
concept of symmetry and equivalence restrictions. The conlguration interaction matrices belonging to a
definite value of J, II, Tareconstructed using the jj coupled configurations arising from (1pl shell. The
approximate Hartree-Pock binding energy turns out to be 38.5 MeV too small, while it was only 13 MeV
too small for the 0".This is attributed to an inadequate choice of the tensor interaction or to the omission
of a two-body spin-orbit interaction. The static magnetic dipole moment is calculated to be 0.39 nuclear
magneton and the rms radius is found to be 2.14 F. The results are compared with the earlier intermediate
coupling calculations. A number of low-lying even-parity states are calculated and compared with the ex-
perimental values.

I. INTRODUCTION

' 'N the past a number of calculations have been done
&- on 1p-shell nuclei in intermediate coupling. The
Hamiltonian of these calculations has an ad hoc single-
particle spin-orbit coupling term and a central nucleon-
nucleon interaction and the single-particle wave func-
tions are represented by the harmonic oscillator wave
functions. Energy levels and various other quantities of
interest like static magnetic dipole moment are then
calculated as a function of intermediate coupling
parameter, which is Axed by comparing the calculated
quantities with their experimental values.

The strong spin-orbit coupling postulated in the shell
model can be explained through tensor force. ' There-
fore, if one includes the tensor force in the Hamiltonian
of the system, then it becomes unnecessary to include a
separate spin-orbit term. This was first indicated by
Elliott. '

In an earlier calculation' on 0" we had shown that
the approximate Hartree-Fock self-consistent-held cal-
culation gives an improved ground-state energy in
zeroth order compared to the one obtained with har-
monic oscillator wave functions. For the closed-shell
nuclei like 0", the contribution of the tensor force to the
"5ground-state configuration is zero, but for the open-
shell nuclei the tensor force can affect the ordering of the
low-lying states and the ground-state properties quite a
bit. For calculational purposes the nuclei which have
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either one or two holes in 1p shell or one or two nucleons
outside the closed 1p shell are very suitable. lt is of
great interest to compare the results of these approxi-
Inate Hartree-Fock calculations with the one in which
an ad hoc single-particle spin-orbit term and simple-
harmonic-oscillator wave functions are used.

We have carried out such a calculation on the N"
nucleus, using the matrix Hartree-Fock method. ' In the
intermediate coupling scheme, one may either work with
a complete set of I.S or jj basis functions. Because of
the inclusion of tensor force in the Hamiltonian, the
only good quantum numbers are J, the total angular
momentum quantum number; II, the parity; and T, the
total isobaric spin quantum number. Therefore, if the
states having a definite value of J, II, T are constructed
using the jj coupled orbitals, then because of the
commutatibility of projection operator with the Hamil-
tonian, the configuration interaction matrix is easier to
calculate.

Section II gives an analysis of the 1p shell for the N"
nucleus, the results of the approximate self-consistent-
field calculation are given in Sec. III. Using these results
the ground-state properties and the low-lying levels are
calculated and compared with the earlier intermediate
coupling calculations and the experimental values in
Sec. IV.

II. ANALYSIS OF THE IP SHELL FOR N'4

In this section we shall carry out the analysis of the jj
coupled configurations (p,t,) ', (pits) '(pets) ', (ps/s)
We shall use the following notation for the Slater de-
terminant made up of the jj coupled orbitals

where the normalization constant and the conventional
antisymmetrizing operator are to be understood. The jj
orbitals written to the left of the semicolon refer to the

' R. K. Nesbet, Rev. Mod. Phys. 35, 552 (1963l.
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neutrons (v) and those to the right refer to the protons
(m-), the p~/2 orbitals are written to the left of the comma
and pi/2 orbitals to the right. The eigenfunctions of the s
component of angular momentum can be easily writ ten
down. The eigenfunctions of the square of the angular
momentum are then constructed by taking a proper
linear combination of these functions. The coeS.cients
in the linear expansion are then obtained using the step-
up operators. ' We denote the eigenfunctions of J', T',
J„T,by I

JTJ,T,). We shall now write down the states
of definite J and T obtained from the various jj con-
Ggurations of N'.

Comfiguratior/, (pi/2)
'

Ilp1p)=( i

0101)= (, -', —-'„, ) .

Configuratiol (pi/2) '(p3/2)

I
2020) =—[(-,' —,

' ——',—-', -', ;
-' -', —-', -' ——,')

«/2/3 1 1 3 1 1, 3 1 1 1% I++422 2 2) 2 2)2 2 2) 2JI'

I1010)= [v3(-', -', —-,'——',, ——', ; -', -', —-'„-', ——',)
8

f3 1 1 3 1.3 1 3 1 1%
422 2 2)2)22 2)2 2)

i «faf3 1 1 1 1, 3 1 1 3 1X~++42 2 2) 2 2)2 2 2 2) 2J

III. APPROXIMATE SELF-CONSISTENT-FIELD
CALCULATIONS

To obtain the radial wave functions for the occupied
p3/2 p]/2 orbitals an approximate Hartree-Fock self-
consistent-held calculation is carried out using the
determinant

)2 ) )2 )

from the (pi/~) 2 configuration.
The nucleon-nucleon interaction is the one obtained

by Goldhammer' by fitting the data on light nuclei. It
consists of a Serber potential with a repulsive core and
a tensor-even component, and is given by

( ri2') ri22q
1/ i2

—J~ expI —g I+Jo(PO+Pi) expI

(r12) ( rlQ I

+4(1—si s2)Si2I —
I
Js expI — — I, (1)

Era) & r'i '

where

JR=189.75 MeV, Jg= —58.65 MeV,

Js= —107.29 MeV,

ro ——1 54 F (1F=10 "cm).

Po ———,', (1—ei o2)(3+~i ~2).

Pi= i'6(3+vi —e2)(1 ~i ~2). —

(gl'r12) ((r2 r12)
(F1' C/2

The single-particle orbitals p, are expressed as a
linear combination of a set of linearly independent basis
orbitals p;, which for jj coupled orbitals are chosen to be
of the form

l'3 1 3 1 1.3 1 1 3 lil
k2 2 2) 2 2 ) 2 2 2 2) 2JJ' q;= R, /,(r)xp((m„), (2)

Configuratio (p3/2)
—'

I3030)= (-; -', —-'„;—; -', —-'„).
I2121)=(55—k —2, ;5k, ).

where g(m, ) is an isospin function and X/ is obtained by
vector coupling the spherical harmonic I'~ with the
elementary spin function v(m, )

1/2

x/ = ) (lm —m, —,'m,
I
l2ijm) 1 i 'i/i/2 * (3).

my==1/2

I
1010)= [v3(2 l —l, ;2—l —5, )

10 The radial wave functions R,~(r) are taken to be of the
form

af3 1 3
2)

. 3 1 3
2 2 2) R, ~(r)=Xi,r'"'+" exp( y,r'), — (4)

+v3(2 —
2
—2, 2 2

—k, )).

I
0101)=—[(-,' —,

' ——',——,', ;
—',—-'„)

V2

where X~, is the normalization constant, n, a variable
integer, and y, a variable parameter.

In our earlier calculation, ' we had expanded the
nucleon-nucleon potential in terms of I egendre poly-
nomials to calculate the two-particle matrix elements.
This is not very convenient since a definite form of V(r)

R. K. Nesbet) J. Math. Phys. 2) 701 (1961). 7 P. Goldhammer) Phys. Rev. 116) 676 (1959).
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for the nuclear potential is not known at present.
Talmi' has shown that if one uses the harmonic oscillator
wave functions then the two-particle matrix element can
be expanded in the form of a series. Talmi's analysis has
been generalized by the second author' of this paper
which enables one to express the two-particle matrix
element of various operators in terms of linearly inde-
pendent reduced matrix elements in a simple way. The
two-particle matrix element for a scalar potential is
given by

(4 4 b I V14"4')

drldrsR. (ri)R, (ri) V (r)Ra(r2) R b(rs)

r'dr R'dR sinndaV(r)R, (ri)R, (ri)
0 0

(k 2 k'y

ks 0 —sf
XRb(rs)Rd(rs)p 2ir

trk 2 k

(o o 0)

(9)

(abIs(2, —M) I
cd) is tabulated in Ref. 9, M=mi. +mib—mi, —mi„and the radial integral I""'(acIdb) is given

by

bb (tbc
I
db)

&& Vi."'*(1)Vt.""(2)V4"'(1)Vi.""(2) (5)

=Q c'(l.m4, l,mi, )c "(hami„, l bmi, )

F"(ac
I
db) = —,'(2k+1)

=0
R'dR sinndnPb(cosoi)

=0

)& V(r)R, (ri)R, (r])Rb(rs)Ra(rs), (7)

where r is the relative vector, R is the center of mass
vector, n is the angle from R to r, and td is the angle
from r, to r2.

For the tensor operator V(r)Sis the two-particle
matrix element is given by

(4'.0 b I
vs»14'A'~)

= (—1) (ss)'t'(ab
I
s(2, —M)

I
cd)

&& P c"(l,m4, l,mt, )c '(ldmt„lbmib)

)&P"(ac
I db)b[(mi. mi, )—, (mi, mib—)] ) (6)

where, greater of
I
/, —l, ~, I

l b
—la

I
&~k &~lesser of

(l,+l.), (lb+id), k+i +l,=even, k+lb+ld=even. The
coeKcients cb(lm, 'lm') are the Gaunt coefficients, tabu-
lated by Condon and Shortley. " The radial integral
Fb(ac

I
db) is given by

where FI,' are the spherical harmonics in a body-fixed
reference frame.

A 709 computer program "SNUC" made by the
second author of this paper is now available which
calculates the values of the radial integrals given by (7)
and (9) for an arbitrary nucleon-nucleon potential V(r),
which is integrable.

For I.S coupling the coefficients which multiply the
independent radial integrals in (6), (8) can easily be
obtained from the tabulated values in Ref. 10. But
when one uses the jj coupled orbitals given by (3), then
a transformation is needed which gives the necessary
coeAicients for jj coupling. A 7090 FORTRAN program
made by the first author" is available which calculates
the coefFicients multiplying the linearly independent
radial integrals for jj coupled orbitals.

In the earlier self-consistent-field calculation' on 0",
the Coulomb operator was not included in the zeroth-
order Hamiltonian. The Coulomb operator will cause
the neutron and proton wave functions to be different
and therefore will increase the number of parameters for
s and p nucleons. Since the Coulomb contribution at
least in the light nuclei is much smaller than the nuclear
contribution, very small error will be introduced by
taking the neutron and proton wave functions to be the
same. Using the concept of symmetry and equivalence
restrictions, "we shall average out the Coulomb contri-
bution for the whole shell. The self-consistent-field

TABLE I. Parameters n;, y; for the s and p radial wave
functions R~;.

&( c(skm. tmi„k'mi—„—mib)I" b'(ac
I
db), (8)

where

It.—i,
I
&k&(i.+i.), Ii,—l,

I
&k'&(i,+i,),

l,+l,+k= even, /b+la+k'= even, the spin matrix

' I. Talmi, Helv. Phys. Acta 25, 185 (1962).
~ R. K. Nesbet, J. Math. Phys. 4, 1262 (1963).' E. U. Condon and G. H. Shortley, The Theory of Atomic

Spectra (Cambridge University Press, London and New York,
1953), p. 178.

0.317
0.317
0.317
0.161
0.161
0.161

"Nazakat Ullah (to be published)."R.K. Nesbet, Proc. Roy. Soc. (London) A230, 312 (1955).
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TABLE II. One-nucleon energies e and the coeKcients x for
orthonormal self-consistent occupied orbitals @ of N'4 expressed
as linear combinations of normalized basis orbitals g;.

TABLE III. Parameters g;, y; for the $ and p radial wave
functions R&; under equivalence restriction.

1$1(2
ip3i2
ipfi2

(MeV)

—48.54—22.97—25.39

0.77231
1.86491
1.91327

0.30358—1.60331—1.70577

X3

—0.04156
0.69086
0.73776

0
0
0
1
1
1

(F ')

0.288
0.288
0.288
0.143
0.143
0.143

calculation will then give the average single nucleon
energy. The single neutron or proton energy can then be
calculated using the average value and the Coulomb
contribution. The total isotopic spin will no longer re-
main a good quantum number. However, since we are
dealing with light nuclei, in which Coulomb force is
much weaker than nuclear force, we shall take the total
isotopic spin as an approximately good quantum
number.

The parameters for the radial wave functions R;~ are
shown in Table I. These are the parameters which give
the lowest energy for the ground state of 0" in zeroth
order when the Coulomb potential is averaged over the
shells. Using these parameters the self-consistent-fmld
calculation gives the values of one nucleon energies and
the coefficients X,~ for the occupied sr/s ps/s pr/Q

orbitals for N'4 shown in Table II.
In the calculation of the matrix elements of the ma-

trices belonging to a particular value of J, II, and T we
shall have to transform the two-particle matrix elements
from the basis of r/ functions to that of p functions. The
number of independent two-particle matrix elements
needed for this calculation can be greatly reduced if the
radial wave functions for the occupied ps/s orbital is
taken to be the same as pt/s. The results of the ap-
proximate Hartree-Fock self-consistent-field calcula-
tion" on 0"and on N" shown in Table II show that the
ps/s and pr/s radial wave functions are only slightly
di6erent. By slightly extending the concept of equiva-
lence restriction" these radial wave functions can be
taken to be the same. The input data for the self-
consistent-6eld calculation is now obtained by treating
the P orbitals as a single shell, made up of the two jj
coupling subshells. The best parameters for the s and p
radial wave functions with this additional constraint are
shown in Table III. The self-consistent-field results are
shown in Table IV.

IV. GROUND-STATE PROPERTIES AND
LOW-LYING STATES

(p, /&)
—

'(ps/s) ', respectively. The matrix elements of the
3&(3 ground-state configuration have the following
values

Haa= —55.481, Hah= 4.356, Hac= —3.430,
Hbb= —60.313, Hbc= 4.251, Hcc= —55.315.

The diagonalization of this matrix gives the eigenvalues

sr= —65.702, es= —53.439) es= —51.967.

The eigenvectors belonging to the lowest eigenvalue are

X,=0.47442, Xs= —0.74866, X,=0.46304.

Thus the approximate Hartree-Pock binding energy
of N" is 65.70 MeV compared to an experimental value
of 104.21 MeV. The rms radius ((r'))'/' turns out to be
2.14 F compared to the experimental value of 2.45 F.

tA'e shall now calculate the static magnetic dipole
moment (/z). It is given by"

(/z) = +'(M= I) (/z. o),+(M= J)dr,

where

Ap=2 Z I (&—r.")(&'+gus')+a~(&+r*")J~ (&2)

in nuclear magnetons. The values of the gyromagnetic
ratios g„, g„are 5.59 and —3.83, respectively.

To evaluate expression (11) we need the matrix ele-
ments of the s component of I, s between jj coupled
functions given by (3). The use of the reduced matrix

TABLE IV. One-nucleon energies c and the coeKcients X; for
orthonormal self-consistent-field occupied orbitals @+ of N" under
equivalence restriction.

The ground state of N'4 has J~= 1+, T=O, its wave
function 0' can be approximated by (MeV) XI XP

4 =X.%.+Xs@s+X,@„ (&0) 1$
1p

—46.28—22.47
0.79594
1.94555

0.29063—1.77764
—0.06222

0.77404

where 4'„@s, 4'. denote the I1010) wave functions
obtained from the configurations (Pr/s) ', (Ps/2)

'3 Nazakat Ullah and R. K. Nesbet (unpublished).

'4 J. M. Blatt and V. F. Weisskopf, Theoretical Nuclear I'hy$ic$
(John Wiley 8t Sons, Inc., New York, 1958).
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elements" gives the following expressions for these TABLE V. Low-lying even-parity levels of N4. The energies of
the calculated levels are relative to the calculated ground statema nx e ernents of N'4.

= (—1) 1 ' " +'a+&'t:ss(2j.+1)(2j&+1)j'"

( ja js 1) ja js
X! ! P~5 t. , ),5„.,„„(13)

4n, —m, 0 -', —,
' l,.

(j.m. jl, !j sms)

—( 1) ~sta m—a+ia—+is

XD, (l,+1)(2l.+1)(2j.+1)(2j&+1)jU'

Excited levels
@II T

0+
1+
2+
2+
3+
1+

where

Calculated
(MeV)

0.07
12.26
1.43
2.75
7.96
9.74

Experimental
(MeV)

2.31
3.95
7.03

10.43
11.38

X! ! P'st. , t,b .,„„(14)
ma

where

With the help of these relations we can express the
magnetic dipole moment as

(p) =0.373X '+0.627Xs'+0.690X '
—0.253X,X,+0.401XsX, . (15)

Substituting the values of X„Xq,X, we get the value
of (it) to be 0.39 nuclear magneton. This is to be com-
pared with the experimental value 0.40 and the value
0.36 obtained by Tauber and Wu in intermediate
coupling.

The quadrupole moment (Q) of the nucleus is given
byI4

E;,R;,r4dr.

Because of the selection rules on j given by the second
3—j symbol in (18), the pure (Pti&)

' configuration
gives a zero quadrupole moment. lt can further be
shown that the pure (psis) ' configuration gives a
negative quadrupole moment. The quadrupole moment

(Q) using the approximate ground-state wave function
can be expressed as

(Q)= E
—0.160X '+0.100X,'+0.400X.X,

+0.126XsX,jeQ~. (19)

Its value turns out to be —0.12e—F'. Thus the calcula-
tion gives the wrong sign to the quadrupole moment.

N" has a number of low-lying states. These states can
be calculated by constructing the appropriate matrices
belonging to a given J" and T and then diagonalizing
them. The calculated results for even parity states are
shown in Table V along with their experimental values. "
As can be seen from Table V most of the calculated
states lie much lower than they should.

(Q) = 0 *(M=J)Qsls&@(M =J)dr, (16) V. DISCUSSION

where the quadrupole moment operator Qs&'& is given by

As in the case of dipole moment, we calculate the
matrix of Qs'@, it is given by

(j.m. !Qst'&! jsmb)

(l. 2 ls)
!= ( 1)&a+4+ia+it ~a 52eQR!—

&0 o 0)

t' j.
x/ (—m. m 0) -', t b

"A. R. Edmonds, AnguLar Momentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957).

We shall now discuss the results of this calculation
and the possible ways to improve them. As we have
seen, the approximate Hartree-Fock binding energy for
N" turns out to be about 38.5 MeV too small, while it
was only 13 MeV too small for 0".This can either be
attributed to an inadequate choice of tensor interaction
or to the omission of a two-body spin-orbit interaction.
An incorrect choice of tensor interaction can also give
the wrong sign to the quadrupole moment. However, the
magnetic moment is not very sensitive to the choice of
the nucleon interaction potential but is affected by the
mode of coupling, as has been pointed out by Lane. '
Thus our magnetic moment is in good agreement with
the experimental value.

One way to improve the results of this calculation is
to include more configurations in the calculation and see
the effect of the higher configurations on the ground

' F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. 11,
(1959); Ann. Rev. Nucl. Sci. 10, 409 (1960).
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state and the low-lying states. But since the most
strongly interacting configurations are the ones which
we have considered here, we feel that this may not make
any big improvement in the results and will rather make
this calculation more complicated. Probably the best
way will be to use a di6erent two-body potential. The
nucleon-nucleon potential which we are using here has
been fitted by the bound state properties of the very
light nuclei, 2~& 3 ~&4. It may be that these parameters
are not as good for the nuclear levels which we are con-
sidering here. A new set of parameters can be chosen by
a least-square fit of the ground-state properties and low-
lying states of one of the nuclei in which the closed 1p
shell is either missing one or two nucleons or has one or

two additional nucleons outside. Once these parameters
are fixed they can be used for other nuclei and by
comparing the results with the known experimental
values we can check the accuracy of this type of calcula-
tion. Since in the HamiItonian of this calculation we
have not included a two-body spin-orbit interaction,
therefore, another possibility which must be considered
is that the nuclear Hamiltonian should contain an ex-
plicit two-body. spin-orbit interaction.
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The pairing interaction in nuclei is investigated by using a model Hamiltonian II—X&X—'A&lP, where H
is the original Hamiltonian and X is the nucleon-number operator. The introduction of the term ) ~1P
enables one to suppress the effect of the nucleon-number fluctuation, which is inherent in the Bardeen-
Cooper-Schrieffer (BCS) approximation and. is a main source of its inaccuracy. A prescription is given to
determine the parameters ) i and ) 2. The method is first illustrated in the case where all levels are degenerate,
and then applied to realistic cases with nondegenerate levels. Quadrupole and other interactions are not
considered. Excited states with seniority zero as well as those with nonzero seniority are discussed. The re-
sults obtained by this method are compared with those of Kisslinger and Sorenson and of Kerman, Lawson,
and Macfarlane. For the ground-state energy an excellent accuracy is attained easily. It is observed that
the BCS states obtained by Kisslinger and Sorenson are much better approximations to eigenstates of our
model Hamiltonian rather than to those of their Hamiltonian. A new light is shed on the problem as to
why the projected and renormalized BCS states are very good approximations to the true eigenstates.

1. INTRODUCTION

'HE physical ideas and mathematical techniques
developed in the theory of superconductivity'

have been applied to the problem of the pairing interac-
tion in nuclei to explain low-lying energy levels of heavy
nuclei. ' According to this theory, a system of nucleons
which have pairing correlations between them can
approximately be described as an assembly of free
quasiparticles which are connected to the original
nucleons by means of the Bogoliubov-Valatin trans-

*Present address: Department of Physics, Battersea College
of Technology, London, England.

' J. Bardeen, L. N. Cooper, and J. R. SchrieBer, Phys. Rev.
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(1960).KS will hereafter mean the last paper or its authors.

formation. It is characteristic of this method that the
Bogoliubov-Valatin transformation is not commutable
with the nucleon-number operator, and consequently
the wave function which results does not correspond to
a system having a definite number of nucleons. Energies
and other quantities which are calculated with this wave
function are then interpreted as averages of the corre-
sponding quantities over a set of neighboring nuclei.

Once the 8ogoliubov-Valatin transformation is
exercised, it seems di%.cult, if not impossible, to remove
the nucleon number Quctuation from the wave function
without losing the essential merit of the theory, the
energy gap. Lipkin' has suggested, however, that
it would be possible to eliminate this effect from
energy eigenvalues. He has proposed to use the model
Hamiltonian

where H is the original Hamiltonian, X is the nucleon

s H. J. Lipkin, Ann. Phys. (N. Y.) 9, 272 (1960}.


