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Relativistic High-Energy Approximation for Elastic Scattering of Dirac Particles*
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A high-energy approximation is described for predicting the elastic scattering of Dirac particles by a
scalar potential. The formal solution is then applied to the specific problem of electron and positron scattering
from nuclei. The predicted cross sections turn out to be in close agreement with those of partial-wave
analysis, even for heavy nuclei and at large scattering angles, where the Born approximation is entirely
inadequate.

I. INTRODUCTION AND SUMMARY

'HE unsuitability of the first Born approximation
for electron scattering from the heavier nuclei

has been known for some time. The alternative method
of phase-shift analysis has been successfully applied'
to electron and positron scattering in the region of
several hundred MeV, but as the energy increases the
numerical difhculties tend to proliferate rapidly.
Furthermore, the division of the problem into solution
of separate partial waves may tend at times to obscure
one's contact with the underlying physics.

Several attempts have been made to provide a
suitable approximation technique for the heavy ele-

ments, but so far these have appeared too limited in
their range of usefulness to attain general acceptance or
application. A high-energy approximation for the
Schrodinger equation was shown by Glauber' to have
a range of validity which encompasses that of both
Born approximation and the WEB method, as well as
the region in between. SchiG, ' using the method of sta-
tionary phase, also made such an approximation, not
only for the Schrodinger equation, but for the Dirac
equation as well. He developed two approximations, one
valid for small scattering angles, and the other for large
angles. Because his derivation of the small-angle ap-
proximation suggested that it was valid over only an
extremely small angular range, it was rather his large-
angle formula which was applied in asymptotic'form by
Tiemann~ with somewhat limited success to the same
nuclear model as in Figs. 2, 3, and 4 below. Since an
intermediate range of angles had apparently not been
included, subsequent developments by Saxon' ' and
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Schiff' extended the treatment to include all angles, with
the small angle formula as a simplifying limit.

In this paper an independent theoretical development
by another method has resulted in the same expression
which Schiff obtained for small angles, but suggests
that it is accurate over a much greater range of angles
than his derivation implied. It is then shown how this
simple result may be applied to specific models, giving
close agreement with partial-wave calculations over the
entire angular range.

The method taken here follows the approach of
Glauber, ' who solved the Schrodinger equation for scat-
tering in the high-energy limit by introducing into the
expression for the scattering amplitude a wave function
which consists of a plane wave modulated by a slowly
varying function of position. Now, however, it is the
Dirac equation which is to be solved, the plane wave
becomes a spinor, and the slowly varying function be-
comes a 4)&4 matrix operator in the space of the Dirac
matrices.

The formal result turns out finally to be fairly simple,
resembling that for the Schrodinger equation, and dif-
fering in fact only by the added presence of a spinor
term. The expression for the scattering amplitude is an
integral over a variable related to the classical impact
parameter, replacing the summing of discrete partial
waves.

This result has been applied to the problem of the
scattering of electrons and positrons from an arbi-
trary (spherically symmetric) nuclear model. The final
integral expression for the scattering amplitude consists
of two parts, one a single integration within the nuclear
charge cloud, and the other corresponding to those
particles whose classical orbits pass through the purely
Coulomb region outside the nucleus. The latter integra-
tion has been carried out explicitly in terms of known
functions, while the former must in general be evaluated
numerically for an arbitrary charge distribution.

In addition to calculations carried out for comparison
with phase-shift techniques, a cross section has also
been computed for the scattering of 1000 MeV electrons
from a uniform model gold nucleus. At this energy,
where for numerical reasons phase-shift analysis
becomes extremely unwieldy, if at all usable, the high-
energy approximation continues to give stable results,
and in fact increases in validity. The relatively simple
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symmetry about the s axis, Eq. (7) becomes

p(r) =1—— (n k6"+Pm+E)
2k 0

Therefore, transforming to cylindrical coordinates,

jV

M = ——up*up expt'iq (b+as)) V(b, s)
2'

)&V(r—r")q(r —r") dr", (10) Xexp —i-
k

V(b, s') ds' dsd ~'&b, (16)

where the retention of only the p, =+1 term in Eq. (8)
requires that the integration be carried out subject to
the condition that r" remain parallel to a, the unit vector
in the s direction. In Cartesian coordinates,

Z

pp(&, y, s) =1——(e ks+pm+E)
2k

V(x,y, s') q (x,y,s') ds'. (11)

This integral equation may bc solved, giving

Z

q (x,y, s) = exp ——(n ka+Pm+E)
2k

V(x,y, s')ds' . (12)
00

Since we have taken the s axis in the direction of the
incoming momentum vector, the wave function of
Eq. (6) becomes

1
f(r)=exp i kp'r ——(e kp+pBz+E)

2k

V(x,y,s') ds' up(kp) . (13)

But the initial-state spinor is an eigenfunction of
(c'kp+p5$+E) with eigenvalue 2E, so that

z

P(r) =exp i kp. r—— V(x,y,s')ds' up(kp) . (14)
k

The matrix element Eq. (5) therefore becomes, upon
substituting Eq. (14) into Eqs. (4) and (5),

where d&"b designates integration over the plane of
impact vectors, and b represents the classical impact
parameter.

Equation (16) has a significant defect. It is not sym-
metric under velocity reversal. This is due to the nature
of the trial function Eq. (6), which singled out the in-
coming momentum vector for preferential treatment.
Thus our solution in its present form requires a further
adjustment if it is to have the important property of
time reversal invariance. A simple step for restoring
this symmetry is to effect a coordinate rotation of
Eq. (16) through angle 8/2, where 8 is the scattering
angle, so that the incoming and outgoing momentum
vectors both made an angle 8/2 to the s direction. The
spinor product of course remains invariant, but the
integral is changed in value. In the new coordinate
system,

exp(iq as) =1 (17)

since the momentum transfer vector is now perpendicu-
lar to the s axis. This same coordinate rotation was
introduced in Glauber's solution' of the Schrodinger
equation. It is interesting that as an alternative to the
somewhat arbitrary change of direction, the same result
is obtained from Eq. (16) if we make a small-angle
approximation. Thus, if we restrict the solution to small
scattering angles, Eq. (17) becomes approximately
correct for the original coordinate system. The restric-
tion on angles, however, is quite severe, and may be
shown to be

8'((1/kR,

where E. is of the order of the target radius. It will be
seen subsequently that the anal solution suRers no such
limitation.

As a result of our choice of a symmetric coordinate
system, it now becomes possible to integrate Eq. (16)
with respect to 2', resulting in

1
M = ——up*(kr) (e kr+pm+E)up(kp)

4

expi qr— V(x,y, s')ds'
Since now

00

exp —i-
&

V(b, s')ds' —1 d&'&b. (19)

X V(r) dr, (15)

where q is the momentum transfer kp —kg.
The 6nal-state spinor is likewise an eigenfunction of

the Dirac operator in Eq. (15), operating to the left

q b=gb cosy,

where p is the azimuthal angle in cylindrical co-
ordinates, in the case of problems with spherical sym-
rnetry we may formally integrate Eq. (19) over angles
by employing the integral representation of the Bessel
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function. Thus, 6nally, the matrix element for tran-
sitions from initial to final plane-wave spinor states is
given by

where

M= —QJ Qp Je(qb) $e'«'& —17bdb, (21)

V (b,s)ds, (22)

which, for spherically symmetric potentials, is identical
to the 6rst Born approximation, since qb cosy=q. r.
Thus, the high-energy approximation is equivalent to
an infinite Born expansion, in which the first Born term
is precisely duplicated, while all the higher order terms
are approximated.

The scattering amplitude thus employs a wave func-
tion which has been modulated in phase by the presence
of the force field. However, there is yet another effect
which has not been included, namely, a type of fre-
quency modulation which reduces the de Broglie wave-
length of the incident particle as it acquires kinetic
energy upon approaching the scattering center. This
effect has been observed"" in electron scattering phe-
nomena as a shift in the diBraction zeros of Born
approximation in the direction of increased scattering

'e R. Hofstadter, Rev. Mod. Phys. 28, 219 (1956).
» B. W. Downs, D. G. Ravenhall, and D. R. Vennie, Phys.

Rev. 106, 1285 (1957).

diBering from Glauber's result only in the presence of
the spinor product uy*lp. This term now incorporates
into the high-energy approximation the e6ect of both
spin and relativity, although no additional approximat-
ing conditions have had to be introduced.

Equation (21) is identical to the result obtained by
Schiff' as a small-angle approximation, using a some-
what different though not unrelated approach. Despite
the ad hoc character of the introduction of time-reversal
symmetry in going from Eqs. (16) to (19), it seems
preferable to making a small-angle assumption in this
6nal stage of the derivation. One would understandably
be led to assume that a restriction of the nature of
Eq. (18) invalidates the usefulness of this result, par-
ticularly as a high-energy approximation. However, the
application of Eq. (21) in Sec. V below to various
nuclear targets and energies shows no evidence of
degradation in accuracy even at large scattering angles.
This would appear to justify the viewpoint that the
arbitrary introduction of a symmetric coordinate
system represents a restoration of accuracy rather than
an added approximation. This is further adduced by the
relationship the result bears to the Born approximation.
If the second exponential factor in Eq. (19) is expanded,
the leading term is

jV

M stf*g e'" "'&V(b,s)bdbdsdsr, (23)
2'

angles. Since the particle's wavelength is its meter stick
for exploring the target, any approximation which fails
to take account of this contraction will observe things
to be larger than they actually are. The basic dimen-
sionless parameter of the problem is the product of
length times momentum transfer t appearing in Eq. (21)
as the argument of the Bessel function7, and an increase
in length therefore corresponds to increased momentum
transfer, viz. , larger scattering angles. Conversely if we
wish to duplicate the correct scattering cross section, we
must increase all length dimensions by a suitable factor.
This factor should be roughly the particle wavelength
at infinity divided by some average wavelength in the
scattering region, A reasonable factor which seems to
work fairly well for electron scattering is the kinetic
energy as computed at the rms radius of the target
charge distribution, divided by the incident energy,
that is, L1+

~
V (r, ,) ~

/E7. The effect is not large enough
to be very critical, amounting to approximately a 6ve
percent increase in length dimensions for 400-MeV
electrons scattered by heavy nuclei. In the limit of very
high energies the correction becomes insigni6cant.

III. THE COULOMB POTENTIAL

Ke turn now to the application of the high-energy
approximation to Coulomb interactions. In order to
evaluate the x(b) function of Eq. (22) for scattering of
electrons by a Coulomb potential, it is necessary for the
usual physical and mathematical reasons to introduce
a screen, which is subsequently moved an arbitrarily
large distance from the scattering center. This has been
done most conveniently' with a step function cuto8 at
the screen distance a, resulting, for an attractive po-
tential, in

(a+ (a2 bs)1/2)

x(b) =2nZ—
ln~ (, b(a

(24)

0, b&a,

M, = exp t', 2nZ—lnqa+2tt I~*No, (26)
q' k

"G. N. Watson, Theory of Besse/ Functions (Cambridge Uni-
versity Press, New York, 1952), 2nd ed. , pp. 385, 190, 350, 351,
345, 347, 194' 195.

where n is the 6ne structure constant and Z is the
nuclear charge.

Expanded for large a in powers of b/a,

7((b) = —2otZ(E/k) ln(b/2a), (25)

plus successively higher powers of b/a which vanish in
the limit as the screen distance a goes to infinity.

When Eq. (25) is substituted in Eq. (21), the result-
ing definite integral may be evaluated, "' provided a
damping exponential is 6rst introduced for purpose of
convergence and then allowed to approach unity. The
matrix element for Coulomb scattering by an attractive
potential becomes
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where zf=argl" (1—zxZiE/k), and the momentum trans-
fer q= 2k sin(0/2).

If we are not interested in the polarization of the
electron, then the spinor term, which in the expression
for the differential cross section appears as ~uf*u, ~',

may be averaged over initial spin states and summed
over final states in the usual manner by the method of
traces. "For extremely relativistic particles, if the mass
of the incident particle is neglected compared to its
energy, this turns out to be' simply

i uf*us i'= cos'((i/2) . (2&)

Without the spinor-produced term cos'(8/2), which
introduces spin and relativity, this results in the
familiar Rutherford cross section. Furthermore, even
the logarithmic phase factor which characterizes the
exact nonrelativistic solution'" is present in the scat-
tering ainplitude (subject to adjustment of the arbi-
trary screen parameter a). One is therefore inclined to
draw considerable comfort from the nonrelativistic
form of Eq. (26) as a verification of the validity of the
high-energy approximation.

But when the spinor term is reinstated, and Eq. (26)
is regarded as a solution for Dirac particles, this comfort
turns out to be short-lived. What we have is the first
Born cross section, which is correct relativistically only
in the limit o,Z((1, and has been found'" to be in-

adequate for scattering from a point charge correspond-
ing to one of the heavier nuclei.

This result should, however, come as no surprise,
since the high-energy approximation is based on the
premise that the potential varies little over a particle
wavelength, and this condition has been violated in the
case of the Coulomb potential by the singularity at the
origin. Since the first term of the Born series is pre-
cisely reproduced in this approximation, it comes
through in any case, but the higher order terms are not
adequately represented.

Thus a valid test of this technique can be made for
Coulomb interactions only when the target has finite
extent. This vrill therefore now be considered.

IV. SCATTERING BY A CHARGE CLOUD —THE
SCATTERING OF HIGH-ENERGY ELECTRONS

AND POSITRONS FROM NUCLEI

A. The g Function for an Arbitrary Spherically
Symmetric Charge Distribution

For simple models, such as the shell and the sphere,
the integration of Eq. (22) is easily carried out. This is
not, however, always the case, particularly when the
potential may not be written as an explicit function of
position. It is therefore convenient to express x(b) in

I3S. S. Schweber, Introduction to Eclat&istic Quantum Field
Theory (Row-Peterson, Inc. , Evanston, Illinois, 1961), pp. 87—90.

'4 N. F. Mott and H. S. W. Massey, Theory of Atomic Collisions
(Oxford University Press, New York, 1949), 2nd ed. , p. 48."L. I. Schiff, Qgazzzzzzzz 3SIeclzazzics (McGrsw-Hill Book Cozn-
pany, Inc., New York, 1955), 2nd ed. , p. 116.

jV

x(b.) = ——dR p(~)
k

(28)
U(bf, sf)dsf,

where subscripts have been introduced to distinguish
coordinate systems, and we define a relative variable
bf in cylindrical coordinates such that

bfs=bIz'+b, ' 2b,b~—cosy. (29)

Employing the Coulomb solution Eq. (2S) in Eq. (28),

E
x(b„)= —2nZ —dR p(R) in—.

k 28
(30)

Upon the substitution of Eq. (29) in Eq. (30), the
latter may be integrated over polar angle in cylindrical
nuclear coordinates, with the result

E b„
x (b,) = —4zrnZ —ln— biz F (bzz) dbzz

k 2up

b~
biz ln—F(biz)db~, (31)

2c
where

F(biz) = p(biz, srz)dszz. (32)

It is sometimes convenient to evaluate the "form
function" F(biz) for a particular model, and then intro-
duce it in Eq. (31). Alternately it is illuminating to
write x(b) as the volume integral

b'= b

x (b) = 2ozZ —ln——
p (r') dh'

k 2a

oo bf

In—p (r')dh', (33)
2Q

where subscripts have been dropped, and the first
integral of Eq. (33) is evaluated within a cylinder of
radius b, while the second is evaluated outside this
cylinder.

It is interesting to compare Eq. (33) with the corre-
sponding expression for the potential,

1
V(r) = —Z —,(r )d, +

r o

"1
—,p(r')dh' (34)

r r'

Thus, the y(b) function in the high-energy approxima-

terms of the charge distribution. To do this we utilize
the Coulomb result Eq. (25) for a charge element, and
integrate over the nuclear charge cloud.

Introducing the relative coordinate ( of a field point
r with respect to a charge point R, and the spherically
symmetric charge distribution p (E) normalized to unity,

g=r —R,
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tion contains all the necessary information about the
scattering center, and its determination corresponds to
that of the potential in other forms of analysis.

The peculiar mixture of spherical with cylindrical
symmetry in Eq. (33) may, however, be further simpli-
fied. Taking advantage of the normalization of the
charge density p(r'), Eq. (33) may be written

parameter u. This may be done without loss of gen-
erality by so choosing the arbitrary screen distance u
that

2nZ(E/h) ln(RO/2a) = 27re,

where e is an integer. As the screen is moved to infinity
the distance a is increased in discrete jumps so that
Eq. (40) is always satisfIed. This enables us to drop this
phase factor when x(b) is inserted in Eq. (21), so that
finally

co bl

ln p(r'—)dr' . (35)
E b

x(b) = —2nZ—ln—+
Ro

dr p(r) r'f(b/r)

b&RO, (41)

2a b' b b E b

x(b) = —2nZ —ln—+4m
The remaining integral in Eq. (35) may then be inte-
grated over angles in spherical coordinates, since

b/

ln p(r') d—r'= 4m.
b=b

dr'r"p(r')

[i—(b/r )2]112

X
0

r~(1 ~I2)1/2

dp,
'ln, (36)

and
E b

x(b) = —2nZ —ln—,b) Ro.
Ro

B. Explicit Evaluation of g(b) for
Physical Models

(42)

where p'=cos8', and the cylindrical integration limits Outside the charge cloud Eq. (42) of course applies.
have been expressed in spherical form. When the inte- It is therefore only necessary to integrate Eq. (41) for
gration over p,

' is carried out, the region inside the nucleus.

E b

x(b) = —2nZ—ln—+4m- dr'p(r')r"
2u Here

l. Shell

p(r) =b(r —Ro)/47rRp'
1+[1—( /br')'j' 't

ln —[1—(b/r')' j't'
b'/r'

and
(37) E

x (b) = —2nZ—(in[1+(1—(b/Ro)')'I']

Thus the cylindrically symmetric function x(b) is
written as a single spherically symmetric integral over
the charge density. It may in fact be expressed as

—L1—(b/Ro)'7") (43)

Z. Unform Sphere

E b

x(b) = —2aZ—ln—+(f(b/r))
2Q

p(r) =3/4~Ro',

(3g) X(b) = —2nZ(E/h) fin[1+ (1—(b/Rp)')'t'j (44)
—BL4—(b/RO)'][1 —(b/Ro)9" &

.
dropping the primes, where

1+[1—(blr)'1'"
f(blr) =» —[1—(b/r)'j'", (»)

b/r

and (f(b/r) ) is the mean value of this function, weighted
by the charge distribution and evaluated over all
r) b. The function f(b/r) is independent of the nuclear
structure, and reflects only the Coulombic character of
the interaction between the incoming particle and an
element of the charge cloud.

The in6nite upper limit of integration in Eq. (37)
may be replaced by Ro, the cutoff radius of the charge
distribution, i.e., the point beyond which the charge
density vanishes or becomes negligible, and a pure
Coulomb potential exists. Then the integral in Eq. (37)
is defined only for b&EO, and vanishes for all b)EO,
where Eq. (37) becomes simply Eq. (25).

It is convenient further to remove from x(b) the
singularity resulting from the infinitely large screen

3. Harmorlic Oscillator Potential (Shell Model)

p(r) = (A+Br')e-"'"'

This case is most readily solved by means of Eq. (31).

P. D)
x(b) = 2nZ C—+——

i

h

where

b D
ln——Ei(—X'b')/2 + e "' ' (45)

Eo 2X'

C= (+7r/X) (A+B/2X'),
D =B+m-/X,

snd Ei(—X'b') is the exponential integral.
When none of the equations (22), (31), or (41) can

be explicitly integrated, it becomes necessary to
evaluate Eq. (41) by numerical integration. This
process corresponds to the integration of Eq. (34) for
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the potential when the latter cannot be expressed as an
explicit function of position.

C. The Scattering Amplitude

The prediction of scattering cross sections finally
becomes the problem of evaluating the integral (21)
for a given charge density distribution. Since the inte-
grand is an oscillating function whose amplitude
diverges asymptotically as the square root of the argu-
ment, the integral is dered only with exponential
damping, as in the case of the Coulomb solution. This
effectively precludes the possibility of any numerical
integration schemes for evaluating the infinite integral.
However, if we break Eq. (21) into two parts, one for
b&Rp, the nuclear cutoff radius, and the other corre-
sponding to the Coulomb region b&Rp, the latter inte-
gration may be explicitly carried out to infinity.

Before performing this integration, it should be noted
that the second term of Eq. (21) in brackets, consisting
of unity, vanishes for 0/0 when integrated over the
entire range zero to inanity, subject of course to the
introduction of the negative exponential. It is therefore
tempting to drop this term, dividing the remaining ex-
pression into the two ranges of integration. This would,
however, be an unfortunate decision, as will subse-
quently become apparent, since if retained this term
will cancel precisely another large term in the explicit
solution of the model-independent integral over b&Rp.
Failure to observe this explicit cancellation would rele-
gate it to numerical evaluation, resulting in error ampli-
Gcation of several orders of magnitude arising from the
differencing of large numbers.

The integral in Eq. (21) may be written, omitting the
spinor product, as

(46)I=Ii+Io,
where, letting x=b/Rp,

PR2»
Jo (qRox) Le'& '*~—1]xdx, (47)

kRp2

Jo(qRox)fe ' z' '" —1jxdx, (48)

and the factor E/k has been made unity here and in the
following equations, corresponding to extremely rela-
tivistic particles. X(x) is defined only for x& 1, and is in
general obtained from Eq. (41) expressed as a function
of b/Rp. Equation (48) may be integrated (see Appen-
dix), with the result

k
Leoazi inpzp

iq'

)&{—2nZiqRpJp(qRp)S p z;, i(qRp)

+qRoJi(qRo)Si —p z;, o(qRo)}

—qRp Ji (qRp) j, (49)

where Jp and J» are Bessel functions, and S„„are
I ommel's functions. "

In order to obtain a numerical result for I2 it is
necessary to employ the asymptotic series Eq. (A5) for
S„„(qRp). If the cutoff radius Rp is made sufficiently
large that

qRp& 10, (50)

Since I» must in general be computed numerically,
errors in numerical integration would be ampliled as
much as 100 times in the scattering amplitude. The
explicit cancellation of this undesirable term avoids
such large numerical cancellations, making it possible
to apply the high-energy approximation to energies
well up in the BeV range.

All terms of Eq. (49) which remain after this explicit
cancellation decrease with increase in Rp, so that the
situation represented by Eq. (51) may be avoided or
at least minimized by choosing Rp sufficientl large.
The integration of Ii in Eq. (47) is in general carried
out numerically, and the result added to Eq. (49). The
alternation of the positive and negative Bessel loops in
the integrand of Eq. (21) provides the mathematical
correspondence to the process which occurs when the
separate partial waves are added. It is interesting also
to note that our explicit evaluation of I2 to infinity
corresponds to summing all the phases, whereas the
partial-wave expansion must be terminated in practice.

In choosing a convenient value of cutoff radius Rp,
one should remember to satisfy Eq. (50); otherwise the
asymptotic series Eq. (A5) is not suitable for obtaining
the I ornmel's functions S„„.Thus calculations for the
uniform model in the 200—300-MeV region were based

then the retention of the erst three terms of the series
insures accuracy of better than one part in 2000. There
is little merit in going beyond three terms, and if one
includes too many terms the situation becomes worse
due to the divergence of the series. The requirement
Eq. (50) actually turns out to be quite reasonable for
physically interesting models.

It may now be seen why it was important to retain
the unity term in Eq. (48), resulting in the last term of
Eq. (49). This term cancels precisely the erst term
(unity) in the asymptotic expansion of Si p z', p(qRp),
when it is inserted into the next to the last term of
Eq. (49).

Since asymptotically qRp Ji(qRp) (qRp)'~', this term
would increase with cutoff radius. Its contribution to
I2 for typical nuclear radius and energy would represent
a term in the cross section whose order of magnitude is
comparable to or greater than that for a Coulomb point
charge, and is larger by some decades than the solution
for a distributed charge (see Figs. 21 and 22 of Ref. 1).
Thus if this term were present in the solution we would
have

IIp I» IIi+Ip
I

~
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on a modiied form of Kq. (44),

E rj
y(b) = —2nZ —ln,—+in/1+(1 —(b/ry)o)

Rp

—-,'P4 —(b/r g)')L1 —(b/r, )']'/o ~ (44a)

(qRo)'-

32(nZ)'
D

(qRo)'

(qRo)'

Since I2 may be written

4(nZ)' 4{1—(nZ)')
C= 1— (57)

where r~ is the actual radius of the sphere, and the cut-
off radius Ro is so placed that r~/Ro ', ——O—n. the other
hand, at 1000 MeV the momentum transfer was large
enough to allow the use of the original form Eq. (44),
i.e., corresponding to ry=Ro in Eq. (44a).

do/dQ= [M ['= iIi+Io[' cos'(8/2) . (52)

I& is obtained from Eq. (49) by employing the asymp-
totic expansion Eq. (A5). The resulting expression, in-
corporating the three lead terms of Eq. (AS) for S„„,is

where

kEp
ReIo= $2nZ& Jo(qRo) Mx(qRo)g

g

kEp
$2nZB Jo(qRo)+&Ii(qRo)),ImI2=

(53)

(54)

1 4(nZ)'
1+ 1—

(qRo)'
L5—(nZ)'), (55)

(qRo)'

8= — 1— {1—2(aZ)o)
(qRo)' (qRo)'

(56)

V. RESULTS FOR NUCLEAR MODELS

The prediction of elastic cross sections in the high-
energy approximation is based on:

(1) Determination of the potential integral function
y(b) by means of Eqs. (22), (31), or (41),

(2) Evaluation by means of Eq. (49) of the model-
independent Coulomb portion of Eq. (21), correspond-
ing to b&E.p, and

(3) Numerical integration of the model-dependent
in.tegral Eq. (47) for b&Ro

For those physical models where x(b/Ro) must be
obtained by numerical integration of Eq. (41), it should
be noted that when once this computation has been
carried out for a given charge distribution, the resulting
function may be stored and used repeatedly as the size
of the nucleus is varied, provided only that the char-
acteristic nuclear radius and the charge cutoff radius
are scaled proportionately. Furthermore, since y(b/Ro)
for a particular model is a linear function of nuclear
charge Z, it need be integrated only once for all the
elements. It is of course likewise independent of energy.

The differential cross section for elastic scattering of
extremely relativistic electrons or positrons from a given
nuclear model is given by

where

p L1 &e—n(1—r/rg)j «/» (1
p Pe—n&r/rz- )j «/» )1

(6o)

Pp=
4o «P o+2/rP+—e "/eo—

In the region where the Born approximation gives
good results the high-energy approximation virtually
coincides with the Born cross section. In the neighbor-
hood of the diffraction minimum, where Born approxi-
mation breaks down, the characteristic Born diGraction
zero is rounded out by the in6nite expansion in powers
of nZ which is implicitly contained within the high-
energy approximation.

The effect of this approximation is best illustrated in
the case of the heavier target elern. ents, where Born
approximation becomes virtually useless. However, the
effect of the reduced electron wavelength mentioned in
II above should now be considered. This situation,
which is common to both Born and high-energy approxi-
mations, is caused by failure to take note of the con-
traction of the electron's unit of length as it enters the
potential well. Since the actual incident momentum k

Io——kRo'Fo& ~(qRo), (59)

the model-independent Coulomb function Fo' '(qRo)
may be plotted for a given target element as a function
only of gEp and apphed as needed for all models and all
energies. However, when a computer is used in the
evaluation there is no particular advantage in this, since
it is easy enough to recompute each time.

The numerical integration of Eq. (47) to obtain Iq
for energies of several hundred MeV was carried out by
Simpson's rule, using 200 intervals. Test calculations
were also made at 100 and in some cases at 400 intervals
to verify 'that rounding and truncation errors of inte-
gration were not signiicant. The Bessel function
Jo(qRox) was stored in the computer memory for argu-
ments (16 in the form of a table of 80 values in argu-
ment intervals of 0.2, and table look-up was employed
with 4th-order interpolation. For arguments &16 the
function was computed asymptotically.

The ability of the high-energy approximation to wash
out the diffraction zeros 6rst of Born approximation can
be seen in Fig. 1, where the Born cross section for 420-
MeV electrons scattered from a Family II (Ford-Hill
model) carbon nucleus is compared with that of the
high-energy approximation. The Family II charge
density distribution is given by'
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is a parameter of the problem which is not conhned to
the vicinity of the nucleus, it may not be adjusted.
Instead one describes the effect as causing the radius of
the target to appear too small, shifting the diffraction
pattern toward increased scattering angles. It also
results in an apparent increase in the number of incident
particles approaching the target per unit area, reducing
the scattering cross section. This may be seen in Fig. 2,
where the diffraction pattern for 241.5-Mev electrons
scattered by a uniform model gold nucleus is seen to be
shifted and lowered with respect to that of the phase-
shift analysis results of Ravenhall and Yennie. ' '

Because the de Broglie wavelength actually varies
continuously as the particle approaches the scattering
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FxG. 1. Comparison of high-energy approximation and Born
approximation for 420-MeV electrons scattered from carbon,
Family II model, n=4, r& =2.518 F.
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Fro. 3. Comparison of phase-shift analysis and high-energy
approximation, including correction factor in radius, but not in
cross section area, for 241.5-MeV electrons scattered from gold,
uniform model, R=6.54F (kR=S).
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FIG. 2. Comparison of phase-shift analysis and uncorrected
high-energy approximation for.241.5-MeV electrons scattered from
gold, uniform model, R=6.54 F (kR=S).

center, the failure to include this effect can be con-
veniently corrected only in the average sense. But since
it is a small correction, and vanishes in the high-energy
limit, this appears to be adequate. Conversely, an in-
accuracy in application of the proper factor will merely
introduce an error of the order of one or two percent in
the radius predicted from fitting to experimental data.

As discussed in Sec. II we apply the factor
(1+

~
V~/E) evaluated at the rrns radius to linear di-

mensions. In Fig. 3 this -factor has been applied to the
radius of the target, but no correction has been made in
the cross section. Thus the pattern has been shifted in

angle, but is still slightly lower than that of partial-wave
analysis. This lowering effect has not been previously
noticed in the case of Born approximation, due un-
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doubtedly to the overpowering presence of the diffrac-
tion zeros precisely where it would otherwise be most
apparent. In Fig. 4 the results have been fully corrected
by the further application of the factor (1+

~
U~/8)' to

cross sections. It may be seen that the fully corrected
results are in quite close agreement with the partial
wave computation.

It is interesting, and possibly significant, that after
these corrections in linear dimensions, the results of the
high-energy approximation are so very good, even at
large scattering angles. Our argument about change of
length scales is rather simple and general, although it
must be admitted to have arrived after the fact.
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comparison with the high-energy approximation, fully
corrected. The numerical sensitivity of the phase-shift
calculations can be seen at the diffraction minima, par-
ticularly at large momentum transfer, where the results
become rather questionable.

Figure 6 depicts the scattering of electrons and posi-

Fxo. 5. Comparison of phase-shift analysis calculations based on
two different integration intervals, and high-energy approximation
(fully corrected). Electrons at 420 MeV scattered from lead
Family II model, n=10, r1 ——6.67 F.
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FIQ. 4. Comparison of phase-shif t analysis and high-energy
approximation, fully corrected in both radius and cross section
area, for 241.5-MeV electrons scattered from gold, uniform model,
2=6.54 F (kR=S).
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Since the scattering amplitude is a ratio of the number
of scattered particles to the number of incident particles
approaching the target per unit area, the contraction of
length scales affects terms appearing in both the nu-
merator and the denominator of this ratio. The ad-
justment (1+

~
UI/E) in the nuclear radius is made to

accommodate terms affecting the numerator, while the
square of this factor is applied to the area term of the
denominator.

In Fig. 5, 420-MeV electrons have been scattered by
a Family II lead nucleus. The phase-shift analysis
curves represent unpublished data from the study by
Ford and Hill. ' As an indication of some of the numeri-
cal problems two phase-shift analysis curves are plotted,
c
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orresponding to different integration intervals, for F,G. 6. Comparison of phase-shift analysis and high-energy
approximation (fully corrected) for 300-MeV electrons and posi-

Ford and D. L. Hill, Ann. Rev, Nucl. Sci. 5, 25 (1955). trons scattered from bismuth, uniform model, ri =6.64 F.
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TABLE I. correction terms
I v(r, ) I/E applied to linear di-

mensions for the particular targets, energies, and models con-
sidered, corresponding to "frequency modulation" of the wave
function. The ratio was obtained by dividing the depth or height
of the potential well or barrier, respectively, at the rms radius of
the charge distribution, by the incident energy. For electron scat-
tering the actual target radius is increased in this proportion in the
calculations, while the cross section is increased by twice this
amount, while for positron scattering the radius and cross section
are similarly reduced.

Nucleus

Gold
Bismuth
Lead
Carbon
Gold

Energy

241.5
300
420
420

1000

Model

Uniform
Uniform
Family H
Family II
Uniform

Iv(». )I/z

0.0935
0.0719
0.0488
0.0083
0.0220

trons, respectively, from bismuth at 300 MeV. The
phase-shift analysis is due to Herman, Clark, and
Ravenhall. 4 In the case of positron scattering the po-
tential well becomes a barrier, and the correction
changes sign, becoming (1—

~
V~/E), so that in high-

energy approximation the nuclear radius must be
reduced and differential cross sections decreased. Other-
wise the change in sign of the potential merely trans-
forms Eq. (21) into its complex conjugate, producing no
change in the form of the cross section. A comparison
of the curves of Fig. 6 reveals the total effect of the
double shift 2

~ V j/E.
It appears from these results that the electron-posi-

tron difference studied by Herman, Clark, and Raven-
hall is readily attributable to the effective scale change
discussed above. Our calculation reveals simply and
vividly what was suggested by Herman, Clark, and
Ravenhall, i.e., that the electron-positron diBerence
may be regarded as an essentially kinematic effect,
probably quite insensitive to nuclear dimensions, at
least at these energies.

Table I lists for the various targets, energies, and
models, the appropriate rms

~

V I /E factor applied as
adjustment in radius; twice this factor was applied as
corresponding correction in cross section.

A very interesting feature evident in Figs. 2 through 6
is the fact that the high-energy approximation gives
excellent results for the amplitude of the diffraction
oscillations. This Ailing in of the di8raction zeros of
Born approximation to just about the right amount has
not appeared in previously reported results~ of high-
energy approximations. Furthermore, it does not
depend on the semiempirical change of scales correction,
which merely introduces a displacement of the curves.

In view of the extent of agreement of the high-energy
approximation with the results of partial-wave analysis,
the former technique was applied to the scattering of
electrons in the BeV energy range. This is a region in
which phase-shift analysis has apparently not been
practical, due to the problem of error amplifj. cation re-
sulting from phase cancellations. It has been observed
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FIG. 7. High-energy approximation (fully corrected) for 1000-MeV
electrons scattered from gold, uniform model, R=6.54 F.

by Herman, Clark, and Ravenhall4 in phase-shift cal-
culations on an IBM-7090 computer with double pre-
cision arithmetic, that an attempt to distinguish certain
nuclear shapes at 300 MeV was "unfortunately accom-
panied by the rapid decrease of both electron and posi-
tron cross sections to the 10 '4 cm'/sr range. At this
stage even our partial-wave analysis become compu-
tationally unreliable. "

To observe the behavior of the high-energy approxi-
mation under conditions of very small cross sections, a
computation was carried out for scattering of 1000-
MeV electrons from a uniform model gold nucleus. The
results plotted in Fig. 7 show cross sections as low as
10 " cm'/sr, and are included to demonstrate the
analytical capability of the technique, rather than with
a view to itting experimental data. Some 150 points
were found in order to obtain this curve. The computa-
tion was found to be exceedingly stable, with very little
difference in the answers between 200 and 400 integra-
tion intervals for all except the largest scattering angles,
at which point the difference between 400 and 800
intervals was virtually indistinguishable. Even some
probing runs at 3 BeV showed no evidence of having
exceeded the capacity of the system, although hner
integration intervals became necessary. Thus at high
energies, precisely when the approximation becomes
most valid, this technique would appear to attain its
maximum usefulness.

Furthermore, it may be seen from Eqs. (47) and (48)
that the scattering matrix element may be expressed in



ELASTI C SCATTERI NG OF D I RAC PARTI CLES a251

APPENDIX: EVALUATION OF INTEGRAL IN EQ. (48)

Integration of I2 is dificult with the insertion of a
negative damping exponential and impossible without

it. It is therefore rewritten

I2—Ic IQ ~
(A1)

where Ic is the pure Coulomb solution, corresponding
to the integral of Eq. (48) evaluated from zero to in-

finity with exponential damping, and

the simple functional form

M =kRp'F ~z).(qRp)NPNp, (61)

thus facilitating prediction of the effect of size and

energy change on the scattering cross sections and

making possible the parametrization of the results.
Even for the heavier nuclei it becomes possible now to
plot different energies on one curve for fitting experi-

mental data, a procedure which in the past' has been

confined to Born approximation.
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where the last term in Eq. (A4) is the integral of the

unity term in Eq. (A2), and the rest of the expression

includes Bessel functions and Lommel's functions S„„.
The latter may be evaluated in the limit of large argu-

ment by the asymptotic series"

( —1)'—"
S (z)~z" 1—

pv
2

{(~—1)'—"}{( —3)'—"}
(A5)

where all terms may in general be complex.
The determination of the lower limit in Eq. (A4)

requires some care, since S„„(0)is in6nite. Using a small-

argument expansion" for S„„,we find for small x,

S p z; i(x) =ape ' '"'I'(1—nZi)I'( —nZi)

X [sin{(1—2nZi)z. /2}J i(x)
—cos{(1—nZi)z/2} I' i(x)], (A6)

Si p z;, p(x)=e ' ' ' r(1—nZi)1'(1 —nZi)

X [sin{(1—2nZi)z-/2} Jp(x)
—cos{(1—2nZi)x/2} I'p(x)$, (A7)

The two terms of Eq. (A2) may be evaluated as
indefinite integrals without the exponential damping

factor, since the answer is the same in the limit as the

factor goes to unity. The result is"

k
Ip= [e'z—' '"p o{ 2nZ—ixJp(x)S 2nz --l(x')

sq'
+xJ,(x)Si p.z, , p(x)}—xA(x)&p' ', (A4)

IQ=

As in Eq. (26),

Ic=
2Q,Zk QR

exp i 2nZln +2g
2

kRQ'
Jp(Ppx) [e—P~z~ in~

Z Q

(A2) where J„(x) and F„(x) are Bessel functions of the irst
and second kind, respectively. With the use of these

expressions we And that Eq. (A4) evaluated at the
lower limit is precisely equal to the negative of Eq. (A3),
so that all that finally remains of I2 is the negative of

(A3) Eq. (A4) evaluated at the upper limit. Thus Ip has the
form of Eq. (49).


