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The Lagrangian formalism is employed to derive the commutation relations on null surfaces for relativistic
Geld theories. The theories treated are the Klein-Gordon field, the Maxwell 6eld, the linearized gravitation
theory, and the general theory of relativity. Special attention is paid to the treatment of null surfaces at
inhnity, on which we are able to obtain the commutation relations for the "news function, "which represents
the independent radiation modes of the Geld. For the general theory of relativity, the methods of this paper
seem appropriate only when we truncate the theory by excluding solutions which are not asymptotically
Qat in the sense of Penrose.

I. INTRODUCTION

'HE program for the quantization of the gravi-
tational 6eld has long been plagued by the

inability to construct a complete, nonredundant set
of true observables within the classical Einstein theory,
due essentially to the presence of four (nonlinear)
constraints among the ten Einstein field equations. In
recent years, Penrose has indicated' how, by focusing
our attention on null surfaces rather than the traditional
space-like surfaces, the difficulty of the constraints
could be ignored, and solutions of the field equations
could be characterized to a large extent by a single
complex function constructed by projecting the Rie-
mann tensor into the null surface. In a recent paper, '
Penrose showed that for asymptotically Bat surfaces a
particularly appropriate choice of null surface would be
the null cone at infinity. For such a choice of null
surface the complex scalar function which essentially
characterizes the Riemann-Einstein manifold is closely
related to the Bondi "news function. '"

It would thus appear that Penrose's scalar is ideally
suited for the description of gravitational radiation and
therefore particularly appropriated for use as a basis
for the construction of a quantum theory. An addi-
tional advantage obtained by working in the neighbor-
hood of infinity is that the nonlinear terms in the
Einstein field equations may be regarded as vanishingly
small and we may expect that relations derived for the
linearized theory of gravitation would continue to be
valid in the full theory. A major obstacle to the con-
struction of Poisson brackets for the Penrose scalar is
the essential use of null surfaces in its definition. The
usual canonical formalism presupposes canonical vari-
ables defined on a space-like hypersurface. It is de-
cidedly inappropriate for generalization to a null
hypersurface, for the naturally defined canonical
momentum generally turns out to be a constraint
within the null surface. For familiar theories one could
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in principle propagate the conventional commutation
relations from the initial space-like surface to the
desired null surface and thereby discover an equivalent
set of commutation relations for variables defined on
a null surface. Purely apart from considerations of
feasibility, we are not interested in such an approach
since it is precisely for the situation where we have
difficulty in constructing commutators of observables
on space-like hypersurfaces that we are motivated to
investigate commutators defined on null surfaces. Ke
shall therefore employ the less familiar but more co-
variant Lagrangian formalism' in all our considerations.

In order to introduce only one difficulty at a time,
we shall divide the presentation into several stages.
Section II will present a brief review of the Lagrangian
formalism and as a simple illustration we shall treat
the free particle. In Sec. III we shall illustrate how to
apply the Lagrangian formalism to obtain the usual
equal time commutation relations for the Klein-Gordon
field. In Sec. IV we shall observe the nature of the
additional complications introduced when we employ
characteristic surfaces. VVe shall derive the commutators
of the Klein-Gordon field on a null cone and at null
infinity. Section V will be devoted to the treatment of
the Maxwell field, both on a space-like and on a null
surface hypersurface, and at null infinity. The new
difFiculties encountered at this stage are the presence of
a gauge group, as well as the need to introduce explicitly
the Penrose scalar. Section VI will, in a similar fashion,
treat the linearized theory of gravitation. In the con-
cluding section, VII, we shall discuss the relevance of
the results of Sec. Vl for the general theory of relativity.

II. THE LAGRANGIAN FORMALISM

Within the Hamiltonian formalism, a canonical trans-
formation may be defined as a transformation of the
canonical variables (position and momentum) in phase
space which preserves Hamilton's equations of motion.
The canonical transformations may be shown to form
a group. Any arbitrary function of the canonical
variables can be shown to generate an infinitesimal
canonical transformation. The Poisson bracket of any

i P. G. Bergznann and R. Schiller, Phys. Rev. 89, 4 (1953).
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is found to equal the change in f induced by the in-
finitesimal canonical transformation generated by g (or
equivalently the negative of the change induced in g
by the in6nitesimal canonical transformation generated
by f). A further, deeper understanding of the Poisson
bracket is obtained by employing the Jacobi identity

two functions of the canonical variables, f(q;,p;) and

g(g;,p;), defined as

(1)

where Ii are the Euler-Lagrange equations derived
from the Lagrangian under consideration. We can
therefore read directly from the coefficient of F the
Poisson bracket of q, and C:

bg. = (q.,C).
As an elementary illustration of this method for

determining Poisson brackets, consider the free particle
given by the Lagrangian

I.= —,
' P mX.'.

a

[f[ $)7+[ [h f))+[h [f )) 0 (2)
The Euler-Lagrange equations for this Lagrangian are

which is a direct consequence of the definition Eq. (1).
From Eq. (2) we can easily conclude that Pf,g), which
is again some function of the canonical variables, gener-
ates the infinitesimal canonical transformation which
is the conimutator of the in6nitesimal canonical trans-
formations generated by f and g individually. The ca-
nonical group contains a normal subgroup, the invariant
canonical group obtained by considering those canonical
transformations which leave invariant the form of the
Hamiltonian as a function of the canonical variables.
It is evident that the in6nitesimal invariant canonical
transformations are generated by those functions of the
canonical variables which are constants of the motion.

Within the Lagrangian formalism, a canonical trans-
formation may be defined as a transformation of the
dynamical variables of con6guration space with the
property that, apart from the addition of a total time
derivative to the Lagrangian, it leaves invariant the
maximal order of time derivatives occurring in the
Lagrangian. For the usual theories under consideration
in this paper the Lagrangian is a function of only the
positions and velocities. The canonicity condition then
asserts that the transformation does not induce ac-
celeration dependent terms into the Lagrangian. In
view of the fact that the definition of a canonical
transformation now requires explicit reference to the
form of the Lagrangian, and that under canonical
transformations the form of the Lagrangian in general
will change, it is rather evident that the canonical
transformations do not form a group in con6guration
space. However, if we consider only those canonical
transformations which leave invariant the form of the
Lagrangian as a function of the positions and velocities,
they do form a group, and in fact coincide with the
group of invariant canonical transformations as de6ned
in the Hamiltonian formalism.

The precise relationship between the constant of the
motion, C, which generates an in6nitesimal invariant
canonical transformation and the infinitesimal change
in the dynamical variable, bq, which it induces is found
to be'

dC—+Q Bq,F'=0,
dt

F,= ribd'—X—./dt'= 0

Thus if we de6ne

(6)

C=g X.(X. X.t—),

where the X are a set of arbitrary constants, we readily
observe that as a consequence of the equations of motion
(6), C is a constant of the motion. In fact

dC dC (—X.f)
0=—+Q X,d'X,/dt't= +Q ~

—~F, . (8)
'm

Comparing with Eqs. (3) and (4) we find

= [X,C)=[X„PXb(Xb—Xbt)).

Since Eq. (9) must be valid for all times t and for all
values of the arbitrary constants X„wereadily conclude
that

[X„Xb)=0, [X,mXb) =8 b, (10)

in full agreement with the initial definition, Eq. (1).

III. THE KLEIN-GORDON FIELD

We now wish to apply the Lagrangian formalism to
the problem of determining the Poisson brackets for a
classical 6eld. It is still true that the invariant canonical
transformations are generated by constants of the
motion. Thus, Eq. (4) remains valid, where now the
constant of the motion C may be obtained by inte-
grating a conserved vector density Cp over a space-like
hypersurface:

C=— C&dSp.

(A summation convention will be understood on re-
peated space-time indices. ) The relationship between
the constant of the motion C and the change in the
field variable bq, which it generates is obtained by the
evident modification of Eq. (3)'

C', p+Q 5q,F'=0, (12)
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F=——4,~=0. (14)

We shall define a to be an arbitrary solution of the
equation

n, „&=0. (15)

We distinguish between Eqs. (14) and (15), although
they are really the same equation, in order to emphasize
that 4 is to be regarded as a dynamical variable satis-
fying commutation relations, whereas a is simply an
arbitrary but specific mathematical function which
happens to be a solution of Eq. (15). Since Eq. (15) is
second order in time, it is evident that both 0. and
Bn/Bt may be given as independent arbitrary functions
on an initial space-like hypersurface.

We employ n in order to define the vector field C&:

Ct'= nt'C —orat'. (16)

Taking the divergence of Eq. (16) we find by virtue
of Eqs. (14) and (15)

C&,,+ ( n)F =0— (17)

Comparing Eq. (17) with Eq. (12), we see from Eqs.
(4) and (11) that

where, as before, F~ are the Euler-Lagrange (field)
equations for the Lagrangian under consideration. (A
comma denotes differentiation. Space-time indices may
be raised and lowered by means of the Minkowski
metric, with signature 1, —1, —1, —1.)

Let us now consider the Lagrangian for the scalar
field, C:

(13)

(We could, if we wish, include a mass term. But this
would not affect our discussion in any essential way. )
The field equation for this Lagrangian is

alternatively n(y', 0) =0, (Bn/8t) (y', 0) =83(y' —s'), and
n(y', 0) =83(y' —s'), (Bn/Bt) (y', 0) =0. We see, inci-

dently, from these assignments that we encounter no
difficulties concerning the existence or convergence of
the integral defined in Eq. (11).

IV. COMMUTATORS ON NULL CONES

In order to treat the scalar field on a null cone much
of the development of the previous section may be
taken over intact. Selecting the Lagrangian as in Eq.
(13), and de6ning the auxiliary weight function, n, as
a solution of Eq. (15), we can construct the conserved
vector field of Eq. (16). The commutation relation,
Eq. (18), follows eactly as in the case of the space-like
hypersurface. However, there are two important
changes in the subsequent development which result
from the use of null cones. (1) In the integral of Eq.
(11) the surface is chosen to be the null surface. We
must be particularly careful about handling the end
points of the integral if C is to be a constant of the
motion. In point of fact the additional caution will only
be required in our treatment of the scalar field and will

be presented in detail. For the Maxwell field and the
gravitational field we shall find it possible to select an
integrand in Eq. (11) just as localized on the null cone
as it was on the space-like hypersurface in Sec. III.
(2) Since the null cone is a characteristic surface for the
d'Alembert equation, Eq. (15), it is no longer true that
both 0. and its first derivative o6 the initial surface can
be prescribed independently. It is still true, however,
that 0. itself can be arbitrarily prescribed on the null
cone, and that shall turn out to be sufficient for our
purpose.

It will be convenient to introduce coordinates adapted
to the null cone which is to be the initial surface. We
therefore take as our coordinates

C, C&dSp = —n. X'=I= (1/2(t —r), X'=8
X'=a= (1/&2)(t+r), X'=y (21)

Note that Eq. (15) assures that N is a solution of the
field equation (14).

On the initial space-like hypersurface t=const; Eq.
(18) yields (the index S running from 1 to 3):

/8n
c (x,o), i

—(y,o)c (y,o)
&at

84—n(y', 0) (y', 0) d y = —(x',0) (19)
Bt

In view of the fact that n(y', 0) and (Bn/Bt) (y', 0) are
independent arbitrary functions, Eq. (19) can only be
valid if

where r, 8, @ are the usual polar coordinates. In this
coordinate system the Minkowski metric becomes

'0 1 0
0 0

0 0 —r2

.0 0 0

0
0
0

—r2 sin'g.

(22)

When employing these coordinates we understand the
comma to denote covariant differentiation with respect
to this metric.

The initial surface with which we shall be concerned
satisfies the equation

(23)
LC'( ',0)P(y', 0)3=0,

LC (x',0),(BC/Bt) (y' 0)j=8 (x' —y') . (20) where k is some fixed, but arbitrary constant. The
surface element of this null cone is evidently

This is most readily obtained by assigning in Eq. (19) dS, =8,'r' sin8dvd8dg. (24)
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Thus from Eqs. (11) and (16), we find

aa. 84 )—4 —n ~rs sin8dvd8dg
av an)

a (rn) a (r'Cn) )
2 rC —

~

sin8dvd8dy.
av an )

(25)

We note at this point two interesting properties of Eq.
(25): (1) In contrast with the case of the space-like
hypersurface, projection of the integrand into the null
surface element yields derivatives exclusively pithier
the null surface, rather than off of the surface. (2) The
second term in the integrand, being a perfect differ-
ential, will yield contributions exclusively from the
end points. We shall denote these end points symboli-
cally by 0 and ~.We can, if we wish, take the arbitrary
function 0. to vanish at the end points and thereby
avoid this complication. Although such a choice will
in fact be made for the Maxwell and the gravitational
fields, it will prove convenient in the case of the scalar
field to assume only that the behavior of Co. is such that
the contributions from the end points are nonsingular.
What will essentially be entailed is that C fall off no
slower than r ' at infinity, and diverge no worse than
r ' at the origin —not particularly severe restrictions.

In view of the arbitrariness of o. on the initial surface
we may take it to be

a=a (n —v')b(0 —0'),

o. (v—v') =a(v2(r r'))=o (—r r'). —(36)

One can readily check that Eq. (35) is equivalent to the
usual commutation relations, Eq. (20).

In order to obtain the commutation relations "at
infinity, "we must understand correctly what the appro-
priate limiting procedure is. If we wish to use the
surface at past null infinity of Penrose, ' the points of
which are labeled by the coordinates v, 8, P, we return
to the equation of the initial surface Eq. (23) and go
to the limit k —+ —~, keeping v, 8, P fixed. From Eqs.
(21) it is evident that this limiting process implies
r —+~ and t ~ —~, thereby justifying the name "past
null infinity. " If we define

while at r'=0 we have

L~(,0), —:(~)(0,0') —!L~7(-,0') 7

=+b(n —n')/2r. (32)

If we now add Eqs. (31) and (32) we find

LC'(n 0) t:~7(00')+LrC'7(" 0')7=o (33)

Thus the sum of the contributions from the two end
points does in fact cominute with the field in the
interior. Returning to Eq. (30) we can now write it in
the form

L4 (v,n),4 (n', 0)7= —o (v —v') b(Q —0')/2rr' (34)

or, if we prefer

LC (v,Q),4 (v',0')7= —o (r—r') b (0—0')/2rr' (35)

since

where 0 is the unit antisyrninetric step function, i.e.,
p(v, n) =—lim rC (v,n) (37)

X&0,
a(X) =

+-', X)0,
(27) and employ this limit in Eq. (34), we obtain

and b(0—0') is the Dirac delta function on the unit
sphere, 0 denoting the solid angle, i.e.,

b(0—0') = (sin8) 'b(8 —8')b($—Q') .

Inserting Eq. (26) into Eq. (25) we obtain

(28)

C= 2r'4 (v',0') ——'Lr47(, 0') —iLr47(O, Q') (29)

Lwhere we have introduced the notation lim, rC (r,n)
=—Lr47(a,n)7. Thus Eq. (18) yields

LC'(v, n), 2r'4'(" 0') —s (L~7( 0')+LrC'7(0, 0'))7
= —La (v —v')b(Q —0')/r7. (30)

We cannot assume that the contributions from the end
points commute with the field in the interior, since they
can lie on the same null ray. However we may evaluate
the commutator at the two end points. Thus at r'= ~
we have

LC (v,n), —;[m7(,0') ——',Lm7(0, 0')7
= —B(0—0')/2r, (31)

Lp(n, n),p(v', 0')7 = —-,'(.—n') b(0 —n') . (38)

Equation (38) is in agreement with the results of R.
Sachs, ' who obtained essentially the same expression
by considering the commutation relations which one
must impose on the data at infinity in order to obtain
the usual commutation relations at finite points. The
virtue of the present approach is that it can be extended
to those cases where we do not know the correct
commutation relations at finite points.

The limiting procedure of Eq. (37) clearly singles out
the incoming radiation modes of the field. In order to
obtain the cornmutators for the out-going radiation
modes we could redo the entire analysis on a surface
n= k, and then take the limit k ~ + aa. What we would
obtain in this fashion is a relation analogous to Eq. (38)
with n replaced everywhere by I, and p(N, Q) defined by
the appropriate modification of Eq. (37). It is of some
interest to note that we could have obtained precisely
the same commutation relations had we considered the

' R. Sachs, Phys. Rev. 128, 2851 (1962).
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V. THE MAXWELL FIELD

The Lagrangian for the electromagnetic field is

where
(39)

massive Klein-Gordon field. The more interesting
question of the commutators between the in-coming
and the out-going radiation fields would of course
require a complete solution of the field equations from

to +~, in which the value of the mass would
need to enter. As long as we confine our attention to an
initial surface, even though it may be null, the mass
never need enter into our considerations.

We have from Eqs. (4), (42), and (46)

A„(~„F»+p„l»*)dS, = —n, —y, , (48)

The last term in Eq. (42) was eliminated from the
above integral by integrating by parts and employing
the field equation (41). If we now take the curl of Eq.
(48) we obtain the gauge-invariant commutation
relations

F„„,(n,p'v+P, F'v')dSv = a„,„+—n, ,„.(49)

Fpp=A p, p-Av, p) (40) From Eqs. (43) and (45) we can also write

from which we readily deduce the field equations

FR=FR~ )
—0

Let us de6ne the vector field C& as

Qv=&„p»+p„plv*+~ „p»
where F»* is the dual of F», that is,

V +=& PuPFpv 2&pvapL

(41)

and c„„pis the totally antisymmetric tensor formed by
the product Qg with the Levi-Civita tensor density.
The distributions n„,p„,and y are yet to be determined.

Taking the divergence of Eq. (42) we find from Eqs.
(40), (41), and (43)

Cv, ,+( n„q,„)p»=—(n„—,„+',p ~~.z„„)-p~" (44).
U, analogous to Eq. (15), we require

&p, v &v, tv+p ' &appv

we satisfy Eq. (12) with

(45)

(46)

We should note that Eq. (45) assures that 6A„will
satisfy the field equations (41).

The potentials, A„,are of course de6ned only up to
a gauge transformation

A'„=A „+a,„. (47)

If we wish, we can employ the arbitrary scalar field, a,
to impose a subsidiary condition on the potentials.
Alternatively, we can eliminate the arbitrary scalar
field by working exclusively with the gauge-invariant
field tensor of Eq. (40). From Eq. (46) we see that the
completely unrestricted function y reflects our ability
to perform an arbitrary gauge transformation on the
perturbed potentials bA„.Vje may select y in order to
preserve for the perturbed potentials the same sub-
sidiary conditions which we imposed upon the original
potentials, or alternatively, we can eliminate all refer-
ence to the arbitrary function j by confining our
attention to the perturbation of the field tensor. In
this section we shall employ the latter course.

(~,p"+P.p"*)ZS, = —P„,„yP„,„.(50)

If we confine our attention to a space-like hyper-
surface, which we take to be t=constant, the com-
mutation relations for the field strengths are particularly
transparent. This is due to the fact that n„and p„may
both be chosen arbitrarily on a space-like hypersurface
without contradiction of Eq. (45). By selecting alter-
Ilately (xp= 8v" 8 (x x ), Pp= 0 aild ct'p= Ov Plv= 8~"
X8(x—x') we readily obtain

[F i(x) F"'(x')]=—8,"5,(x—x')+8 "5 (x—x'),
[F (x) F"'*(x')]=0
[F"„(x)P 4(x')]=0,
[F*„(x),F"4*(x')]= —8,'g, i(x—x')+8,"5„(x—x'),

(51)

where the indices r, s, t run from 1 to 3.
In order to obtain the commutation relations on a

null surface, it will prove convenient to introduce a
quadruple of null vectors adapted to the surface in
question. Recall that in the coordinate system given
by Eqs. (21) the null cone which we shall consider as
our initial surface is given by Eq. (23). We shall define
k„to be the gradient of the family of null surfaces
which satisfy Eq. (23). If we define t„asthe gradient
of the family of surfaces X'=e= constant, we evidently
have

k"k„=l"l„=0 ) k"1„=1. (52)

YVe complete the quadruple by introducing the complex
conjugate pair of space-like null vectors m„,m„which
satisfy the conditions

k&m„=l&m„= m "m„=0, m"m„=—1. (53)

In the specific coordinate system of Eqs. (21), these
vectors can be chosen to have the form

k„=6„',l„=l„',m„=(r/v2) (6„'+ising6„') (54)

or equivalently —1t i
~

v, + v, ) . (ss)re & sing
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m"m"e„„p=i(klp —kpl ), (56b)

k&m "e„„.s= i (k.ms —&pm. ), (56c)

l&zrz"e„„,p=i (l rip lprrz —), (56d)

and their complex conjugates. The metric tensor of
Eq. (22) can be expressed in terms of our null quadruple
as

g„„=k„l„+k„l„—m„m„—m„m„. (57)

If we now select as the equation for our initial
surface Eq. (23), much of the discussion can parallel
that of Sec. IV. In particular, we retain the com-
mutation relations of Eqs. (49) and (50), where now
the surface element is that of Eq. (24), namely,

A particularly useful set of identities which one can
easily deduce from these expressions is

k"l"e„„s=i(mmv —mpm ), (56a)

np+zpp =nmp
q

n„—iP„=0,
{61)

where n is an arbitrary scalar distribution.
Equations (S9) are trivially satisfied for any scalar n

The resulting values for the vector 6elds,

show that the propagation of k&(n„—ip„),m&(n„—ip„),
and m&(n„—iP„) k~ off the initial surface are deter-
mined solely by the data on the initial surface. LAs
before, l"(n„—iP„)may also be set equal to zero by a
gauge transformation. $ Thus we can assert that if we
can find a set of initial data which satisfies the two
constraint equations (59), a full solution of Eq. (45)
can be determined subject to the usual ambiguity
typical of propagation o6 a null surface, as well as the
freedom to perform arbitrary gauge transformations.
The essential point is that apart from Eqs. (59), there
are no further constraints.

I et us consider

dS, =k„r'sin8dvd8dg. (58)
(62)

It is no longer true that n, and P, can both be chosen
arbitrarily on the initial null surface and continue to
satisfy Eq. (45). For, if we examine the components
of Eq. (4S) when projected on the complete set of
bivectors k &&E"& l &&ms v& E &&m ~7 m &&m~& k &&m "& k &&m~&

we see from Eq. (56c) and its complex conjugate that
two of the resulting equations contain derivatives of
n, and P, entirely within the initial surface. These two
equations may be written

k"m"L(n„+ip„),„—(n„+ip,),„7=0, (59a)

k" "L( .—'P.),.—( .—P.)..7=o (59b)

If we regard n„and P„asreal vector fields, Eq. (59b) is
evidently the complex conjugate of Eq. (59a). However,
it will be convenient for the subsequent development
to allow n„and p„to assume complex values, in which
case Eqs. (59a) and (59b) are independent conditions.
The remaining four equations, which give the propa-
gation off the initial surface, are

(k~i+m~m )P(n„+zP„)„(n„+zP„),„7=O—, (6Oa)

i m"(( „+zp„),„—( .+ip„),„7=o,(6ob)

(k~l"—m~m")L(n„—iP„),„—(n„—iP„)„7=0,(60c)

l&m"L(n„—iP„),„—(n„—iP„),„7=0.(60d)

Equations (60a) and (60b) propagate the components
kl'{n„+iP„)and m&{n„+iP„),respectively, off the initial
surface. If we differentiate Eq. (59a) in the l& direction,
we obtain an equation for the propagation of
m&(n„+ip„),.k indicating the usual lack of uniqueness
typical of propagation off a characteristic surface. )The
remaining undetermined component, ll'(n„+iP„),re-
Qects our ability to perform an arbitrary infinitesimal
gauge transformation and can, without loss of gen-
erality, be taken to be everywhere 0.7 Similar con-
siderations employing Eqs. (60c), (60d), and (59b)

when inserted in the integral of Eq. (49) yields, via
Eqs. (58) and (56c),

—m k (F"" zF'"*)r'—sin8dvd8dg2"

nm k Fl""r' sin8dvd8dy

nor' sin8dvd8dg, (63)

where P is the Penrose function' for the Maxwell field,
whose form on the null cone fully determines the 6eld
in the interior of the cone. In view of the arbitrariness
of the scalar field n, a particularly convenient choice
will be

n = 8 (v v')8 (0 0')/r—r'. — (64)

We can trivially perform the indicated integrations of
Eq. (63) and obtain simply —P(v', 0'). Gathering the
terms of Eqs. (62), (63), and (64) in the expression
for the commutator, Eq. {49), we thereby obtain the
commutator between the Geld strength F„„andthe
Penrose function. Rather than write this out in detail,
a cumbersome but straightforward procedure, it will be
more illuminating and relevant to determine the com-
mutators for the Penrose function at various points on
the null cone. This is readily obtained by multiplying
Eq. (49) by k&m", and k&m". The form of n„given in
Eq. (62) yields immediately that k&m" (n„,„—n„,„)=0.
Thus we find

LP (v,Q),$ (v', 0')7=0.
From Eq. (65) we obtain by complex conjugation

(66)

A less trivial expression is obtained by multiplying
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Eq. (49) by k&nz". Now we must make explicit use of
Eq. (64), as well as Eq. (54). In this manner we find

[$(v,Q),P(v', Q')(=8'(v —v')b(Q —Q')/2rr', (67)

Defining the "news function"

a=lim A =lim rmI"A„, (78)

where 8'(v —v') is the first derivative of the Dirac delta
function. Equations (65), (66), and (67) fully char-
acterize the commutation relations for the Maxwell
field on a null cone. In order to obtain the commutation
relations on the null cone at infinity we proceed as in
Sec. IV. In fact, if we recall the discussion in the para-
graph which preceeds Eq. (37), we see that it is con-
venient to define

p(v, Q) —= lim rg(v, Q). (68)

In terms of p and its complex conjugate p, the com-
mutation relations for the Maxwell field at "past null
infinity" are easily seen to be

and
[p(v Q) p(v Q )]=Lp(v Q) p(v Q )3=0 (69)

Lp(v, Q),p(v', Q') j=+-',V(v —v')r(Q —Q'). (70)

The commutation relations for the Maxwell field at
"future null infinity" can be obtained in a fashion
strictly parallel to that outlined for the scalar field at
the end of Sec. IV and need not be repeated here.

In order to facilitate comparison with the results of
Sec. IV, it is convenient to introduce a gauge such that
the vector potential A„,satisfies an "out-going radiation
condition, "

A~A„=O. (71)

A =rm~A„ (72)

a simple computation, employing Eq. (71), shows that

k~A =v). (73)

Equations (66) and (67) can therefore be written

BA(v, Q) BA(v', Q')

85 8'v
=0, (74)

BA(v,Q) BA(v', Q')

Bv 8'v
=-,'5'(v —v')5(Q —Q') . (75)

If we therefore require that

t A (v,Q),A (v', Q)j=0 (76)

In this gauge, the two components of the vector poten-
tial, which characterize the two independent states of
polarization of the Maxwell field, may be represented.

by the single, complex scalar m&A„.If we define

we evidently have, analogous to Eq. (73),

ku, =p.
Thus requiring

[u(v, Q),a(v', Q') $=0
and

(79)

(80)

VI. LINEARIZED GRAVITATION THEORY

The linearized theory of gravitation may be obtained
from the Einstein theory of general relativity by a
process of discarding all nonlinear terms, or it may be
presented as an independent field theory in its own

right. We prefer to take the latter course in order to
parallel the presentations of the preceding sections.
LRecall that throughout this section we shall maintain

the notation that a comma shall denote covariant
differentiation with respect to the Qat background
metric which in polar coordinates we will take to have
the form of Eq. (22).)

The potential of the gravitational field is represented

by a symmetric tensor, h„„,which is not directly an
observable, but is subject to gauge transformations
such that tensors which can be obtained from one
another by the relation

Lu(v, Q),a(v', Q')] = ——',a (v—v')5 (Q—Q'), (81)

we obtain a set of commutation relations which are
equivalent to the original relations (69) and (70).

Equations (80) and (81) are exactly of the form that
we should expect from the results of Sec. JV, and are
presented for purposes of comparison with that section.
However, it is evident that they are not the only

possibility, at least in so far as the derivation presented
in this paper is concerned. For in order to obtain them,
two integrations had to be performed, one with respect
to v and one with respect to v'. Even with reasonable

boundary conditions, which would exclude terms which

diverge for large e and e', we are still left with the
addition of an arbitrary antisymmetric function of the
angles to each of the commutators (80), (81), or (76),
(77). These surely ought to vanish in view of the space-
like character of the pair of points concerned. Nor is
the situation substantially improved by Eq. (48) in

the radiation gauge, for an integration with respect to
e' would still be required in order to obtain the com-

mutation relations among the transverse components
of the potentials. Perhaps an argument similar to that
which led to Eq. (33) can be found which could exclude

these arbitrary functions.

$A (v,Q),A (v', Q') $ = —-', 0 (v —v')8 (Q—Q'), (77)
(82)

where y„is an arbitrary vector field, are understood to
describe the same gravitational field. The gauge-
igvagiant field quantity, analogous to F„,in the case

we obtain a set of commutation relations which are
equivalent to the original relations (66) and (67).
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G~p=R~p 2go!pR 0 (86)

CaPvb=RaPvii 2 (gavRP8+gP8Rav gPTRaii gaiiRP'y)

6(g—p g ~ g~—gp~)R (87)

As the notation implies, the above quantities may be
obtained by the process of linearization of the corre-
sponding quantities of the full theory. Equation (83)
corresponds to the Riemann or curvature tensor, Eq.
(84) to the Christoffel symbols or aKne connection,
Eq. (85) to the Ricci tensor and Ricci scalar, Eq. (86)
to the Einstein tensor, and Eq. (87) to the Weyl or
conformal curvature tensor. In addition to having all
the symmetries of the Riemann tensor, C p» has
vanishing trace on each pair of indices. We note that
as a consequence of Eq. (83) the Einstein tensor can
be shown to satisfy the identity

GJ",„=0.
The Lagrangian for the linearized gravitation theory

is

of the Maxwell field is the fourth order tensor

R p„g=,'—(h—ii,p~+hp~, ii h—pg, ~ h—,,pg), (83)

which has all the symmetries well known for the
Riemann tensor of Riemannian geometry. It will be
convenient for purposes of ultimate comparison with
the full Einstein theory to define the following tensors

r„-—=—,'g- (h„,,+h„,,—h„„), (84)

R p= gP"R—„p„,R=g"PR—p, (85) rihpv 2 (n pv, Y+n vp, 'Y) 7p, v Vvp. (95)

LWe note at this point that Eq. (94) assures that &hp.

satisfies the field equations (90).]
A comparison with Eq. (82) indicates that the term in

C& containing y„,namely, 2y„G», generates a pure
gauge transformation. As in the previous section, we
can either exploit the freedom to perform gauge
transformations in order to establish a preferred gauge
frame, or we can work exclusively with gauge-invariant
quantities. We shall again prefer to take the latter
course.

We now conclude from Eqs. (4), (92), and (95)

hpv, nap, C dSp = ,'( —'„—„,+n'„„,),
—VP..—V... (96)

where we have taken note of the field equations, Kq.
(90), to discard the last two terms in the definition of
CP, Eq. (92). Differentiating Eq. (96) we obtain the
gauge-invariant commutation relations

In analogy with Eqs. (15) and (45), if we require the
auxiliary field to satisfy the differential equations

n'. .—n"..+n--, —",.—l Lg-( '-, +n'-, )
+g-(n"..v+n'». ,.)—g..(n'. -, +n'".v)

-g,.(-„,+- ...»=0 (94)

the right-hand side of Eq. (93) will vanish identically.
In this fashion we can satisfy Eq. (12) with

gPv(raP I p
p I p Ia p)

from which we can deduce the field equations

G p
——0.

(89)

(90)

CaPyb, npvvC dip = g(n ab, pPy+n"Py, pal

+n &a ppV+n Vp pa& n aV ppi n pii paV

Let us now introduce an auxiliary tensor field, n„„„
which is defined to have the following symmetries

0.'pvo = Gvpo ~ ~"vs, =0

npvv+nvvp+nvpv= 0

O.„„m=0 for the space-like case

n„„,l =0 for the null case

(91)

(e' being the unit normal to the family of space-like
hypersurfaces employed. )

It follows from these relations that n„„,has precisely
ten independent components. With the aid of this
tensor we can now define the vector field

CP nCPvPP+nP —GPv+2+ GPP (92)

where y„is an arbitrary vector field. Taking the
divergence of C~, we find after some rearrangement of
terms and employing the identity Eq. (88),

C p+ ( n vp p 2&v p)G =npvv pC (93)

n"„,„pi —naiip,„).—(97)

)We have ignored the distinction between R p~q and
C p~& in view of Eq. (90).]

The auxiliary field, n„„„ofcourse must satisfy the
differential equations (94). If we confine our attention
to obtaining commutation relations on an initial space-
like hypersurface, the situation is relatively simple. A
careful inspection indicates that Eq. (94) consists of
ten independent linear first-order equations which
uniquely determine the first derivative normal to the
hypersurface of the ten independent components of
o.„„„aslinear combinations of first derivatives within
the space-like hypersurface. It follows that n„„may
be assigned arbitrarily on the initial hypersurface and
Eq. (94), together with the symmetry conditions, Eqs.
(91), will determine it uniquely everywhere. In order
to evaluate the right-hand side of Eq. (97), explicit
use will have to be made of Eq. (94). Although the
procedure is entirely straightforward, the resulting
expressions become rather complicated and @re Dot
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very illuminating. We therefore leave to the amusement
of the interested reader the determination of the speci6c
expressions for the commutation relations of the various
components of the curvature tensor on an initial space-
like surface.

For the case where the surface of integration in Eq.
(97) is taken to be null, the analysis of the initial value
problem for Eq. (94) proceeds somewhat differently.
Let us for simplicity call the left-hand side of Eq. (94)0„„„.(We note that o„„„hasall the symmetries of the
Weyl tensor. ) If we resolve the components of 0„„„
relative to the null quadruple, Eq. (55), the ten inde-
pendent equations, (94), separate into two groups, in
the following fashion

and

m kpm&k'0- p, g
——0,

m kPm&k~o. p~g
——0,

m kPl&k'o- p~)=0,
m"k&l&k'0- p,g=0,

&-kPt k~~.„,=o,
m mPl~k'fT p~)=0,
m-Pi k~~.„,=o,
m-P'1~k~~. p„—-0,

m Pm&k'a p, g
——0,

m Pm~Po- p~g
——0.

(98)

(99)

m-kPm k & ~.„,,„=0,
m kPm~k'l&0- p, g, ,——0.

(100)

Equations (100) will now determine the propagation
of k&m'm n, ,k& and k&m"m n, k& off the initial null
surface. We can therefore assert that if we can 6nd a
set of initial data which satisfies the two constraint
equations, (98), a full solution of Eq. (94) can be
determined subject to the usual ambiguity typical of
propagation off a null surface.

Let us now consider

Qpp~= goal'(pl pkp rBpkp)rÃg )—(101)

Although many equations appear to occur as complex
conjugate pairs, this is not, in fact, the case since we shall
6nd it convenient to take 0„„„to be a complex tensor
field. The reason for distinguishing between Eqs. (98)
and (99), is that Eq. (98) is found to contain only
derivatives of n„„entirely within the null surface,
Eq. (23), whereas Eq. (99) all contain derivatives off
the null surface. One can check that Eqs. (99) propagate
off the initial null surface all the independent com-
ponents of o.„„,with the exception of k&m"m Q.„„and
k~m"m &p, vo' ~

For the determination of the propagation of these
latter two components we must addend to these set of
equations the two obtained by differentiating Eqs. (98)
in the l& direction:

L4 (~,Q) 8 (~',Q')] =0 (103)

1 6'"(it—i')
g (&,Q),g (&',Q') ]= —— 5 (Q—Q'), (104)

4 rr'

where 5"'(v—v') is the third derivative of the Dirac
delta function. Equations (103) and (104) fully char-
acterize the commutation relations of the linearized
gravitational field on null cone given by Eq. (23). As
in the previous theories, if we desire to obtain the
commutation relations on the null surface at the "past
infinity" it is again convenient to define p(v, Q) as in
Eq. (68).

It then follows immediately from Eqs. (103) and
(104)

Lp (v,Q),p (v',Q')]=0 (105)

tp(5,Q),p(v', Q')]= —45 '(it —5')5(Q —Q ). (106)

The commutation relations for the linearized gravi-
tational 6eld at "future null infinity" can be obtained
in an analogous fashion as indicated at the end of
Sec. IV.

In order to facilitate a comparison with the results
of Secs. IV and V it is convenient to introduce a gauge

where 0. is an arbitrary scalar distribution. It is evident
that Eq. (101) satisfies all the required symmetries,
Eq. (91).A little computation confirms that Eq. (101)
also identically satisfies the constraints, Eqs. (98), for
arbitrary choice of o. on the initial null surface. It is of
course not permissible to assume that n„„continuesto
have the form Eq. (101) oG the initial surface, for the
propagation off the surface is governed by the remaining
equations, (99) and (100). LIn view of the terms of the
form n&„,„,which appear on the right-hand side of
Eq. (96), we shall in fact have to take these remaining
equations into consideration in our subsequent calcu-
lations, in contrast to the procedure employed at the
corresponding point of the previous section. $

If we again take the surface element of the integral
in Eq. (97) to be given by Eq. (58), and the arbitrary
scalar distribution, n, to be given by Eq. (64), the
left-hand side of Eq. (97) assumes the form LC p~q(v, Q),
P(e', Q)], where we have introduced the Penrose func-
tion for the gravitational 6eld

P=—m, k&m&k'C p, g.

If we are primarily concerned with the determination
of commutation relations for the Penrose function and
its complex conjugate, f, on the initial null surface, it
will not be necessary to use all of the components of
Eq. (97). It is sufhcient to consider the two expressions
obtained by multiplying Eq. (97) by m kt'm&k' and
m kpm7k'. Upon performing these operations and sub-
stituting Eqs. (101) and (64) into the right-hand side
of Eq. (97), we obtain after some tedious but rather
straightforward computations
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such that the potential h„„satisfiesan "outgoing radia-
tion condition"

0"k„~=0. (107)

O'H(it, n) O'H(v', n')

88 Bv
=0 (110)

O'H(v, n) O'H(n', Q')
= —-,'8"'(v —v')b(n —Q'), (111)

8'v Bs

respectively.
Integrating these last two equations we obtain,

modulo the degree of arbitrariness discussed at the
conclusion of the previous section

and
PI (v,n),H (~',n') 7=0 (112)

(H(~,n),H(~', n')$= ——,,'~(~—~')s(n —n'). (113)

If we define the gravitational "news function"

1
h=—lim B=—lim ~mI"m"h„„,

t —&co v2 r~oo
(114)

at "past null infinity" we have analogous to Eq. (109)

k~k"h, „„=&2'. (115)

Thus, apart from an additive arbitrary antisymmetric
function of the angles we can conclude that the relations

In this gauge the components of h„„,which characterize
the two independent states of polarization of gravita-
tional radiation, can be represented by the single com-
plex scalar mj"m"h„„.If we define

H= (1/%2—)rm m"h„„, (108)

a simple calculation employing Eq. (107) yields

k~k "H,„„=~2m/. (109)

Equations (103) and (104) can therefore be written

foundering and to show how the considerations of this
paper can repair some of the damage.

The gravitational field is described by a symmetric
tensor, g„„,which is not directly observable. Tensors
obtainable from one another by means of general
curvilinear coordinate transformations are understood
to describe the same gravitational field. Nor is the
Riemann tensor directly observable in this theory,
since it too changes its form under curvilinear coordi-
nate transformations. Only constants of the motion are
invariant under general coordinate transformations and
represent observables. %e shall introduce the usual
notation that a semicolon subscript shall denote co-
variant differentiation with respect to the Christoffel
symbols I' „„determined by the metric g„„.(The fact
that there is no background metric with respect to
which one can specify once and for the metric and/or
aKne properties of the manifold is the principle source
of the sundry difhculties that we encounter in this
theory. )

The field equations satisfied by the metric are given
by Eq. (90), where the symbols on the left-hand side
of Eqs. (83) through (87) are now to be understood in
their usual meaning in Riemannian geometry. If we
again define a tensor field o,„„havingthe symmetries
of Eq. (91) we can employ it as before to construct the
vector field, C&, as in Eq. (92). Analogous to Eq. (93)
we now have

C~,+( ~~.,—„2q.,.,—)G ~=a„,.., ,C&" &, (118)

the principal difference being the occurrence of semi-
colons now instead of commas. It would be tempting
at this point, in analogy with Eq. (94), to require

o!(pv0; p)

(where the parenthesis denotes that the indices are to
be symmetrized according to all the symmetries of the
Weyl tensor), and thereby conclude the analog of Eq.
(95)

p(.,n),h(",n') j=0 (116) gl4& 2 ( p&le++ &pie) vp; p vp;p, , (1 )

LA(~,n),h(~', n')$= —-,'~(~—~')s(n —n') (117)

are equivalent to Eqs. (105) and (106). We note the
striking similarity of these commutation relations and
those of the Klein-Gordon and Maxwell fields.

VII. THE GENERAL THEORY OF RELATIVITY

The primary interest in the preceding development
lies in the possibility of extending it to the general
theory of relativity. A presentation for general rela-
tivity, to a large extent parallel to that of Sec. VI, has
been in print for some time. ' I et me briefly review its
development in order to indicate the cause of its

P. G. Bergmann and A. B. Komar, Les Theories Relativistes
de la Gravitation, Colloques Internationaux du C.N.R.S. XCI,
Royaumont, 1959, Editions du C.N.R.S., Paris, 1962, p. 309.

This is precisely how one proceeded in Ref. 6. The
principal error of this approach is that in view of the
fact that a semicolon appears in Eq. (119) rather than
a comma (as well as other metric-dependent terms
required to eliminate the trace of the expression), Eq.
(119) does not define a class of functions independent
of the dynamical field. Thus, although it is still true
that, when Eq. (119) is satisfied, J'C&dS, is a constant
of the motion, it is no longer true that what it generates
is correctly given by Eq. (120). In effect there are terms
on the right-hand side of Eq. (118) which are func-
tionally dependent on the field equations, G„„.This
observation is further confirmed by the fact that 8g„„,
given by Eq. (120) does not satisfy the perturbed
Einstein field equations as a consequence of Eq. (119).
Curvature-dependent terms appear which did not occur
in the linearized theory.
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If, however, we wish to consider a truncated theory,
obtained from general relativity by imposing the
boundary conditions that the only spaces to be admitted
are those which are asymptotically Qat in the sense of
Penrose, ' we can recover the validity of some of the
relations obtained in the previous section. In fact, if
we note that the correct expressions, Eqs. (118) and

(119), deviate from the corresponding expressions of
linearized theory by terms which vanish in the limit
r —+~, in this limit, by paralleling the steps of the
preceding section, we can rigorously recover the com-
mutation relations Eqs. (105) and (106) or equivalently
Eqs. (116)and (117) for the full Einstein theory. (With
this hypothesis of Sachs' thus established, the reader
is referred to his paper for a presentation of how this
set of commutation relations may be employed to
represent the motion group available to manifold at
infinity. )

In view of the fact that the commutation relations
at infinity for the news function of the asymptotically
Rat full theory is identical to those of the linearized
theory, the reader may wonder in which way the
quantum theories obtained by use of these Poisson
brackets could possibly differ. Although the pure in-

coming fields defined at "past null infinity, " and the
pure outgoing fields defined at "future null inhnity"
satisfy identical commutation relations in both theories,
the relationship between the incoming and the outgoing
fields is vastly different for the two theories, requiring,
as it does, an integration from "past null infinity" to
"future null inhnity" of the held equations of the theory.

In conclusion we would like to make three comments:
(1) It should be possible to derive the commutation

relations for the Einstein theory at null infinity by
working directly on that surface at infinity, without
reference to a limiting procedure so necessary in our
present development. This will be done in a subsequent
paper by employing the technique of conformal trans-
formations to bring the surface at infinity into a finite
region where it can be more easily studied.

(2) One would not expect a quantum theory based

on the commutation relations developed for this
truncated theory to be equivalent to a quantization of
the full nontruncated theory, or for a theory truncated
in a different fashion, for example by admitting only
solutions of the field equations which are spacially
closed and/or simply connected. It doe not appear to
be possible to extend the methods of this paper to
treat these more general spaces. A quantum theory
which would admit states of a close~i universe would

probably have to be constructed by rather different
considerations.

(3) The arbitrary antisymmetric functions of the
angles which occurred in the expressions for the com-
mutators of the news function are present due to the
existence of the possibility of performing Bondi-
Metzner transformations' at null infinity. Ke have
succeeded in eliminating these functions from the scalar
field theory (and we should expect to eliminate them
from the Maxwell and linearized gravitation theory)
by making explicit reference to the family of null cones
used, including the manner of anchoring their vertices.
For the full Einstein theory, this does not appear to be
possible, and we should therefore not expect to be able
to eliminate these arbitrary functions of angle from the
expressions for commutators which are equivalent to
Eqs. (116) and (117) of the linearized theory. One may
therefore prefer to eliminate all reference to such
arbitrary functions by working with commutator s
obtained through differentiating these latter expres-
sions once with respect to either v or e'. That such a
procedure can provide commutation relations which
are covariant under Bondi-Metzner transformations
appears to be intimately related to the proof given by
Sachs' of the existence of an integrable affine connection
at null infinity.
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