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Many-Particle Self-Consistent Model
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The number and general nature of the self-consistency equations that may arise in a universal bootstrap
theory of all strongly interacting particles is discussed. There are more equations than there are variables to
be determined, so that it may be possible to bypass some of the divergence difficulties of dispersion theory
by making use of a sufricient number of the equations. A general method of attacking the difficulties associ-
ated with the many-particle aspect of the problem is discussed. A simple first approximation to the method
is applied to a model of four multiplets (pseudoscalar meson, vector meson, baryon ground state, and
j=-,+ baryon excited state), under the assumption that unitary symmetry is approximately valid. It is
argued that comparison with experiment of the calculated differences in masses of particles within the same
multiplet will provide experimental tests that are meaningful in a low-order approximation to the model.
It is shown that if the mass splitting of the baryon octet is assumed to be partly self-generating (i.e., not re-
sulting completely from the mass splitting of the meson multiplets), a nondegenerate solution to the model
is most likely if there is a large violation of R invariance.

I. INTRODUCTION

l &HE universal bootstrap hypothesis of strong
interaction physics is that the number of existing

strongly-interacting particles, and their spins, parities,
external quantum numbers, mass ratios, and inter-
action constants will be determined eventually from
self-consistency requirements, formulated within dis-
persion theory. Recent successes of bootstrap calcu-
lations involving several types of particles are encourag-
ing for this hypothesis. ' Unfortunately, calculations
in a model involving many types of particles are usually
dificult. It is implicit in the universal bootstrap
hypothesis that the equations are inconsistent if any
existing particle is omitted; however, if every particle
is included there are very many coupled equations. It
will be necessary to discover some kind of convergent
iteration procedure that is quite different from those
well known in physics today, if a solution to such a
model is to be obtained.

Encouraging, though incomplete, arguments have
been given that the universal bootstrap hypothesis may
require the approximate validity of unitary sym-
metry. '' In the present paper we simply assume
approximate SU3 symmetry without theoretical justi-
fication. A type of iteration procedure for the many-
particle bootstrap equations is proposed and discussed
in Sec. II. It is argued in Sec. III that the signs and
magnitudes of the mass differences of particles within
the same SU3 multiplet may be calculated in a very
low-order approximation with sufficient accuracy to
test the model. In Sec. V, the first approximation to the
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iteration procedure is applied to a model including the
pseudoscalar meson octet, vector meson octet, ground-
state baryon octet, and j= ~3+ baryon resonance
decuplet. Some of the results of this application
have been obtained previously from more detailed
calculations. ' 4

II. NATURE OF THE UNIVERSAL
BOOTSTRAP EQUATIONS

In a complete bootstrap model each particle occurs
as a bound state or resonance pole in the coupled scat-
tering amplitudes of the appropriate quantum numbers.
It is assumed here that only two-particle scattering
states need be considered, though some of the particles
may be unstable. We shall attempt to count the number
of self-consistency equations that will occur. We con-
sider the pole associated with the particle X, assumed
to be coupled to N two-particle states (YtZt), (FsZs),

, (I'„Z„).If the spins of some of the particles are

sufficiently high, there may be more than one partial-
wave state associated with a particular pair of particles.

It is assumed that some dispersion-theoretic method
(such as the matrix X/D method') may be used to write
partial-wave dispersion relations for the coupled ampli-
tudes T;; for the processes I',+Z, ~ F;+Z; The lef.t-
hand cuts (forces) for the (ij) process are associated
with the singularities occurring at specific energies in
the crossed processes I',+Z; —+ I';+Z; and Y,+I'y~ Z,+Z;. Therefore, the expression for T;; is a function
of the masses and interaction constants of the initial,
final, and intermediate particles associated with the
crossed diagrams.

For simplicity, we assume that the pole associated
with the particle X is a bound-state pole at an energy
below the threshold of all the two-particle states
(I',Z;); we will refer to an amplitude containing the
pole as "resonating. " (The argument may be gener-
alized to the case of one or more open channels, although

s J. D. Bjorken, Phys. Rev. Letters 4, 473 (1960).
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a few new complications arise in the generalization. ")
Identification of the energy of the pole with the mass of
the particle I leads to a self-consistency equation,
which may be written in the form,

for some of the T, ;. Further self-consistency equations
are associated with the residues of the pole in the various
amplitudes; these equations are of the form,

R;,= —C,C,&,»,
R,;= lim $(E—mx)T, ;(E)j, (2)

where y; is the (XV,Z;) interaction constant, and the
C; are known, positive functions of mx that depend on
the definition of the amplitudes T;;.An equation similar
to Eq. (2) may be written for each elastic and inelastic
amplitude, but these equations are not all independent.
In order to demonstrate this lack of independence, we
note that since T is real and symmetric in the energy
region of the bound state, it may be diagonalized by a
real, unitary (orthogonal) transformation A. The
physical amplitudes may be written in terms of the
eigenamplitudes, i.e.,

Tij=Z AikAjkTkk.
I"

(3)

The transformation coeKcients 3 are energy-dependent,
in general. We assume a nondegenerate bound state;
the resonating eigenamplitude and its residue are
denoted by T„„and R,„, respectively. The residue
R„, must be negative. The residue of T;; is equal to
A,„(mx)A;„(mx)R„„,so that Eq. (2) may be written in
the form,

The number of independent self-consistency equations
of this type is e, the number of channels coupled to the
X pole.

Similar equations may be written for each type of
particle. It is clear that the number of equations of the
pole position type LEq. (1)j is equal to the number of
particle types, and is thus one more than the number of
mass ratios. If the basic interactions are three-particle
interactions, there are three self-consistency equations
of the residue type )Eq. (2)j for each interaction con-
stant. These latter equations are not all independent,
however. If a particular interaction is quadratic in one
type of particle (such as the ppvr' interaction), two of
the equations are identical. Some of the other equations
may be dependent. For example, consider the p+m-+m'

interaction constant. If it can be shown that the equa-
tions require isotopic spin conservation, then the residue
equations associated with the s.+ —+ (p+m') and
s'~ (p+s. ) processes will be equivalent. These equa-

' A similar argument is made for the case of two open channels
in Ref. 4.

tions will be diff'erent from the residue equation associ-
ated with the p+ —+ (s-+7r') process, however. Thus, the
total number of independent self-consistency equations
occurring in a universal bootstrap model is greater than
the number of mass ratios and interaction constants to
be determined. This fact is very encouraging. It is well
known that partial-wave dispersion relations are not
always convergent, so that arbitrary cutoff or subtrac-
tion constants must be introduced into the equations.
It is conceivable that the extra self-consistency equa-
tions may be used to eliminate these arbitrary constants,
so that some of the divergence problems of dispersion
theory may be bypassed.

In most of the partial bootstrap models considered
so far, no use has been made of the overdetermining
nature of the residue-type self-consistency equations.
We consider as an example the reciprocal bootstrap
model proposed by Chew. "In this model the E and E*
particles are associated with poles in the (1,1) and (3,3)
E-wave pion-nucleon amplitudes. There are two self-
consistency equations of the residue type, and the two
interaction constants y ~~ and y ~~*. In a complete
bootstrap model of the ~, E, and Ã*, one should include
the coupling of the (s.N*) channel in both these partial
waves. Such an inclusion would add the one interaction
constant p &*&* to the theory, but would lead to two
more self-consistency equations of the residue type. "
It is true that inclusion of the (s.N*) channel compli-
cates the model, but in the long run, one may gain by
this procedure if some method is found to exploit the
overdetermining nature of the complete set of equa-
tions. (Of course, one must also consider the amplitude
in which the pion poles develop in a complete model. )

Because of the large number of self-consistency
equations, it is reasonable to suppose that all mass
ratios and coupling constants are determined in a
particular solution to the bootstrap equations (although
there may be more than one solution). However, the
number of existing (stable and unstable) strongly-
interacting particles is so great that it is unlikely that a
solution to a universal bootstrap model will be obtained
unless some simple, convergent iterative procedure
exists. The convergence of a particular iterative pro-
cedure for many equations in many unknowns depends
on the assumed identification of particular equations
with particular variables. (This fact is illustrated even
with such a simple problem as that of solving the two
linear equations, x—2y=0 and 2y+x=5 by iteration,
alternately solving one equation for x and the other for
y.) We propose that the identification may be made in

"G.F. Chew, Phys. Rev. Letters 9, 277 (1962). See also F. E.
Low, sbr'd 9, 277 (1962); J. S. B.all and D. Y. Wong, Phys. Rev.
133, 8179 (1964).

~' This is a slight oversimplification, since there are actually two
fundamental interaction constants of the ~N*N* type. In a com-
plete, relativistic m, N, N* model one would have to include
P-wave and F-wave (~)V~) states in the (3,3) partial wave, so that
addition of the (~N*) channel would lead to two extra interaction
constants and three extra self-consistency equations.
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the following, physical manner. The pole position
equation associated with a particular particle is con-
sidered as the equation for the mass of that particle.
The equation for the particular interaction constant
'Y b, is formed by suitably combining the appropriate
residue equations associated with the processes a ~ (bc),
b —& (ac), and c—+ (ab).

A slight modification of this iteration procedure does
converge when applied to the nondegenerate bootstrap .

model of the vector-meson octet, previously considered
by the author. 4 In this model, isotopic spin and hyper-
charge conservation are assumed, and the p, M(Z*),
and q are considered as resonances in the various
coupled two-particle states of the x, E, and g. The x, E,
and g masses were taken from experiment, and the eight
self-consistency equations of the model were considered
as equations for p„, pp p~ pyQ+ pp pp++2 2 2

and y~„~. All terms were neglected that are of power
higher than the Grst in the deviations of the various
quantities from their values in the solution in which the
I' and V octets are each degenerate. The self-consistency
equations are linear in this approximation, and so were
solved simultaneously. However, if the two equations
associated with the q pole are considered as simultan-
eous equations for p,2 and p„zz, the three p-pole equa-
tions are considered as simultaneous equations for p,„2,

, and y,~~, and the three M-pole equations are
considered as simultaneous equations for @~2, p~„z,
and p~„z, it may be shown that iteration of the three
sets of equations in turn does converge to the correct
answer.

More than one solution to the bootstrap equations
may exist."In fact, we assume the existence of at least
two solutions, the physically realized solution and the
"degeneracy solution, " in which the SU3 multiplets are
each degenerate and the interaction constants are
invariant to the SU3 transformations. The existence of
the degeneracy solution is not necessary, of course, for
the success of the model. However, such a solution does
exist in some simplified models of one or two SU3
multiplets that have been considered. Furthermore, it
is difficult to see how unitary symmetry can be approxi-
mately valid in a nondegenerate bootstrap model unless
a degeneracy solution involving exact symmetry exists.

It is often useful to describe a solution to an approxi-
mate bootstrap model by considering the dependence
of one parameter on others. This concept of dependence
appears meaningless in a complete bootstrap model,

'3 The idea that there may be two solutions to the same set of
dynamical equations, one involving exact SU3 symmetry and
degenerate multiplets, and the other involving mass splitting, has
been proposed and discussed by S. L. Glashow, Phys. Rev. 130,
2132 (1963).It is likely that the inclusion of the electromagnetic
and weak interactions in a bootstrap model would not make a
great eBect on calculated values of the mass ratios and strong
interaction constants that occur within a particular solution.
However, one can hope that these interactions "pick out" the
correct (physical) solution in some manner. See Ref. 17 for a
discussion of these principles as they apply to a simple model.

since all parameters (except the absolute mass) are
fixed. However, the concept may be given a meaning
within the iteration procedure described above, for if
attention is limited to the equations associated with a
particular set of masses and coupling constants, the
other constants may be considered as variable param-
eters within these equations. We will use this concept
of dependence to discuss deviations from degeneracy
within the various SU3 multiplets. Every solution may
be classified as of the o-type (self-generating mass-
splitting) or v-type (non-self-generating mass-splitting)
with respect to any set of multiplets, according to the
criterion described below. One considers only the self-
consistency equations associated with the masses and
coupling constants of a particular set of multiplets
(set I), and varies the values of the other masses and
coupling constants in these equations continuously to
the values of the degeneracy solution. The solution is
of the v-type with respect to set I if and only if this
variation may be performed in such a way that the
poles of set I exist throughout the variation, and each
multiplet of set I becomes degenerate in the limit of the
variation. Because of the interrelation of the particle
masses in the complete model, all multiplets are ex-
pected to be nondegenerate in any solution that is of the
0--type with respect to any one or more multiplets. This
type of classification of solutions is used in a simple,
approximate model in Sec. V.

The t7-v classi6cation is related to the question of
where one should start in attempting to formulate a
universal bootstrap model. Although such a model is
inconsistent if any type of strongly-interacting particle
is neglected, the different particles may not be of equal
importance in the first approximation. One procedure
that may lead to a universal bootstrap model is to find
a set of particles (set A) that is a subset of the existing
particles, and that reproduces itself in a bootstrap
model with masses and interaction constants corre-
sponding approximately to reality. One then examines
the amplitudes corresponding to all possible sets of
quantum numbers to see if any bound state or resonance
poles are predicted in addition to those associated with
the set A. If such additional poles (set B) are found, one
must redo the calculation, including the particles of
set B in the input (i.e., scattering states involving the
B particles, and forces transmitted by the B particles
must be included). If this second calculation leads to
results not greatly different from those of the erst
calculation, then the solution is consistent, and within
the calculational scheme, the particles B are less funda-
mental than the particles A.' Clearly, it is not reason-
able to investigate mass splitting in an approximate
model involving only the subset A of the existing multi-
pl.ets unless one believes the actual solution to be of the

"A technique of this nature has been applied successfully to a
model of the resonances of baryon number one by A. W. Martin
and K. C. Wali, Bull. Am. Phys. Soc. 8, 515 (1963'l.
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0-type with respect to the set A. It is conceivable that
the correct nondegenerate solution is of the v-type with
respect to any nontrivial subset of the existing multi-
plets, but if this is the case, it is dificult to imagine how
this solution will ever be found. The notion that "no
particles are fundamental, but some particles are more
fundamental than others" is discussed further in Sec. V.

III. A MODEL OF FOUR MULTIPLETS

We assume that the basic structure of the set of
strongly-interacting particles may be approximated by
a bootstrap model of four SUs multiplets, the P (pseudo-
scalar meson) octet, V (vector meson) octet, B (ground-
state baryon octet) and D(j =as+ baryon decuplet).
Several diGerent types of two-particle configurations
are coupled to each pole, i.e.,

)t(P) = (PV)+ (VV)+ (BB)+(BD+DB)+(DD),

x(V) = (PP)+ (PV)+ (VV)+ (BB)
+(BD+DB)+(DD), (5)

x(B)= (BP)+(DP)+ (BV)+ (DV)

&(D) = (BP)+(DP)+ (BV)+ (DV),

where a bar denotes the antiparticle multiplet, and the
notation )t(X)= (7'Z) means that states involving one
particle from the I" multiplet and one particle from the
Z multiplet are coupled to the poles of the X multiplet.

No one has yet attempted to calculate in a bootstrap
model involving all these configurations. One reasonable
approximation procedure is to consider the coupling of
each pole only with the type of con6guration involving
the smallest threshold energies, i.e., to consider only the
6rst term on the right side of each of the above equa-
tions. Such a procedure has been applied to the meson
multiplets by the author, 4 ' and to the baryon multiplets
by Cutkosky and by Martin and Wali."Fortunately,
it is known experimentally that for each of the four
multiplets, the lightest two-particle con6guration is
coupled strongly. However, one cannot justify con-
vincingly the neglect of all the other con6gurations. For
this reason, present day bootstrap calculations of such
quantities as coupling constants are not reliable enough
so that one can test the model by comparison with
experiment.

It was pointed out in Ref. 4 that in the bootstrap
model of the V octet, the neglect of all but the lightest
configuration is more justifiable in calculations of mass
differences of particles within the V octet than it is for
the calculation of interaction constants or of the mass
ratios of particles in different multiplets. This argument
applies to calculations of the I', 8, and D masses as
well, and results from the fact that the fractional devi-
ations from degeneracy are greatest in the I' multiplet,
and greater in the 8 than in the D multiplet. It is a
striking fact that one of the important evidences for
unitary symmetry, the approximate validity of the

Gell-Mann —Okubo sum rule, would not be present if
the symmetry were exact." The author believes that
the nondegeneracy of the multiplets also provides the
experimental numbers that may be used in the first
reliable tests of the SU3 bootstrap model. Some such
tests have already been made. ' 4

Since the lightest configurations coupled to the V and
D poles do not contain the V and D particles, we will
assume that the proper solution of the model is of the
v-type (see Sec. II) with respect to the V multiplet and
also with respect to the D multiplet. Different assump-
tions with regard to the P and 8 multiplets are dis-
cussed in Sec. V.

IV. THE PROBABILITY MATRIX APPROXIMATION

In this section we extend the approximation technique
introduced in Ref. 5, in connection with a bootstrap
model of the I' and V mesons. For illustrative purposes,
we first consider a simplified model involving only the
x and p charge triplets and the pox interaction. In this
model the p is a (s.7r) resonance, and the s. is a (s.p)
bound state; we are not concerned with the nature of
the forces that produce the poles. There are four inde-
pendent masses p p p pp pp and pp0 and two
independent interaction constants, yp+ &„0=yp— — o and
ypo + —.We are interested in the possibility of a solution
in which the pion triplet is not degenerate.

We will not write dispersion relations, but instead
will discuss a general type of approximation. Since the
p particle is not contained in x(p), while the s. is con-
tained in y(s), we assume the solution is of the v-type
for the p and of the 0--type for the pions, i.e., the x+—x
mass difference is self-generating. It is assumed that the
self-consistency equations may be combined in such a
way that the interaction constants and p masses may be
eliminated from the pion mass equations. Since absolute
masses cannot be calculated, the pion mass equation
may then be written in the function form, f(8)=0,
where 8= (p &—p o')/(as' &+rap ~). The degeneracy
solution b=o is presumed to exist, but another solution
is desired. If a second solution for 5 is found, the p+—p'
mass splitting may be calculated in terms of b.

Partial wave dispersion relations are sufficiently
complicated so that it may be quite dificult to compute
the function f(8). It may be easier to compute the
coefficients of the first few terms in a power-series
expansion, i.e.,

f(B)=cb+dP+ =0,

where c and d are constants. The value 8= —c/d is a
solution to the second-order equation. This second-
order solution exists even if no nondegenerate solution
to f(8)=0 actually exists. Therefore, this approximation
is not suKciently accurate for an investigation of the

"M. Gell-Mann, Phys. Rev. 125, 1067 (1962); S. Oknbo,
Progr. Theoret. Phys. (Kyoto) 27, 949 (1962).
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question of the existence of a nondegenerate solution.
However, if iE is nonzero, the solution 8= —c/d will

approximate a real solution if
~

c
~

is small enough. "
A similar argument applies if there are three inde-

pendent P-meson masses. In this case there are two
independent mass-splitting variables, 8~ and 82. If the
self-consistency equations are expanded to second order
in the 8;, and the linear terms in the equations are
diagonalized, the equations are of the form,

&Bi+fx(&i,4)=o,
&2&2+ f 2 (&i)4)= O )

where f~ and f~ are of second order. We assume these
equations are normalized in some physical manner. The
ratio 8~/4 is given by 8~/82 ——(c2/c&)(f&/f2). Thus, a
nondegenerate solution involving an appreciable value
of 8, is most likely if ~c,

~

is small. We conclude that a
first attack on an actual problem involving several
possible types of mass splitting may be made by com-
puting the coefFicients of the terms of the self-consist-
ency equations that are linear in the mass differences,
diagonalizing the equations, and looking for a small
coefficient. This technique is applied in Ref. 5 and in
Sec. V of the present paper. A similar technique is
applied to a model of vector mesons by Cutkosky and
Tarj anne. '~

We now return to the SU3 model of Sec. III and
consider, for definiteness, the equations for the masses
and interaction constants of the members of the 8
octet. Some of the important features of nondegenerate
solutions may be examined in the "mass approxima-
tion, "defined as the approximation in which the particle
masses, but not the interaction constants, are allowed
to vary from the degeneracy-solution values. Only the
pole-position self-consistency equations are considered;
these equations are identified with the masses of the
particles corresponding to the poles, as discussed in
Sec. II.

We make a further approximation by neglecting the
eRect of deviations from degeneracy on the left-hand
cut. In this approximation, deviations of the masses of
the particles in the two-particle states coupled to the
baryon poles inQuence the pole positions because the
integrands in the dispersion integrals associated with
the right-hand cut contain powers of the center-of-mass
momenta of the particles in the various two-particle
states. The magnitude of this momentum for a particu-
lar state is given by the formula,

where pi and p2 are the masses of the two particles, and
s is the square of the total energy. Since only the squares

'6The application of the probability matrix approximation to
the 7t--p system in Ref. 5 suggests that a nondegenerate solution
does not exist."R.K. Cutkosky and Pekka Tarjanne, Phys. Rev. 132, 1354
(1963).

where 02; represents the terms of second order in the 8

and ~, and 0.~, e~, II~, ;;, and II~„; are constants, e~
and ng being chosen for convenience.

It is shown in the Appendix that in a simple model
possessing the assumptions of the present section, the
quantities A~, ;; and A~„~ may be set equal to the
probabilities of the baryon j and of the P meson k in the
degeneracy-solution wave function for the baryon i.
Explicitly, if the degeneracy-solution wave function is
y(B,)=pi~C, i BiP~, then Ilia, ;,——P~(C;; ') and
IIi, i~=pi(C;iin). It is also shown that nii and n~ are
both positive if these substitutions for the II factors are
made.

In Sec. V, @so' and p, o' will be set equal to the average
experimental values of the m, 2 and p, ,2, so that P,A;
=P;b,=o. It is not necessary to make this interpreta-
tion, however; one may regard the 6; and 6; as all
independent. In fact, since absolute masses cannot be
determined by means of the dispersion relations, the
substitution of d„.=A;=8,=8,= into Eq. (7) must
lead to a continuum of degeneracy solutions. This con-
dition implies the relation,

+B+&P I ~

The 6;, 8;, 0&,;, 11&,;;, and IIi, ;& in Eq. (7) may be
considered as components of column vectors 6, 4, and
02, and rectangular matrices Ilii and Ili. The matrix
equation for LL is

ck = (1—ug )11iick+ni IlF4+02. (9)

of the masses and the squares of the total energy appear
in this equation, we will use these quantities as basic
variables. This seems to conQict with intuitive notions
regarding the importance of the thresholds of the vari-
ous channels, since the position of a threshold is a linear
sum of the appropriate masses. However, it must be
remembered that it is the integral of the discontinuity
across a branch cut, rather than the position of the end
of the cut, that is important. This integral is a function
of the squares of the masses.

We consider the coupling of the 8 poles only to two-
particle states of the (I'B) type. Since the effects of
deviations from degeneracy on the left-hand cut are
neglected, the only variables in the problem are the
masses of the various P mesons and baryons. The
symbols m; and p; are used to denote the masses of the
baryon i and P meson j. The fractional deviations in
the squares of these masses are denoted by 6, and 6;,
i.e., 6,= (mP —mo2)mo ' and 8;= (pi' —po')po ', where
neo and po are a pair of values that satisfy the degeneracy
solution. The self-consistency equation associated with
the position of the pole of the baryon i is the equation
for 6;.As in the x-p example discussed above, we expand
the quantities in this equation in powers of the mass
deviations, i.e.,

Q &B+B,ij+j+Q &PIIP,ik~k+02, i pl

k
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Since o~ and o,~ are both positive, o.~ is in the range
0-1. We refer to Eq. (9), together with the condition
0&o.&&1, as the "probability matrix approximation. "

V. APPLICATION TO FOUR-MULTIPLET MODEL

A. The Baryon Octet

An approximate solution to the (BI') model of the
baryon octet has been given by Cutkosky, and by
Tarjanne and Cutkosky. "In the terminology of Sec.
II of the present paper, this solution is of the v-type,
with respect to the 8 multiplet. In the present section,
the v and 0- solutions to this model will be compared,
and the relation between the a solution and R invariance
discussed.

If only the (BP) states are included in )t(B), the
equations for the baryon mass splitting in the proba-
bility matrix approximation are given by Eq. (9). As
discussed in Sec. IV, the elements of the probability
matrices II~ and III are determined from the coefficients
in the degeneracy-solution wave functions for the x(B).
The coefficients are proportional to the BBI' interaction
constants. In a complete model they are determined
from the bootstrap equations. There is evidence from
special examples that the consistency conditions require
SU3 symmetry in the degeneracy solution. '8 In the
present paper we do not examine the left-hand cut in
order to write self-consistency equations, but simply
assume that a self-consistent degeneracy solution exists,
and that this solution possesses SU3 symmetry. The
coefFicients in the equation for )t(B) may be determined
by substituting ordinary isotopic-spin Clebsch-Gordon
coefficients into Eq. (16) of Ref. 3. We give below the
equation for x(p) as an illustration.

2x(p) = (p~') (f+3'"d)+ (~~+)(2'"f+6'"d)
+ (prl) (3'"f d)+ (X+K') ( —2'"f+6'~'d)—

+ (Z'K+) ( f+3'"d)+ (AK—+) ( 3'"f d)— —

where f and d are given in terms of the interaction angle
8 by the relations,

spin conserving components of the mass-splitting vector,

Di ——(1/160)'"(p+m+ + '+2k.—2Z+—2Z —2Z"),

hs ——(1/32)'i'(p+ri ~ P—)
ha= (1/960)'i'(Z++Z +Z' j9A 3—p 3—n 3—~ 3—) .

The symbol for the baryon j is used to represent
(m,'—ms')/ms', where me' now is set equal to the aver-
age square of the eight baryon masses. An analogous
dednition is made for the E-meson mass vector S. The
expression for 8; is obtained from the corresponding
expression for 6; by making the replacements m —+ p,'
and mo' —+ po', where p, o' is the average square of the
meson masses and a particular j relates corresponding
members of the j3 and I' octets."The equality of the
masses of a particle and antiparticle implies that 52

(as well as the isotopic spin violating components 5s
and Br) is zero. The Okubo sum rule is the statement
all the 5, and 6, except 8~, d ~, and A2 should be zero.

We write the baryon mass-splitting vector 4 as a sum
of two parts, i.e., 4= cL„+4 . The term 4„is defined as
the solution to Eq. (9) when the second-order term Os
is neglected. Thus, A„represents the linear approxi-
rnation to that part of the 8 mass splitting that results
from the I' mass splitting. In the terminology of Sec.
II, cL represents a v-type solution if 4 is zero, and a
0--type solution if 4 is nonzero. The A„and 4 also will
be expressed in terms of the eigenvectors of II~.

It is shown in Ref. 3 that in a linear approximation
to the v-type solution, the Okubo sum rule for the I'
mesons leads to the Okubo sum rule for the baryons.
We neglect all contributions to the experimental 6
vector except the large Okubo-type contribution 6&. We
may then neglect all components of 4„except h&, „and
A2, , The linear approximation to the v-type solution is,

—s (fs ds) (hi +bi)+ (15)l~sd fhs

Ds,„=(15)'i'df(Di „8i)+s/3s,„. —

If 4=1'„+4,is substituted into Eq. (9), the L„and
6 parts cancel and the equation for 4, becomes,

f=3 'i'sine, d=5 'i'cos8. (10) (12)
In order to investigate the solutions of Eq. (9) it is

convenient to express 4 in terms of the eigenvectors of
II&. These eigenvectors have been listed previously by
the author. "The normalized vectors Es, Es, E4, and Er
of Ref. 19 are eigenvectors for all values of the inter-
action angle 8. Two pairs of 8-dependent eigenvectors
exist in the E~-E2 and K~-E6 subspaces. We de6ne 6;
and cL; (i ranges from 1 to 7) by the equations 6,
= (1/8)'i'(cL E;) and ck, =h,E,. For convenience, we
list below the formulas for A~, A2 and 63, the isotopic-

P c;4;,.=Os, (13)

c,=1—(1—ni)a;. (14)

The eigenvalues a, are easily found. They are given

We write 4, as a sum of eigenvectors of II~, i.e.,
A.=P,ck, ,„IIiiL;.= a,A, ,., Equation (12) then be-
cornes

's R. H. Capps, Phys. Rev. Letters 10, 312 (1963); R.. E.
Cutkosky, Phys. Rev. 131, 1888 (1963).' R. H. Capps, Phys. Rev. 134, B460 (1964).

'0 The quantities 6; and S; (i from 1 to 7) are related to the
quantities of Table I of Ref. 19 by the relations,

a;=ms'E~/ms'E0 and S; mp'E;/mp='Eq
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in terms of the interaction angle 0 by the equations, 0.24—
= -(@„+ha~)= -6„„

Go= 84= d f
az= —2d

g + ld2+ sf2~ (4d4+ 15d2f2)1/2

d2+f2~ 1 (f4+ 9d4+ 42d2f2)1/2 (15)

0.20

OI6—

O.I2

where d and f are given in Eq. (10).
The principle discussed in connection with the x-p

example of Sec. IV implies that a cr-type solution in-
volving a large value of ~D;,,

~

is most likely if the
coeKcient c; of Eq. (13) is small. It may be shown from
Eqs. (15) and (10) that for all values of 0, all the
eigenvalues a; associated with mass-splitting are smaller
than one. It is seen from Eq. (14) that the conditions
a, &1 and 0(o.&(1 imply that c;)0, and that the
smallest value of c, corresponds to the largest positive
value of a,. For simplicity, we assume that d, is in the
direction corresponding to the largest possible positive
eigenvalue of any a;. It may be seen from an examina-
tion of Eq. (15) that the largest possible eigenvalue is
a~2+= 6/7, this value occurring when |)=&tan '
(9/5)'/' &53'. We set g=53', the positive sign being
chosen to agree with the experimental fact that the
j=—,'+ decuplet occurs in the representation 10 rather
than 10*.2" The predicted ratio 64,,/22, , then is equal
to (5/9)'/'. LThe ratio /2 2,,/62, may be determined for
any 8, if use is made of the coefficients of h~, „and d 2,„in
Eq. (11), as these coefficients are the elements of II& in
the Et-E2 subspace. j

In order to compare the v-type and 0--type solutions,
we must estimate the value of 0,~, the parameter meas-
uring the relative importance of I' and 8 mass devia-
tions for the position of the 8 poles. In this probability
matrix approximation, the effect of increasing the xnass
of one of the particles in one of the (BP) states is to
decrease the momentum in the dispersion integral
corresponding to that state. The quantity n/ (1 tran)

'—
would be equal to the ratio

( c)/t ) r)q2 )
a/ os' a22Eos j

if this ratio were constant throughout the energy region
of the dispersion integrals )see Eq. (A6) of the Ap-
pendix). Actually, as may be seen from Eq. (6), this
ratio varies monotonically with energy, being equal to
(/4o/2/2o) at threshold, and approaching (p, o2/2/222) at the
high-energy limit. Therefore, we assume that

(/4os/222o2) (err/(1 —rr/ )( (/4o/2/2o) .

If po' and mo' are set equal to the average values of the
squares of the P and B masses, Eq. (16) leads to the

"R.H. Capps, Nuovo Cimento 27, 1208 (1963).

0.08

0.04— r, exp.

ls CP

o.lo
l

0.HR 0.20 0.28

FIG. 1. Okubo-type mass splittings for the baryon octet. The
calculated 6's correspond to 8=tan ' (9/3)'/2.

2' Matts Roos, Rev. Mod. Phys. 35, 314 (1963).
~3 These facts are pointed out by Cutkosky in Ref. 3, where an

extensive discussion of the v-type solution is contained. See also
Ref. 8.

condition, 0.11&a.~(0.26. A reasonable estimate of
O.p is about 0.15 or 0.20.

The values of A~ „and d ~,„corresponding to e~ in the
range. 0.1—0.25 and to 0= tan ' (9/5)'/' are compared
to the experimental values ~~,, ~ and ~2,, ~ in Fig. 1.
The magnitude of the ~2,, that occurs in the self-

generating type of solution cannot be determined if only
first-order terms are calculated. Hence this value has
been chosen so that the total h2 agrees with experiment.
The value hj, , may then be determined from the equa-
tion At, ——(5/9)'262, ,'the calculated sum At ——At, ,
+Et,, is also compared with experiment in Fig. 1. The
experimental values of 5 (used in the calculation of the
&„) and of the &2 and 62 are taken from Ref. 19, and
correspond to the compilation of Roos."

It is seen from Fig. 1 that in the v solution, the pre-
dicted signs of 6» and ~& agree with experiment, and the
predicted ratio At//), 2 is close to the experimental
value. "However, the magnitudes of h~, „and h2 „are
only about half the experimental values. This is con-
sistent with the assumption that the 0 solution cor-
responds to reality. In the present approximation to the
0. solution, the sign of 3 2 cannot be determined, but the
predicted /4/42 ratio is positive and less than one,
though somewhat larger than the experimental value
of 0.21. The calculation is sufficiently crude that we can
only conclude that either solution is consistent with
experiment.

The eigenvalue a~2+ is plotted against 0 in Fig. 2. It
is seen that the peak is fairly broad, so that the require-
ment of large @~2+ does not 6x 8 very precisely. It has
been shown by the author, and by Martin and Wali,
that the experimental observation that the decuplet is
the most attractive j=2+ state of the (BP) type limits
the range of the angle 0.' "The careful calculation of
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0.9—
a)a+(e)

the octet scheme of SU3 is one of the reasons this scheme
is realized in nature. "
B. Remarks Concerning V, D, and I' MuItiylets

0.8

0.7

0.6

0.5

60~ 75~ 90~

I'ro. 2. The large eigenvalue u»+ for Okubo-type mass splitting
of the baryon octet, as a function of 8.

c=1——,'(1—npi) --,'nay, (17)

where 0(n~v (1,and the ratio nr i/(1 ni v) m—easures
the relative importance of V and P mass splitting in the
(PV) states. Since this constant c is greater than —',,
while c»+ for the baryon octet may be as small as 0.2,
the assumption that both the P and J3 mass splittings
are self-generating is consistent with the experimental
fact that the relative splittings are much greater within
the P octet.

The principal difference between the v and 0- solu-
tions for the baryon octet concerns the interaction angle
0. The present investigation suggests that the very
existence of a 0. solution may depend on a large violation
of E. symmetry. It has been pointed out in Ref. 5 that
the requirement of self-generating mass differences may
rule out many group-representation schemes for
strongly-interacting particles completely, as well as
favor a particular type of mass splitting within a
particular scheme. It is conceivable that the large value
of a~2+ that is possible for the baryon multiplet within

~ S. L. Glashow and A. H. Rosenfeld, Phys. Rev. Letters 10,
192 (1963).

Martin and Wali leads to the limits 13'(0(60 .
Glashow and Rosenfeld have used experimental data
to make the estimate 0 35'." It is seen from Fig. 2
that at 8=35' the value of a~2+ is almost as large as the
peak value Puts+(35') 0.77). If 8=35', then the ratio
dr, ,/hs, , is 0.58, and a calculation of curves similar to
those of Fig. 1 leads to essentially the same conclusions
concerning the v and o- solutions.

In Sec. V of Ref. 5, considerations similar to the above
were applied to the P octet, under the assumption that
the P may be represented as (PV) compounds. Self-
generated mass differences of the Okubo type are
favored for this multiplet also. The probability matrix
approximation leads to an equation for the 8; similar to
Eq. (13), with the constant c (for Okubo-type mass-
splitting) given by the formula

In this section we apply the probability matrix
approximation to the V and D multiplets, and also
consider the possibility that the mass differences within
the P octet result from the mass differences within the
8 octet. Detailed calculations concerning the D and V
multiplets have been given previously' ' '; we consider
these multiplets here only to test the validity of the
probability matrix approximation. All isotopic spin
violating contributions to mass splitting are neglected.

Only the (PP) contribution is considered in the
equations for the V poles. We assume that the mass
splitting of the V octet (p, 3II=X*, q) is of the i-type,
and results from the P mass splitting. Calculation of the
V mass splitting is similar to the calculation of the v

solution in Sec. VA; only linear terms need be considered
in order that an approximate answer be obtained. The
degeneracy-solution wave functions may be obtained
by making appropriate P+~ V substitutions in Eq. (4)
of Ref. 1. Since only one type of particle appears in the
(PP) configurations, there is no unknown n parameter;
the probability matrix approximation leads to the
prediction,

(18)

where the 5~ refer to the V octet, and are de6ned
analogously to the 5 of the P octet. It is seen that in this
approximation, an Okubo-type P mass splitting leads
to an Okubo-type V mass splitting. The calculated
values of the ratios (m, '/msr') and (m„'/ms'') that
follow from the experimental P masses are shown in
column 2 of Table I. The corresponding experimental

TABLE I. Vector meson mass ratios.

Ijy /@au

py /pis

(1) Experiment

0.72
0.79—1.33

(2) Prob.
matrix

0.47
1.21

(3) Ref. 4

0.30—0.72
0.98—1.11

2~ To the author's knowledge, the eigenvalues a; occurring in the
(BP) model of the baryons have not been calculated for group-
representation schemes other than the double-octet scheme of
SU8. However, similar constants occurring in the (PV) model of
the Z mesons are evaluated for many group-representation
schemes in Ref. 5. None of these eigenvalues calculated for the
(PV) model is as large as 6/7.

values are given in column 1. LThe ambiguity in the
experimental (m„'/mQ) ratio results from the ambi-
guity in the interpretation of the experimental o~ and p.]
Column 3 contains the results of the detailed calculation
of Ref. 4; in this reference the effects of deviations from
degeneracy in the virtual V multiplet that is assumed
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to transmit the forces, and the effects of deviations from
SU~ symmetry of the interaction constants, are taken
into account. It is seen that the probability matrix
approximation reproduces the most important effects
of the detailed calculation.

We now consider the decuplet poles, neglecting all
coupled configurations except the (BP) configurations.
The Okubo sum rule is simple for the decuplet, i.e.,
0—"*=™*—I'~= I"*—E*, where the particle symbols
refer to the corresponding masses or squares of masses. "
This sum rule, when applied to the known members of
the decuplet ( *, V*, and cV*), is satisfied more nearly
by the masses than by the squares of the masses. If the
fractional deviations of the squares are denoted by D,
the experimental masses listed in Ref. 22 lead to the
results

K.. C. Wali and R. L Warnock, Bull. Am.
(1964), and (private communication).

sr S. L. Glashow and J. J. Sakurai, Nuovo
(1962).

Phys. Soc. 9, 115

Cimento 25, 337

D-. y = (m-. *'—my*')/ey" =0.226,

Dyiv ——(my*' mrs—*')/my" = 0 202..

In view of the difficulty of associating definite masses
with resonances, we do not regard the difference be-
tween these two numbers as significant evidence that
the squares of the masses are not appropriate variables.
We take the average of D™yand Dy~ as the experi-
mental value of the mass splitting, i.e., D, P=0.214.

It is assumed that the decuplet mass splitting is of
the v-type, and results from the P and 8 mass splittings.
Martin and Wali and Wali and Warnock have shown
that the experimental decuplet masses may be repro-
duced from a bootstrap model in which )c(D)= (BP),
and Cutkosky has shown that the Okubo sum rule for
the decuplet follows from its assumed validity for the
P and 8 octets.""Hence we test the validity of the
probability matrix approximation by calculating D and
comparing it with the experimental value. The elements
of the relevant probability matrices may be determined
from the decuplet wave functions given by Glashow
and Sakurai. ' It is easily shown that in this approxi-
mation the magnitude of D is given by the expression

(10)'i'D= (1 n») (5—i—5'"6,)+nD ply p (19)

where 0(neap&1, and the ratio nDp/(1 nDp) measures-
the relative importance of P and 8 mass deviations. If
the values of the ~; and 8~ listed in Ref. 19 are sub-
stituted into this expression, the result is

D=0.145(1—nDp)+0. 220nDp. (20)

This result is not a sensitive function of o.L)~. The
reasonable estimate n~~ 0.2 leads to D 0.16, which
is about 4 the experimental value of 0.214. We conclude
that the probability matrix approximation is fairly
accurate for the decuplet.

Next we consider the P meson poles. Two bootstrap

models that have been proposed for the P mesons are
that they are (PV) states, on the one hand, ' ' or (BB)
states on the other. "It must be emphasized that both
of these models are approximations; since the pxm and
i'm interaction constants are both known to be large,
there is no question about the fact that (PU) and (BB)
states both play appreciable roles in the P-meson wave
functions. However, it may be justifiable to neglect one
of these two con6.gurations when discussing certain of
the P-meson properties. If the P mass splitting is of the
0--type with respect to the meson multiplets, it is
reasonable to neglect the (BB) states in the first
approximation; this approach is followed in Ref. 5. At
present, we wish to make the alternate assumption that
the P mass splitting is of the v-type, and results from
the baryon mass splitting. We write the P-meson,
degeneracy-solution wave function as a sum of two
contributions, i.e., x(P)=xy+xri, where )ty and xir
represent the (PV) and (BB) contributions. We take
the PBB interaction angle to be 8= tan ' (9/5)'~', since
this choice corresponds to the vanishing of the m""
interaction, and is thus particularly favorable for the
hypothesis that the low x-mass results from the low
nucleon mass. The expressions for x~ are,.(-)= (3/7) "(~%+(1/14) "S(»)+a~»

+(3/~)'"(»),
x(n) = (1/&)'"(~'&)+ (1/14)'"(~~)

+(3/14)'"(»)+(4/7)'"(=-=-),
x(&)= (2/7)'"(&~)

+ (1/14)'"(~=)+ (9/14)'"(&-") (21)

It is easily shown from the probability matrix cor-
responding to Eq. (21) that B deviations of the Okubo
types ~~ and ~2 both contribute only to the Okubo-type
P deviation 5i. If use is made of Eqs. (17) and (21) and
the condition that absolute masses may not be calcu-
lated, the equation for 5~ in the probability matrix
approximation may be written in the form,

6r ——(1—p) Qi+ (3/14) p (Ar —5'"d,s),

,'(1 n=py-, )+—,'npy, - (22)

where npy and p are positive numbers smaller than
unity. The constant p depends on the relative impor-
tance of the (BB) and (PV) configurations.

The value of 8~ that results from substitution of the
experimental Ar and As into Eq. (22) is the linear
approximation to the v-type solution for 6&. It is easy to
see that ~5t~ is a monotonically increasing function of

p, so that the upper limit for
~

5r
~

corresponds to p= 1.
If ~~ and ~2 are taken from Ref. 19, this upper limit is
only about 0.14 of the experimental 5~. We conclude that
the P mass splitting is not a likely result of the 8 mass
splitting.

C. N. Vang and E. Fermi, Phys. Rev. 76, 1739 (1946); V.
Miyamoto, Progr. Theoret. Phys. (Kyoto} 28, 967 {1962);Yasuo
Hara, Phys. Rev. 133, 81565 (1964).
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It is sometimes remarked that in the (BII) model of
the P mesons, the ratios of the binding energies of the
m, E, and p do not differ greatly from unity. From this
point of view, it would not seem difficult to construct a
bootstrap model in which the large P mass diGerences
are a result of the 8 mass differences. However, ratios
of binding energies are not very signi6cant quantities
in dispersion relations. Ratios of masses are signi6cant
quantities, but in terms of such ratios the x and g masses
are greatly different in any model. The author believes
that any realistic estimate of the possible effect of the
8 mass differences on the P mass differences must take
into account explicitly the fact that absolute masses can
not be determined by means of the dispersion equations.

VI. CONCLUDING REMARKS

It is shown in Sec. V that the probability matrix
approximation leads to results concerning the mass
splitting within the various strongly-interacting particle
multiplets that are in rough agreement with experiment
and with more detailed calculations in those cases that
have been treated in detail. Application of the proba-
bility matrix approximation is extremely simple;
practically none of the techniques of dispersion theory
are used. Of course, it will be necessary to use more
dispersion techniques than this to obtain accurate
results. The main conclusion of the present paper is that
the many-particle aspect of a universal bootstrap model,
after it is understood, may lead to simpli6cations in the
other aspects of the model. It may not be necessary to
solve all the problems that plague present-day dis-
persion-theoretic treatments of systems of small num-
bers of particles.

In a universal bootstrap model each particle is a
compound of itself and the other particles. It is often
remarked that in such a model, no particle is truly
"fundamental. "However, it does not follow that there
is no reasonable criterion that can distinguish certain
particles as more fundamental than others. For example,
it is reasonable to apply the classi6cation scheme of
Sec. II to the individual multiplets, and de6ne those
multiplets with o.-type mass deviations as fundamental.
The approximate calculations of Sec. V indicate that
the P-meson multiplet probably is fundamental accord-
ing to this definition, the U and D probably are not
fundamental, while the 8 multiplet may be funda-
mental. This definition of fundamentality corresponds
with our intuitive ideas, since the P and 8 multiplets
are the lightest of the boson and fermion multiplets. If
we adopt the picture that only the P and 8 multiplets
are fundamental, we would expect the fractional mass
splitting to be greatest in these multiplets. (The reason
for this eRect is clear in the approximation used in this
paper for the V and D multiplets, since the various par-
ticles in the nonfundamental multiplets are "averages"
of the different pairs of particles in the fundamental
multiplets. ) Furthermore, it is not surprising in this

picture if the Okubo sum rule is more nearly satis6ed
for the fundamental than for the nonfundamental
multiplets.

APPENDIX: MODEL LEADING TO PROBABILITY
MATRIX EQUATION

In this Appendix the probability matrix equation

t Eq. (9) of Sec. IV] is derived in a simple, dispersion
theoretic model. For definiteness we consider the baryon
poles, and consider only coupled states of the (BI')
type. The proton pole, for example, is coupled to the
six states, Ps', m+, Pq, AE+ Z'E+, and Z+EP The
scattering amplitude in the partial wave of the pole is a
matrix T in the space of the coupled channels. At
energies su%ciently high that all channels are open, 1
is related to the unitary matrix S by the equation,
T= (2i) '0 ~(S—1)0 &, where 8'~' is the (non-negative
de6nite) phase-space matrix, diagonal in the repre-
sentation of the physical two-particle states. The
amplitude T may be analytically continued to energies
at which some or all of the channels are closed. As in
Sec. II we make the simplifying assumption that the
pole is a simple pole that occurs at an energy below all
the two-particle thresholds.

The dispersion model used is the simple ED ' model
used in previous references. ' ' In this model the
numerator matrix cV is computed from the Born
approximation, and a once-subtracted dispersion rela-
tion is written for the denominator matrix D. In the
probability matrix approximation, the eRects of devi-
ations from degeneracy on the left-hand cut are neg-
lected, so that the numerator matrix is a constant
matrix Ii multiplied by a function of energy, i.e.,.~V;, =P(&u)F,;. It is assumed that the basic force is
"attractive, " i.e., that P(co) is positive for all values of
cu above the lowest threshold, and that P(a&) is suK-
ciently well behaved at high energies so that the dis-
persion integrals converge.

The unitarity condition for D is Im D = —O.V
P(ru)OIi. The co—ndition that a bound state occur is

that the determinant of the denominator matrix
vanish, i.e.,

(A1)

where oro is the bound-state energy. The exact nature of
the function g(&v', ppp) is not important in the present
discussion, but this function is independent of the
deviations in the masses.

We define the k representation as a representation in
which F is diagonal. Since the eRects of mass splitting
on the left-hand cut are neglected, the transformation
matrix connecting this representation to the repre-
sentation of the physical two-particle states is inde-
pendent of the variations of the P and 8 masses. The
nondiagonal elements of D in k representation are of

'P F, 7acharjasen and C, 7emach, Phys, Rev, 128, 849 (1962).
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the form,

~~ g (~,~o)eI P n. qi2 0

~to g(oo,uo)8' 'F (A4)

Since 8 is a multiple of the unit matrix in the degeneracy
solution, the nondiagonal element 0I, ~ is of 6rst order in
the deviations from degeneracy. All terms in the deter-
minant in Eq. (A1) that contain nondiagonal elements
of D are of at least second order in these nondiagonal
elements. Thus, to first order in the mass splitting, Eq.
(A1) is a product of factors in the k representation, i.e.,

(A2)

We denote by r the value of k corresponding to the
factor that is zero. The matrix 0 is diagonal in the
physical (i) representation, so we express 0„„ in terms
of the 0;;, i.e., 0„„=Z;A „~0;;,where A „;is the orthogonal
transformation matrix connecting the i and k repre-
sentations. It is easy to see that in the degeneracy limit,
A diagonalizes T, so that A„,~ may be set equal to I';,
the probability of the state i in the resonating eigenstate
of T. The bound-state condition may be written

If first-order deviations of the bound-state energy
and of the squares of the masses are allowed, Eq. (A3)
leads to the equation

dIo BI; BI;
d&oo= 2 Ei ~p;~+ dnzP

I ~ (AS)
dooo — & Bpp l9tBp r —o

where the subscript 0 means that all quantities should
be evaluated in the degeneracy-solution limit. The
dependence of I; on deviations of the p and m,~ results
entirely from the dependence of the phase-space factor
8;; on these mass variables. Since 8;; is an increasing
function of the momentum in state i, and the quantities
g(~', ohio), 0,„, and F„ in Eq. (A4) are positive, the
derivatives BI;/BpP and BI;/BmP are negative. The
probability matrix approximation (interpretation of the
quantities II&,;; and II+,;; in Eq. (7) as probabilities,
together with the condition that u~ and np are positive j,
follows directly from Eq. (AS). The ratio of the quanti-
ties nI* and n~ of Eq. (7) is given by

1—Q P;I;=0, (A3) (A6)


