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Extrapolation of Proton Electromagnetic Form Factor*
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We use the assumed analytic properties of the proton electromagnetic form factors G(t) by performing a
conformal transformation to a new variable g such that the form factor is analytic inside the unit circle in the
complex y plane. We 6t the data with power series in g and extrapolate to the circle to find the spectral
function. For both electric and magnetic form factors, we find spectral functions with a broad peak around
625 MeV, and a negative excursion above 1 BeV. We examine the validity of our extrapolation procedure by
tests on several types of artificial data. Our procedure can reproduce a spectral function with a broad peak,
but is not so successful in reproducing a narrow resonance, or a pair of narrow resonances close together.

I. INTRODUCTION

~ lUCLEON electromagnetic form factors' are gen-
erally believed to be analytic functions of the

variable t, the negative squared four-momentum trans-
fer, in the entire t plane except for a cut from some
(positive) ts to infinity. The physically accessible region
for electron-scattering experiments is t real and non-
positive. (See Fig. 1.) The form factor G(t) in the physi-
cal region, which is real, ' can be expressed as an integral
along the cut involving the discontinuity in g(t) across
the cut (or in other words the imaginary part g of G

just above the cut):

We use a subtracted dispersion relation: G(—~) is the
subtraction constant. We wish to use measured form
factors G(t) in a fmite part of the physical region to
obtain the spectral function g(t').

It is well known that Eq. (1) must be written four
times: for the isovector and isoscalar portions of the
electric and magnetic form factors, respectively. In this
paper w'e limit ourselves to the use of measured proton
form factors, since these measurements are at present
much more accurate than those for the neutron. That
is, we deal with the sum of isoscalar and isovector form
factors in G(t) and therefore the sum of isovector and
isoscalar spectral functions g(t'). Physically, the spectral
function is closely related to the mass spectrum of
strongly interacting systems of spin 1,baryon number
and strangeness zero and of appropriate isotopic spin.
Thus, in the isovector case the lowest possible mass is
tp =4p, the threshold for two pions: The isoscalar
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system must have a mass of at least 3 pions and has
tp= 9P~ ~

We shall consider Eq. (1) for the electric and mag-
netic' form factors G~ and G~ for the proton, rather
than the Dirac and Pauli form factors Fi and F2. A
main reason for this choice is that for large values of t

the magnetic form factor G~ is much more accurately
determined by present data than are F& or F2.

Many different workers have used measured form
factors to determine the spectral functions: We shall
review briefly a small part of this work. If we assume
the spectral function to be sharply peaked, g(t') can be
approximated by a delta function at some resonance
position tII, giving a one-pole form for G. Data on g(t'),
can be used to determine both the strength of the reso-
nance and the value of tg. Fubini, 4 and Hofstadter, ' and
Kirson' have found such fits to the data, but only if t&

is as low as 20' ', corresponding to a resonant mass of
about 600 MeV. For example, using the experimental
data for the proton magnetic form factor given in
Table I, Kirson finds a statistically acceptable g' value
of 15.2, for 17 deg of freedom. Ball and Wongr have
argued that this pole can be interpreted as the (iso-
vector) p meson of mass 750 MeV, provided its width is
taken into account. However, this argument does not
apply to the corresponding isoscalar resonance, the cu
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s S. Goto, Nuovo Cimento 27, 1249 (1963).
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meson of mass 790 MeV and extremely narrow width.
It therefore seems clear that a one-pole 6t to current
proton form-factor measurements is not satisfactory if
we require consistency with other experimental evidence
on the position of the pole.

Other workers' ' ' have introduced extra parameters
into the proton's spectral function by assuming that it
could be approximated by two poles. They find that a
two-pole fit (with subtraction constants) can be achieved
with reasonable positions for the two poles. One pole
can be chosen at tg near the p and or resonances while a
second can be chosen at t, to represent the average be-
haviour of the proton's spectral function above 1 BeV.
Kirson and Levinger' 6nd a variety of Gts to the data
for G~ and G~ which are statistically acceptable, i.e.,
the hatched region shown in Fig. 2. The positions of the
two poles cannot be determined from form-factor data
alone. All the fits have the property that the coeS.cient
of the pole in the 250-MeV region (tg=15F ') is
opposite in sign to the coefhcient of the pole in the
1200-MeV region (t,.=40F ') but of the same general
size. The combination of the two simulates a Clementel-
Villi formula for one pole at a lower mass. Kirson' has
made a Qt of this type identifying the higher mass pole
with the p resonance (1020 MeV) and the lower mass
one with a mixture of p and or.

The problem of obtaining the spectral function g(t')
from the measured G(t) is essentially that of using the
analytical form of G )Eq. (1)) to extrapolate from the
physical region (t&0) to the region t)tp. Mos't of the
fits discussed above achieve this by assuming the extra-
polated form to be a sum of delta functions and then
fitting the parameters to the data. This has two draw-
backs. First, the location of and behavior at the thresh-
old is nowhere used in the choice of the extrapolated
form, and therefore we are not using some available
information. Secondly, the extrapolated form depends
in a very nonlinear way on the parameters (positions
and strengths of the poles) which introduces complica-
tions in the statistical 6tting. Specidcally, the param-
eters have to be introduced in pairs, with the result
that while a one-pole 6t may not be quite good enough,
the two-pole its involve one more parameter than the

TABLE I. Data used for proton magnetic form factor. Compila-
tion of proton magnetic form factors G~ and their standard errors,
as of February 1963. The relation between t and q is given in
Eq. (2), using b=2, and tp 2——OF. '

g'= —t
inF ~ Error Ref.

0.0 0.333
1.0 0.240
1.6 0.197
2.0 0.171
2.98 0.118
4.56 0.049
7.0 —0.029
9.0 —0.079

10.0 —0.101
11.5 —0.130
13.0 —0.156
15.0 —0.186
16.5; " —0.206
18.0, i

'—0.226
21.5 ' —0.263
25.0: ' —0.295
30.0 ' '—0.333
35.0 —0.366
40.0 —0.393
45.0 —0.416

2.793
2.508
2.394
2.234
2.034
1.650
1.370
1.130
1.120
1.020
0.930
0.890
0.730
0.640
0.540
0.464
0.382
0.314
0.232
0.238

0.000
0.036
0.025
0.036
0.016
0.099
0.360
0.068
0.045
0.052
0.056
0.052
0.023
0.038
0.022
0.012
0.014
0.012
0.018
0.022

static value
a, b

b
c
d
d
d
e
d
d
d
d
d
d

d, f
'f
f
f
f

a D. J. Driekey and L. N. Hand, Phys. Rev. I etters 9, 521 (1962).
b B. Dudelzak, G. Sauvage, and P. Lehmann, Nuovo Cimento 28, 18

(1963). (We have not used the G~2 values quoted by these authors at
q2 =0.30F~ and q2 =0.49F 2.)

e P. Lehmann, R. Taylor, and R. Wilson, Phys. Rev. 126, 1183 (1962).
d F. Bumiller, M. Croissiaux, E. Dally, and R. Hofstadter, Phys, Rev.

124, 1623 (1961),as analyzed by M. W. Kirson and J. S. Levinger, Phys.
Rev. 130, 1549 (1963).

+ T. J.Janssens, R. Hofstadter, E. B. Hughes, and M. R. Yearian, Bull.
Am. Phys. Soc. 7, 620 (1962).

f K. Berkelman, M. Feldman, R. M. Littauer, G. Rouse, and R. R.
Wilson, Phys. Rev. 130, 2061 (1963).

"W. R. Frazer, Phys. Rev. 123, 2180 (1961); C. Lovelace,
Nuovo Cimento 25, 730 (1962); D. Atkinson, Phys. Rev. 128,
1908 (1962); R. Theis, Cambridge Photon Conference, 1963
(unpublished), and private communication; J. D. L. Zeiler
(private communication).

data can determine. Hence, there is a wide variety of
such fits (see Fig. 2); and the number of parameters
has to be reduced by requiring one pole to occur at the

p mass, in order to tie down the fit.
In the present paper we make use of a different

method of extrapolating which avoids both these difFi-

culties, being linear in the parameters used and explicit1y
making use of the threshold behavior. The technique is
to use a conformal transformation, discussed by many
authors' which transforms the cut t plane to the interior
of the unit circle. The transformed data are then 6tted
by a polynomial in the new variable whose coeKcients
can be used to extrapolate to the spectral function. The
information about the location and nature of the thresh-
old is used in the specification of the transformation (the
extrapolated spectral function automatically vanishes
below tp), and also by an explicit constraint requiring the
slope of g(t') to vanish at tp.

The results of this procedure seem to indicate that
the proton form-factor spectral functions peak fairly
sharply near the p mass and become negative at higher
energies. This agrees very well with the conclusions of
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the two-pole fits, but it is encouraging that at no stage
do we have to reqlife any peaking near the p mass.

Section II contains details of the method of fitting and
the constraints imposed. In Sec. III we apply these
techniques to the data on the proton form factors G~
and G~. Section IV is devoted to the question of the
significance of our extrapolations. Most of our discussion
is applicable to other problems; e.g. , n —p scattering.
The statistical uncertainty is easily assessed, but in
order to obtain some idea of the reliability of the m.ethod
we construct artificial data from known spectral func-
tions and study the results of extrapolating by the same
technique. In the final section we discuss our results for
the form-factor spectral functions and compare with
other fits to the experimental data.

II. EXTRAPOLATION PROCEDURE

The measured form factors give values, for 1&0, of a
function G(t) whose analytic structure is given by Eq.
(1). We introduce a new variable

n= Lb—(1—1/1o)'"j/Lb+ (1—~/~o)'"j,

defining a conformal transformation' which, taking the
appropriate branch of the square root, maps the entire
t plane of Fig. 1 into the interior of the unit circle shown
in Fig. 3. The cut from tp to +~ goe~ into the boundary
of the unit circle, the upper semicircle corresponding to
the upper branch of the cut. The origin goes into the
point (b 1)/(b+1—) which by suitable real choice of b

can be placed on the real p axis anywhere between
—1 and +1. We therefore consider a new function
E(rf) =G(t), which is analytic inside the unit circle, and
can be expanded in a power series

E(r))= P a„r)".
n=O

For real 3)tp Eq. (2) can be written

~= expLik(1) j
cos&= (b'+1—t/to)/(bs —1+t/tp),

and hence

g(t) =ImG(1) =ImE(exp(i()J= P a„sinmg(t). (5)
%~1

Our procedure will be to assume that the power series

(3) can be approximated by a few terms, determine their
coefBcients a„which best fit the data and use these
values in (5) to evaluate g(t).

In discussing the validity of this procedure we have to
be careful to formulate the information we are seeking.
If we were to ask for a point by point quantitative
evaluation of g(t) two serious questions would arise.
Firstly, there is the question of the convergence of the
procedure even if we could determine an arbitrary num-
ber of coeKcients a„. This has been considered in a

FIG. 3.The q plane
for form factors. The
physical region is
along the real axis
from —1 to (b —1)/
(b+1). The cut is
along the upper semi-
circle; angle ( is
given in Eq. (4).
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rather similar situation by Atkinson, "who concludes in
fact that except at higher branch points the procedure
should formally converge. Secondly, there is the question
of the uncertainty introduced into the extrapolation by
taking only a few terms of the series, which are all that
can be determined from present data. It is fairly clear
that, in fact, the error on any given point is liable to be
quite large, and further, that the extrapolated value of g
for any particular value of t may be sensitive to such
things as the choice of the parameter b. However, we
may ask a somewhat weaker question: Does the extra-
polated function reproduce the main qualitative features
of the true spectral functions The qualitative features in
question are such things as dominance by a low-energy
resonance or the lack thereof; change of sign of g(t) in
some energy region, etc. In order to answer this question
we have taken a number of artificial known spectral
functions; used Eq. (1) to calculate a series of values of
G (1) and then introduced random errors so as to simulate
actual data. In Sec. IV we discuss the fits obtained with
such "pseudodata. "For the moment we remark. merely
that the results do seem to bear out the extrapolation
procedure as a qualitative tool. Accordingly we do not
need to consider further the thornier problems of con-
vergence or uniqueness.

The data were fitted by trying to determine the Grst
S coefficients of the power series. This is not necessary
but is the most natural choice for two reasons. Firstly,
these are the terms which are most important for small

~t)~, which is the experimental region. Secondly, the
neglected higher terms correspond to rapidly oscillating
components of the spectral function, which one can hope
mill not be so essential to its main qualitative behavior.

The parameter b was chosen for each set of data so as
to spread the data points about equally on both sides
of the origin in the g plane. This increases the total range
of values of rf while keeping the range of

~
rf

~
as small as

possible, which provides the best determination of the
fewest parameters. If b were chosen so as to make the
data very asymmetric and require larger values of

~ g ~,

a reasonable statistical fit would require a larger number
of coeKcients but as these do not really imply more
information their values would be highly correlated.
Variation of b can greatly change the relation between
the angle $ and t: Although the final fit was made with
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b chosen as indicated above, fits were aiso made with b

varying to conhrm that the general behavior of the
spectral function remained the same.

The data were required to satisfy a linear constraint
at )=0;

G~(0) = 2 ~-'L(&—1)/(f+1)j"=10,
n=o (6)

G,w(0) = Q u.~Db 1)—/(0+1)]"= 2.793,
n=o

where a„~, a ~ are the coefficients for the electric and
magnetic form factors, respectively. A second constraint
was sometimes used: the requirement that the slope of
g(t) vanish at t=ts Lthe function g(t) automatically
vanishes there as is easily seen from Eqs. (4) and (5)].
The requirement of zero slope corresponds to the fact
that there is a centrifugal barrier resisting the generation
of 1 states. This condition is easily expressed as

P tea„=0.
n=l

(7)

It is clearly not a rigorous procedure to apply this con-
dition to the truncated series instead. Furthermore for
the isoscalar part of the form factor to is actually below

threshold. However, the condition

n=1

while not the correct constraint, should help to ensure
that the slope of the extrapolated function does not
behave too erratically near /=to. Fits were made both
with and without this constraint.

The fitting was carried out using standard least-
squares methods, modified to allow the inclusion of the
linear constraints (6) and (8). The modification is
particularly simple in the case of linear constraints; as
it does not seem to be generally known the details are
given in the Appendix. The fits were made with an
increasing number of parameters until the value of y'
stopped to improve. If the experimentally quoted errors
are approximately Gaussian and are independent, then
for a good fit g' should be of the order of the number
of degrees of freedom. As Inight have been expected
from the two-pole fits, the data seem to determine three
free parameters. These can be the coefficients of a cubic
without the second constraint (8) or the coefficients of a
quartic making use of the second constraint. In addition
to watching the behavior of the x', another check on the
correct number of parameters can be obtained from the
behavior of the error matrix. When too many parameters
are used, the parameters are no longer well determined,
and this excessive freedom shows up as a large statistical
uncertainty or "error" on the extrapolated points. It
should be emphasized that this is really the only signifi-
cance which should be attached to these "errors"; they

are definitely rot estim, ates of the expected rms devia-
tion from the true value of the spectral function.

G(—~ )=0.0&0.2G(0), (9)

with fairly large error so as to prevent the extrapolated
value from becoming too large. This can be regarded,
on the one hand, as a check to make sure that the
spectral function is not. too sensitive to the behavior at
physical but inaccessibly large momentum transfers,
and on the other, as a search for possible evidence on the
subtraction constant.

In discussing the results we shall refer to the 6ts as
"free,""constrained, "or "restricted. "Free Gts are those
carried out subject only to the constraint (6) on the
static form factors. Constrained fits are those subject in
addition to the constraint (g) affecting the threshold
behavior of the spectral function. Restricted fits are
those in which the extra data point (9) has been used.

Recent measurements at high values of t support a
restriction such as Kq. (9) on both Gsr and G~. The meas-
urements" at the Cambridge linear accelerator show that
both (real) form factors decrease with increasing q' in
the range 45&q'&125F '; there is no evidence for
"cores" or subtraction constants. The experiment" on

TABS.E II. Goodness of fit versus degree of polynomial. The x'
values are for the fits to the 19 values of G~ in Table I, fitted by
polynomials in g of degree X; p=x'/degrees of freedom.

Free polynomial
x'

147 8.6
13.8 0.86
12.4 0.83
11.8 0.84

Constrained
x'

788 43.7
77.4 4.55
16.2 1.02
12.8 0.85
11.9 0.85

Constrained and
restricted
x'

832 44
77.5 4.3
50.2 2.96
13.2 0.83
12.6 0.84

"We made an error of 0.7 standard errors in the datum for
g'=15F 2; this should have quite a small eRect on the fit.

"K. W. Chen, A. A. Cone, J. R. Dunning, S. G. F. Frank,
N. F. Ramsey et a/. , Phys. Rev. Letters 11, 561 (1963).

'3 M. Conversi, Siena Conference on Elementary Particles,
October 1963 (unpublished); M. Conversi, J. Massan, Th. Muller,
and A. Zichichi, Phys. Letters 5, 195 (1963);K. I.Barnes, Nnovo
Cimento 28, 284 (1963).

III. FITS TO MAGNETIC AND
ELECTRIC FORM FACTORS

We shall now apply the methods discussed in the
previous sections. For the magnetic form factor of the
proton, G~, we use the 19 data points given in Table I.
The magnetic form factors are given" in Table I to an
accuracy of better than 5% for four-momentum transfer
squared q' in the range 0(q'&35F ', and to better than
10% accuracy for the two highest values of q'.

The Gts obtained by using these data tend to give
very large values for the extrapolated value G(t) at
t= —eo (tf= —1). In some cases, therefore, we have
introduced a 6ctitious data point
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TmLz III. CoefBcients for constrained fits to G~. The coeK-
cients e„and diagonal errors ha„ for constrained polynomials
of degree Ã fitted to the G,~ data of Table I.

TmLz V. DiBerent fits to G~ in physical region. Values of the
magnetic form factor G~, and statistical errors AG~ for the
polynomial fits of Table IV.

1.555
4.180—0.065—4.885
2.651

0.012
0.049
0.132
0.410
0.339

1.532
4.320
0.743—6.785—2.423
4.848

0.017
0.091
0.461
1.116
2.792
2.648

1.517
4.279
1.633—4.943—11.00—8.17

15.35

0.024
0.100
1.041
2.232
9.42

13.9
16.11

proton-antiproton annihilation into an electron-posi-
tron pair gives a preliminary upper bound on a linear
combination of Gg' and GQ in the time-like region
q'& —90F ', where the form factors can be complex.
Our fits to the data of Table I are meant to illustrate our
procedure of obtaining the spectral function from a
given set of experimental data. In Sec. V we discuss
work that will be of interest as further data becomes
available.

Throughout this section we use the conformal trans-
formation Eq. (2), for b = 2, and threshold value
tp=4p„'=2. 0F '.

In Table II we examine the values of y' versus degree
lV of the polynomial in g used to 6t the data of Table I.
We also give the ratio

g= g'idegrees of freedom. (10)

TmLz IV. CoefBcients for best fits to G~. CoefBcients a„and
diagonal errors Du„ for different polynomial best fits in p to
magnetic form factors of Table I.

Free cubic
a„Ac„

Constrained quartica„4a
Constrained and
restricted quintic

a„Au„
1.545 0.011
4.235 0.055
0.334 0.102—5.418 0.469

1.555
4.180—0.065—4.885
2.651

0.012
0.049
0.132
0.410
0.339

1.540
4.278
0.471—6.198—0.723
3.253

0.012
0,061
0.127
0.578
0.393
0.535

This ratio p should have a value near unity for a good
fit. There are (19—N) degrees of freedom for the free
polynoinial, and (20-N) for the constrained polynomial.

We see from Table II that in each case g' at 6rst drops
very rapidly with increasing X, and then levels o8 rather
abruptly. For the free polynomial it is obvious that
X=3 is the correct value to use for this type of fit to
the data of Table I. For the constrained polynomial
one might wonder whether le=4 or S=5 should be
used, since the value of y' drops from 16.2 to 12.8. We
argue that X=4 should be used, since the value p= 1.02
is already reasonable, and use of /= 5 gives a large in-
crease in the standard errors of the coeKcients u„. (See
Table 111.) For the constrained and restricted poly-

Constrained Constrained and
Free cubic quartic restricted quintic

t (F 2) Gm b,GM G.v DGM GM AGM

0.960
0.88
0.80
0.72
0.64
0.56
0.48
0.40
0.333
0.320
0.200
0.080

—0.040
—0,160
—0.280
—0.400
—0.520
—0.640
—0.760
—0.880
—1.000

2.00
1.97
1.90
1.79
1.61
1.26
1.01
0.53
0.00

—0.12
—1.56
—3.78
—7.38
13.2

—23.3
—41.5
—78.1

—180
—427

—1958

1.125
1.838
2.372
2.745
2.972
3.070
3.055
2.946
2.793
2.757
2.362
1.883
1.376
0.898
0.504
0.251
0,195
0.392
0.898
1.769
3.062

0.395
0.299
0.219
0.154
0.102
0.062
0.032
0.011
0.000
0.002
0.011
0.012
0.011
0.010
0.008
0.010
0.037
0.085
0.158
0.260
0.398

3.438
3.444
3.442
3.420
3.368
3.278
3.147
2.972
2.793
2.754
2.354
1.887
1.388
0.907
0.503
0.254
0.245
0.579
1.370
2.746
4.847

0.109
0.101
0.088
0.072
0.054
0.037
0.021
0.008
0.000
0.001
0.010
0.012
0.011
0.010
0.008
0.011
0.043
0.108
0.216
0.383
0.623

2.636
2.729
2.860
2.986
3.074
3.103
3.061
2.944
2.793
2.757
2.365
1.882
1.370
0.892
0.505
0.249
0.137
0.149
0.215
0.213

-0.045

0.218
0.197
0.165
0.128
0.092
0.059
0.032
0.012
0.000
0.002
0.011
0.012
0.011
0.011
0.008
0.010
0.032
0.073
0.148
0.290
0,545

nomial, it is clear that we should use Ã= 5. We see that
the data of Table I cover a large enough range and have
sufficient accuracy to determine 3 adjustable parameters
for the free cubic, or constrained quartic. Adding the
restriction Eq. (9) for G(—~) allows the determination
of a fourth adjustable parameter. The fact that we can
fit with p near unity shows that the errors quoted in
Table I are realistic.

Table III illustrates the dangers of introducing more
adjustable parameters than are needed to fit the data
with a value of p near unity. The constrained quartic
fit (%=4) already has appreciable errors in the coeK-
cients a„, particularly for large n. (For brevity we give
here only the noncorrelated errors rather than the
entire error matrix. ) The errors are about I%%uq for small
n, and about 10%%uo for large n. For a constrained quintic
fit to the data, the errors for small e increase by about
a factor of 2 compared to the constrained quartic, while
the errors for large m become quite large. The values of
ap and a1 change very little, and the errors in them
remain small, even when we increase E to 6, since ap
and a& are determined quite accurately by the data in
the region ~g~ (0.1.

Table IV gives the coeKcients for different polynomial
fits to the magnetic form factor, for a free cubic, a con-
strained quartic, and a constrained and restricted
quintic. Again we give only the diagonal errors. We
observe again that ap and a& are quite accurately deter-
mined, and are practically unchanged from one fit to
another. The value of a~ is determined to re)atively
poor accuracy —namely about -'„or 10%%uo of its value.

The sets of values of a„given in Table IV are used
first to give the (real) form factor for real g, and then to
give the imaginary part of the form factor at the cut;
i.e., the spectral function.
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FIG. 4. Fits to the magnetic form factor of the proton, for real
g. The points with errors show the data of Table I; the dashed
curve is the free-cubic fit; the solid curve is the constrained-quartic
fit; and the dash-dot curve is the restricted- and constrained-
quintic fit, See Table IV. The triangles represent new data not
used in the fit.
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FIG. 5. Spectral function for the proton magnetic form factor,
versus mass of the intermediate state in MeV. The dashed curve
is the free-cubic fit; the solid curve is the constrained-quartic fit;
the dash-dot curve is the constrained- and restricted-quintic fit.
See Table VI.

Table V gives the form factor E~(r)) for real rt for the
three different polynomial 6ts of Table IV. The errors
in E~(ri) are found using the complete error matrix.
Thus, there is no error for the static form factor (rt= e)
since the static magnetic moment has been used as a
constraint. In the region —0.4& g&0.333, where there
are accurate experimental data, all three Gts have small
errors (of order 0.01) and agree with each other within
these small errors. Of course, this must be the case, since
all three its have acceptable values of y'. The three 6ts
each show much larger errors, and disagree greatly
(many standard errors of the difference) as we extra-
polate either towards r)=1 (t=te, in the nonphysical

TABLE VI. G~ spectral functions. The spectral function is found
using the coefficients u„ from Table IV for three different fits to
the magnetic form factor. The mass is 280 t'~'; the angle g is found
from t by Eq. (4), for b =2.

Mass

g (deg) (MeV)

0 280
14.1 289
25.8 308
37.3 337
47.5 373
58.1 418
66.1 459
74.6 509
83.3 571
89.9 622
96.1 683

100 718
104 757
106 800
114 903
122 1037
126 1120
129 1217
134 1338
138 1474
142 1647
147 1867
155 2545
164 4000
174 9333
180

Free cubic

g (t) Error

0 0—2.48 0.32—3.18 0.46—2.16 0.44
0.18 0.29
3.32 0.09
5.79 0.19
7.96 0.36
9.37 0.49
9.66 0.52
9.29 0.51
8.84 0.48
8.21 0.43
7.41 0.38
5.36 0.23
2.91 0.10
1.63 0.11
0.38 0.18—0.78 0.26—1.81 0.32—2.65 0.38—3.27 0.41—3.70 0.41—3.03 0.32—1.48 0.15
0 0

Constrained
quartic

g (t) Error

0.—0.09—0.41—0.70—0.41
0.88
2.64
4.99
7.53
8.98
9.90

10.07
9.99
9.64
8.08
5.41
3.76
1.99
0.20
1052—3.05—4.28—5.52—4.82—2.43
0

0
0.02
0.12
0.26
0.37
0.36
0.26
0.10
0.27
0.45
0.59
0.64
0.67
0.67
0.58
0.38
0.25
0.13
0.16
0.30
0.43
0.54
0.65
0.55
0.27
0

Constrained
and restricted

quintic

g (t) Error

0 0—0.46 0.08—1.97 0.35—3.43 0.65—2.75 0.68
0.90 0.35
5.27 0.35
9.93 0.82

13.2 1.1
13.8 1.1
12.6 0.95
11.3 0.78
9.62 0.61
7.66 0.48
3.26 0.57—0.82 0.83

-2.38 0.89—3.47 0.88
-4.05 0.80—4.11 0.66—3.72 0.51—2.99 0.40—1.16 0.50

0.18 0.56
0.39 0.32
0 0

region) or towards g= —1 (t= —~). These results are
also presented in Fig. 4, where we show as circles the
data of Table I, and as triangles taro new Cambridge
Electron Accelerator (CEA) points. "

Table VI and Figs. 5 and 6 show the extrapolations
to the unit circle, to determine the spectral function.
Again, the complete error matrix has been used. We
present the spectral functions both versus the mass of
the intermediate state, 280t'" MeV, and versus the
angle $. The free cubic spectral function (dashed line)
erst dips sharply, then has a broad peak around 600
MeV, and becomes negative again at 1250 MeV. The
constrained quartic (solid line) has only a small dip
near threshold. Again we see a marked but broad peak,
this time at /50 MeV. The spectral function becomes
negative at 1350 MeV. The restricted and constrained
quintic (dash-dot line) shows a dip somewhat above
threshold (angle f about 40') and a peak at 620 MeV.
This peak is the narrowest of the three, with full width
at half-maximum of 300 MeV. The spectral function
becomes negative at 1000 MeV.

We see that the same general feature of a strong peak
around 650 MeV and a negative spectral function above
some 1200 MeV persists in all three 6ts to the magnetic
form factor. In terms of the angle $, the peak is centered
near 90', and has a width decreasing from 55' for the
free cubic to 40' for the constrained and restricted
quintic.

We adopt the same procedures in sting the data for
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TABLE VII. Data used for Gg.

Error Ref.
l.2-

0.30
0.49
0.60
1.00
1.05
1.60
2.00
2.20
2.98
4.0
6.0

10.0
14.0
18.0
25
30
35
40
45

0.302
0.284
0.274
0.240
0.237
0.197
0.171
0.160
0.118
0.072
0.000—0.101—0.173—0.226—0.295—0.333—0.366—0.393

—.0.416

0.970
0.932
0.940
0.885
0.884
0.850
0.784
0.790
0.725
0.696
0.526
0.414
0.365
0.310
0.396
0.359
0.258
0.436
0.000

0.004
0.009
0.006
0.005
0.009
0.010
0.012
0.006
0.022
0.032
0.021
0.020
0.027
0.026
0.037
0.037
0.044
0.073
0.255

a, b
b

a, b
c

b

c
d
e

d, e, f
e
e
g
g
g
g
g

the electric form factor, except that w'e have not made
a restricted fit. Table VIII gives the coefficients a„, and
their errors, for a constrained quartic 6t to the data of
Table VII. The constrained quartic 6t has a p' value of
28.9 for 16 deg of freedom, as compared to a y' value of
61.9 for a constrained cubic 6t, and a y' value of 28.4
for a constrained quintic fit. The data on Gg thus has

15
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a D. J. Drickey and L. N. Hand, Phys. Rev. Letters 9, 521 (1962).
b B. Dudelzak, G. Sauvage, and P. Lehmann, Nuovo Cimento 28, 18

(196').
o P. Lehmann, R. Taylor, and R. Wilson, Phys. Rev. 126, 1183 (1962).
~ K. Berkelman, M. Feldman, and G. Rouse, Phys. Letters 6, 116 (196S).
e J. R. Dunning, Jr., K. W. Chen, N. F, Ramsey, J. R. Rees, W. Shaler

et al. , Phys. Rev. Letters 10, SOO (196S).
f T. J. Janssens, R. Hofstadter, E. B. Hughes, and M. R. Yearian, Bull.

Am. Phys. Soc. 7, 620 (1962).
g K. Berkelman, M. Feldman, R. M. Littauer, G. Rouse, and R. R.

Wilson, Phys. Rev. 130, 2061 (196S).
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F1G. 7. Fit to the electric form factor of the proton, for real q.
The circles show the data of Table VII; the constrained-quartic
fit has coefEcients shown in Table VIII. The shaded region shows
the statistical error of the extrapolation. The triangles represent
new data not used in the fit.

TABLE VIII. CoeKcients for fit to GE. The coefBcients a„
and errors Da„ for constrained quartic fit to the Gg data of
Table VII.

sufhcient range and accuracy to need a 6t with 3 adjust-
able parameters, as w'as the case for the G~ data of
Table I. The large x' value for the constrained quartic
can be ascribed partly to the disagreements among
different laboratories in the measurements, particularly
in the range 14&g2&25F ', and partly to imposing the
static limit Gs(0)= 1.000 as known precisely. We as-
sumed that there were no systematic errors in the data
not included in the quoted standard errors.

Figure 7 gives the values found for the electric form
factor Z's(q), using the coeKcients of Table VIII. The
spread of the curve shows the standard error, found
using the error matrix of the coeKcients. As in the mag-
netic form factor 6t, the error is small (less than 0.02) in
the region where there are good data points, but rapidly
becomes large in the region g& —0.3 (q'&25) where the
data are either inaccurate, or nonexistent. The sub-
traction constant, given by the 6t Gz( —~ ) =5.28&0.83
seems unreasonably large: See the discussion above of
restricted its to G~. The triangles show the new CEA
data" not used in the its.

Figure 8 gives the spectral function for the electric
form factor, using the coefficients of Table VIII. %e
also show the spread in the curve. The spectral function
of G~ is quite similar to that for the constrained quartic
6t to G~ shown in Fig. 5. That is, we see first a small

60 120

Fro. 6. Spectral function for the proton magnetic form factor,
versus angle &. The dashed curve is the free-cubic fit; the solid
curve is the constrained-quartic fit; the dash-dot curve is the
constrained- and restricted-quintic fit. See Table IV.

0.554
1.393
0.784—3.473
1.864

0.008
0.047
0.096
0.487
0.325
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Fzc. 8. Spectral function for the electric form factor of the
proton versus the mass of the intermediate state in MeV. The
constrained-quartic 6t has statistical errors given by the shaded
region. See Table VIII.

N
= P a„'+ P 2u„a cos(e—nz)P.

m 0 num
(12)

Our constrained but nonrestricted fits to G~ and G~,
given in Tables VIII and IV, respectively, give by sub-
stitution in Eqs. (11) and (12)

G'= 27+130= 157,

TABLE IX. Influence of range and accuracy of data. Fits to
arti6cial data of Clementel-Villi form. All use b=1, and 6t data
from pm' to 'g with a free or constrained polynomial of degree E.

dmin

—0.658—0.80—0.6—0.6—0.6—0.92—0.92—0.92

—0.101—0.04
+0.28

0.6 ;

0.6
I

0.6 3
0.92
0.92

Accuracy

EXpa
1%

0.1%
0.1%
0
0.1%
o1%

Type

Constrained
Constrained
Free
Free
Constrained
Free
Constrained
Free

5
5

6
1'

8
10

19.9 1.24
16.0 1.00
17.2 0.95
27.4 1.10
29.0 1.12
53.1 1.67
80.9 2.02
46.0 1.24

a The values of g and the accuracy are the same as for current evperi-
mental measurements of Gm, in Table I.

b p =x~/degrees of f-eedom.

negative dip near threshold, of dubious statistical signifi-
cance. We then see a marked peak at about 700 MeV,
with a width of 470 MeV. The spectral function goes
negative near 1200 MeV.

The experiment" on proton-antiproton annihilation
into an electron-positron pair gives preliminary results
for the total cross section for 2.5 BeV/c antiprotons,
which is proportional to

G'=
j G/(' —(q'/2M')

~

G~~' (11)

At this antiproton energy, q'= —175F ', and —q'/2M'
=3.9, where M is the nucleon mass.

For a form factor G~, we have from Eqs. (3) to (5) for
real coefficients a„

where the first term is
~
Gir

~

'. If we use our restricted G~
fit of Table IV, the second term is reduced dramatica, lly
from 130 to 16. We have not calculated the statistical
errors in these values of G'.

Since the preliminary annihilation experimental re-
sult is G' of order 5, there is further experimental sup-
port (i.e., besides the recent CEA experiments) for
restricted fits to both electric and magnetic form factors.

[Note added ie proof On.e of us (J.S.L.) and C. P.
Wang have made restricted fits to form factor data of
April 1964. The spectral functions are quite similar to
the restricted fit of Fig. 5; and we find agreement with
the preliminary experimental value of G'.j

IV. TESTS WITH ARTIFICIAL DATA

In this section we test the extrapolation procedure
used above for determining spectral functions by apply-
ing the procedure to arti6cial data based on assumed
spectral functions. We use 3 diGerent types of spectral
functions: (i) a single pole, giving a Clementel-Villi form
factor; (ii) two moderately narrow resonances; (iii) a
single very broad peak.

In each case, after assuming the input spectral func-
tion g, (t), we determine the corresponding form factor
G(t), using an unsubtracted dispersion relation. G(t) is
evaluated for 20 or more points in a specified range of
the variable 3, and is converted into "pseudo data" by
adding random errors, of Gaussian distribution and
predetermined rms value, to each point. W'e then choose
value for b for the conformal transformation, fit with
polynomials (free or constrained) in g and extrapolate
to the semicircle to find the output spectral function
g(t) with statistical errors hg.

Let us first examine how the degree S of the poly-
nomial in p depends on the range and accuracy of the
artificial data. We use a delta function at 7.0210 for the
input spectral function, and choose b= 1. The range of
the data in the q plane is given in the 6rst two columns
of Table IX, and the rms percentage error is given in
the third column. We fit both with free and constrained
polynomials, and make an analysis in each case of the
y' value against the degree of the polynomial to deter-
rnine what value of N to use. (See Table II and the
related discussion in Sec. III. This procedure of deter-
mining N is followed throughout this section. ) The
values of N, the corresponding v', and g=x2/degrees of
freedom are given in the last three columns. We see that
reasonable fits are achieved (P near unity) in all cases
except the constrained octic in the next to the last row.

The data of the first row have a range and percentage
accuracy corresponding to the data for G~ given in
Table I. It is of interest to note that both the data of
Table I and of this rom of Table IX are fitted with a
constrained quartic; i.e., this range and accuracy of data
contains enough information to determine 3 adjustable
parameters. The second row gives the range of q for
vahies of momentum transfer attainable by the Cam-
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TABLE X. CoefEcients for 6ts to Clementel-Villi forms. c„' is
the exact coeScient found from the assumed spectral function.
The values of u„and Ae„ for the constrained quartic are for data
of range and accuracy given by the first row of Table IX. The
free decic 6t is for data of range and accuracy given in the last
row of Table IX.

4- B
I
I
I
I
I
I
I
I
I
I
I

I

1

I
I
I
I
I
l
I

0
1
2
3

5
6
7
8
9

10

1.000
0.570—0.815
0.596—0.037—0.543
0.814—0.621
0.074
0.515—0.810

1.000
0.544—1.166—0.030
0.469

0.000
0.062
0.265
0.142
0.249

Constrained quartic
d,u„

Free decic
du„

1.000 0.000
0.572 0.002—0.797 0.006
0.611 0.029—0.249 0.051—0.758 0.117
1.659 0.165—0.031 0.183—1.496 0.229
0.193 0.097
0.468 0.115
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bridge Electron Accelerator, and also assumes improved
accuracy of 1%. This large increase in range and ac-
curacy gives only one additional parameter. In the last
rom of the table we examine data extending to extremely
large negative values of t, and also far into the non-
physical region, with 0.1% accuracy. These data deter-
mine 10 adjustable parameters. The main increase in X
comes from increasing the range of the data.

In Table X w'e give the coefFicients a„, and diagonal
errors Da„ for the constrained quartic and free decic
fits (first and last rows of Table IX). It is of interest
to compare these coefBcients with each other, and also
with the coeKcients a„' calculated from the input spec-
tral function. Namely,

a„'=2(tan)ii+cscbr) sine(~. (13)

Here tz and $z are the positions of the pole, related by
Eq. (4). For our choice Iz ——7.02Is, and b= 1, the angle
$n is 135.6'. The assumed delta function in t gives a
delta function in $, which clearly has Fourier coefficients
proportional to sinn pR, as given above. The factors come
from changing variables from I to $. We see that for low
values of e there is good agreement between a„ for the
output spectral function and a ' for the input spectral
function. However, the agreement becomes poor for the
decic fit for 6&m&10.

Figures 9(a) and (b) show the spectral functions
plotted against angle P for the coefficients given in
Table X.The input spectral function is a delta function,
at angle l:~——135.6', shown in the figure as a vertical
line. In Fig. 9(a) the solid curve shows a Fourier series
with exact coefficients a„', truncated at %=4, while the
dashed line shows the constrained quartic fit to the
pseudodata with coeKcients a . We see that each curve
has a broad peak in the general region of the input
delta function. There are spurious peaks at other angles,
and these spurious peaks are stronger for the con-
strained quartic fit. In Fig. 9(b) we see that the solid
curve for a Fourier series with 10 terms, using the exact

II
l I I0

II/
I I

6040
I

1200 l80

FIG. 9. Spectral functions for one-pole pseudodata versus angle
$. The input delta function is shown by the vertical line near 135'.
The solid curve in 9(a) shows the exact Fourier series truncated
at 4 terms; the dashed curve shows the constrained quartic 6t.
The solid curve in 9(b) shows the exact Fourier series truncated
at 10 terms; the dashed curve shows the free-decic fit. See Table X.

TABLE XI. Single-pole positions and strengths. The pole position
of the input spectral function is given by Eq. (1.5) for resonance
energy tz = 7.018t0.

Input peaks at

135.6'
101.6
52.3'

Output peaks at

127'
96'
69'

coefficients a„' does give a rather narrow peak centered
at the input delta function. The free decic also gives a
narrow peak at a somewhat smaller angle. The spurious
peaks are quite marked for the free decic fit.

All the above results can be interpreted in terms of the
behavior of truncated Fourier series. First, the main
peak becomes higher and narrower as we take more
terms in the series, the width of the peak decreasing
like 180/1V. Second, the spurious peaks are less promi-
nent if we use the exact coefficients a„', since we then
have destructive interference of the terms of the Fourier
series. If we introduce errors, giving coefficients a, the
destructive interference is in general less eRective, and
the spurious peaks become more prominent. Third, there
is a tendency for the coefBcients a„ to give a peak shifted
from the input value towards 90 . This tendency is
exemplified by another treatment of the one-pole arti-
ficial data.
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FIG. 10. Spectral functions for constrained-quintic its to one-
pole pseudodata versus mass of the intermediate state, for three
choices of the parameter b. The solid curve is for b=1; the dashed
curve for b=2, and the dot-dash curve for b=5. The vertical line
shows the input delta function at 750 MeV. See Table XI.

We now treat one-pole data, of range and accuracy
given by the second row of Table IX, and examine the
dependence of the output spectral function on the value
chosen for the parameter b. The case b= 1 gives a con-
strained quintic, as shown in Table IX. Choosing b= 2
or b=5 also gives constrained quintic its. Table XI
shows that as we vary b over this range, the angular
position of the input delta function shifts from 135.6'
to 52.3'. The output spectral function has a main peak
that shifts position over a somewhat smaller range:
namely from 127' for b= 1 to 69' for 6=5. In all 3 cases
here, as in two other cases for b=1 discussed above, the
output spectral function tends to have its peak shifted
towards 90'. We believe that this effect is due to the
tendency of truncated Fourier series to produce a peak
near 90', and the difhculty that a truncated Fourier
series has in producing a peak either near 0 or near
180'. For instance, to produce a peak near 180' and a
zero at 180' the spectral function would have to fall
very rapidly from the peak to the zero. But it is hard
for the truncated series to fall very rapidly; therefore
it is likely that the peak is shifted away from 180', and
towards 90'.

Figure 10 shows the three spectral functions deter-
mined for different choices of b plotted against energy.
The input delta function at 750 MeV is shown as a
vertical line. The three constrained quintic fits to the
same artiicial data, using three different values of b,
each give broad peaks in the general region of 750 MeV.
The solid line for b= 1 peaks at 620 MeV, the dashed
line for b= 2 peaks at 680 MeV, and the dash-dot line
for b=5 peaks at 1000 MeV. Of course, these shifts in
the energy position of the peak correspond exactly to
the shift of angle towards 90' discussed above. The
width of the peaks shown in Fig. 10 is in general agree-
ment with our discussion above for the angular width
of a peak for a truncated Fourier series; e.g. , a 36'
angular width is in fair agreement with the width in
energy of 500 MeV, for the solid curve.

Ke now examine the "resolving power" of our extra-
polation procedure. That is, if we assume a spectral
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FM. 11. Two-resonance pseudodata spectral functions versus
mass of the intermediate state. In 11(a) the input is the solid line,
and the output, or extrapolated fit, is the dashed line. The same
notation is used in 11(b) for a diferent input spectral function,

function consisting of two narrow peaks, how well
separated should the peaks be so that the output
spectral function will also show two peaks? Figure 11(a)
shows as a solid line the input spectral function for two
Lorentzian-shaped peaks of opposite sign located at
750 MeV and at 1000 MeV. (The Lorentzians are
modi6ed to vanish and have vanishing slope at threshold
Io.) The artificial data are chosen for the range

58F—'&t—&0, and is assumed to have 1%%uo accuracy.
We choose b=2.34 to center the data, and 6t with a
constrained quartic. The output spectral function,
shown in Fig. 11(a) as a dashed line, is unsuccessful in
resolving the two peaks. However, it does have a feature
not generally found in fits to one-pole data; namely, at
high energy the output spectral function makes a large
negative excursion. The negative peak is centered at
3000 MeV )far beyond the limits of Fig. 11(a)] and
has a value of —0.61, compared with the positive peak
of 2.0 at 750 MeV. That is, the two input peaks are
not resolved, but the output spectral function has a
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new feature that suggests the presence of some structure
hidden in the main broad peak.

In Fig. 11(b) we plot as a solid line an input spectral
function for which the negative peak is more signi6cant
than in Fig. 11(a).In this case, the output spectral func-
tion is more nearly successful in resolving the two peaks:
namely, the output peaks at 550 and 1150 MeV, while
the input peaks at 650 and 900 MeV. The output is
forced to increase the separation of the two peaks, since
a Fourier series with only 4 terms cannot reproduce the
very sharp variation with angle needed for two peaks
at the input positions.

Finally, we apply our method to data based on the
input spectral function shown as curves in Figs. 12(a)
and (b). This "smooth spectral function" is chosen to
have a peak at 750 MeV, with a width of 840 Me V, and
the threshold behavior of zero slope of our constrained
polynomial Gts. These data are chosen to have the range
and accuracy given by the second row in Table IX, and
we choose b=2. Table XII shows that a constrained

—input
con sfrO Ined

T quartic

IRO 150

TABLE XII. Coefficients for smooth spectral function. The
spectral function is shown in Figs. 12 (a) and (b). roined

IC

ubic

Constrained
~n Du„

0.714 0.002
0.968 0.003—0.224 0.022—0.349 0.018
0.132 0.024

Free

0.714
0.981—0.221—0.455

0.002
0.005
0.021
0.037

18.6
1.10

16.5
0.97

quartic or a free cubic give statistically satisfactory Gts
to the data. (For the one-pole spectral function, data of
this range and accuracy demanded one extra parameter;
i.e., we Gtted with a constrained quintic. ) The coefB-
cients given in Table XII are used to give the spectral
functions shown in Figs. 12(a) and (b). We see that the
dots give output spectral function in very good agree-
ment with the input. The error bars for the dots show
the statistical error in the spectral function for the con-
strained quartic 6t; and in general the dots are within
one standard error of the input value. The output
spectral function for the free cubic is shown as triangles.
These triangles give a spurious negative peak just above
threshold, and also do not Gt the input as well in the
peak region. The threshold behavior shows that using a
constrained polynomial is worthwhile in this case. The
behavior of the cubic in the peak region is due to the
difhculty of 6tfing the peak with only 3 terms in the
Fourier series. Use of a constrained polynomial allows
the determination of a fourth term in a Fourier series,
with a constraint for the coefficients, thus permitting
the output spectral function to have a narrower peak.

It is of interest to examine a11 the above artificial data

500 1000
Moss

(b)

I500

Fzo. 12. Smooth spectral function. The input is the solid curve;
the output constrained-quartic Gt is given by circles with statistical
errors, and the output free cubic is given by triangles. 12(a) is a
plot of spectral function versus angle f; 12(b) is a plot versus mass
of the intermediate state. See Table XII.

again, from the opposite point of view: namely, can we
achieve a statistically successful 6t of the ClementeI-
Villi form? For the 6rst case of artjdcial data based on a
one-pole spectral function, it is clear that the Clementel-
Villi Gt,must succeed. In particular, if we use the lowest
accuracy and lowest range data as given in the first row
of Table IX, we find a statistically acceptable value:of
g'= 21.6 for 18 deg of freedom. The output position of
the pole is t/ts ——6.9&0.12, in good agreement with the
input value of 7.02.

If we use the spectral function of Fig. 11(a),which is
dominated by a fairly broad resonance at t/to=7, we
Gnd that we can 6t with a single pole at 4.9/0. The g'
value of 18 for 19 deg of freedom is excellent by statisti-
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cal criteria, but is slightly larger than the value of 14.5
for 17 deg of freedom, for the constrained quartic fit in
g given above.

On the other hand, consider the two-resonance arti-
6cial data for the spectral function shown in Fig. 11(b).
Here the resonance at higher energy is relatively stronger
than in Fig. 11(a), so that our fits by conformal trans-
formation almost succeed in resolving the two peaks.
Also with our value of b, the spectral function goes
through zero for $ near 90', which is not dificult to
reproduce with a truncated Fourier series. When we try
to fit the data with a Clementel-Villi form, we immedi-
ately fail, since the pseudodata G(/) are not monotonic
in the physical region: G(0) is adjusted to be exactly
unity, while G(—3/o) = 1.27; for more negative t, G falls
monotonically with increasing

~

t ~.
Finally, we attempt a one-pole Gt to artificial data

based on our smooth spectral function of Fig. 12. This
fit is unsuccessful for the range and accuracy chosen
for the data giving g'=187, but would be statistically
acceptable for data of the same range but about 5%%uo

accuracy, instead of the 1% accuracy assumed above.

V. CONCLUSIONS

We now wish to ask what the results of Sec. III allow
us to deduce about the behavior of the proton form-
factor spectral functions g~(t) and gs(t). In particular,
we wish to know what significance we should attach to
the apparent peak below 1 BeV, how con6dent we can
be about its position and width, and how seriously we
should take the change of sign seen above 1 BeV. These
questions are best considered in the light of experience
with pseudodata as discussed in Sec. IV. We should
emphasize that the particular examples quoted in
Sec. IV and referred to here are merely offered as
examples of the behavior of various types of pseudodata.
Our conclusions are in many cases based on a variety of
such examples showing the same qualitative behavior.
In discussing the treatment of actual data in Sec. III,
we shall in general refer only to the magnetic form
factor; the behavior of the electric form factor is
qualitatively the same.

The 6rst question is whether the peak seen in Figs. 5
and 6 is signi6cant. I et us phrase the question in another
way, since g(/) vanishes at 3= to and t= ~ by construc-
tion and thus any spectral function will have a maximum
somewhere. We wish to ask: Supposing the spectral
function were everywhere positive and consisted of a
single very broad peak, would an extrapolation of the
type carried out in Sec. III be likely to yield results of
the type shown in Figs. 5 and 6? Examination of Fig. 12
suggests that this is unlikely —that such a spectral
function would be fairly accurately reproduced. The
good agreement between input and output in Fig. 12 is
perhaps a bit misleading, since the function is well
approximated just by sin). However, it is in fact true
that the peak in Fig. 6 also lies near —',x and it seems
unlikely that all three curves shown would produce a

spuriously narrow peak in the same manner. We there-
fore conclude that the data require a large contribution
to the form factor from a relatively localized region of
the spectral function.

If we assume that there is, in fact, a relatively sharp,
dominant peak, we can then consider its location.
Experience with attempted extrapolations of one-pole
pseudodata indicate that such peaks obtained by extra-
polation are displaced from their "true" positions as
functions of $ towards —,'vr. However, in this case the ob-
served positions are at or near -', m (because of our choice
of b, although the reason for this choice was quite
different) and so are probably near to their true value.
Of the three fits shown in Figs. 5 and 6, probably the
constrained and restricted qlimtic is most plausible. In
discussing the position we must also take account of
the width. A wide peak will behave like a 8 function at
a position below its maximum. It seems clear that an
extrapolation with so few terms can only give an upper
limit for the width as seen in the fits of one pole pseudo-
data. Bearing these points in mind we deduce from our
results that there exists a peak of unknown width (less
than that of 350 MeV shown in the extrapolation) and
position about 625 MeV (f=-,'s) with a considerable
uncertainty (of the order of 150 MeV). This position is
in quite reasonable agreement with the p —~ mixture
assumed in fact to dominate g~".

As regards the negative excursion above 1 BeV, it
seems likely that it is a signi6cant effect. It is true that
a similar behavior is obtained in Fig. 10 when a single
6 function is fitted at about the same mass as the p meson
with b =5. However, in this case, the position of the pole
corresponds to )=69'. In order for a positive peak to
occur at all at such a low angle the dominant term has
to be sin2$, and this causes the negative excursion in
Fig. 10. As pointed out above, the experimental data
indicate a peak at -,'x which would need no even terms at
all, in principle, and in fact they are small. Furthermore,
even in the example where a quintic ht to a pole at the
p mass does introduce a spurious negative excursion it
occurs at an energy appreciably higher than in the
quintic 6t to the experimental data.

We cannot make any strong statements about the
structure of this negative component. If we identify the
main peak with the p and co mesons, it is possible to
speculate whether the p is responsible for the higher
mass negative component. The results shown in Fig.
11(a) based on a spectral function representing roughly
the p —co and @ contributions are quite similar to the
constrained quartic fit achieved for the experimental
data.

The conclusions we can draw about the spectral
function are essentially the same as those obtained by
the two-pole fits to the data discussed in the Introduc-
tion. The dominance of a peak near the p —cv mass and
the change in sign of the spectral function above 1 BeV,
consistent with an appreciable contribution from the
@ meson. We have therefore gained no new information
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by using the full analytic properties of G. However, this
information has been gained without at any stage having
to insert any external assumptions about the nature of
the spectral function, such as the position of the p —~
peak; we are led directly by the data and our extrapola-
tion procedure to infer a low-energy positive contribu-
tion and a higher energy negative one.

Clearly, with better measurements we should be able
to say more about the spectral function. From tbe dis-
cussion of Sec. IV it is clear that increased range is much
more important than increased accuracy: The former
allows more coefficients to be determined, while the
latter merely increases the accuracy with which the
same number can be determined. Increased range is
being provided by measurements at the Cambridge
Electron Accelerator, " and by measurements" of
proton-antiproton annihilation to electron-positron
pairs. It would be possible to express the cross sections
directly as power series in p and 6t them by this method
instead of first deducing form factors. This should im-
prove the accuracy of the fits; as indicated above this
in itself will probably not shed much more light on the
spectral function, but it does mean that measurements
can then be incorporated for values of I, at which there
are not enough data to determine the form factors with
any accuracy. Of course it would be of interest to
examine the isoscalar and isovector spectral functions
separately, as improved neutron data become available.

&iy pi) ~i

E(Gi' ' 'G~) =Q p(Gi' ' 'G~ ', x, ; y, ; s,) .

We define

(A1)

M= —inP= —P lnp(a& az, x, ; y;; s,), (A2)

whose minimum gives the maximum value of I'. We
find this minimum by setting

BM/Ba„=O, r=1, (A3)

O'M
M =M'+Q Aa„Aa„

~r~~s
(A4)

where the superscript 0 indicates the value at the maxi-
mum point.

We set H„= (B'M/Ba„Ba,)0; H is therefore a sym-
metric numerical matrix calculated from the experi-
mental observations. Hence, there must be some or-
thogonal matrix D which diagonalizes H

and let u,' be the values of a„for which (A3) are satisfied.
These are then the best values of the parameters u„, and
the best interpolation or extrapolation for the function
f is f(x,aio. a~0). In order to estimate the error on
this extrapolation we expand M about the point a„';
setting a„=u,0+ha, : to the lowest order
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APPENDIX: LEAST-SQUARES FITS
WITH CONSTRAINTS

We give first a summary of the usual theory of statisti-
cal curve htting. " Suppose we make m measurements
of some quantity y which is a function f(x; a&, . a&) of
one variable x and E parameters a„.The measurements

yi are made at points xi subject to experimental errors
s,. Let p(ei, a&, x,,y;,s~) be the probability of observ-
ing the value yi at the point x;, if the experimental error
is si and the values of the parameters are a~. . uN.
Assuming the observations to be independent, the com-
bined probability that the actual observations should
have occurred depends on the values u» a~ and the

"See, for instance, J. Orear, University of California Radiation
Laboratory Report No. UCRL-8417, 1958 (unpublished), or
M. G. Kendall and A. Stuart, The Ad'vaeced Theory of Statistics
(Hafner Publishing Company, New York, 1962), Vol. 2, Chap. 19.

and we may set b„,= 1/X,'. If we were to choose a new
set of parameters

we would have
b, =P, D„c,

M =M'+Q„(hb, /X„)'

(A6)

( Bg
2- 1l2 —

Bg Bg
—1/2

~g= Q~ Z,Bb„-Bb, Bb,

ag ag '"
b„, '"Bb„8b, (AS)

provided we have been justified in neglecting higher
terms. We could write

P(bi b~) = const expr —g, (d b„/X„)'j
= constll„exp) —(hb, /X,)'$. (A7)

Since I' is essentially the combined probability dis-
tribution for the b„„we conclude that the b, are inde-
pendently Gaussian with mean b,' and rms error ),
Hence, if g(bi b~) is some quantity depending on the
b„ the error in g corresponding to an error hb„ is
(Bg/Bb, )hb„and its rms value is

(Bg/Bb, )(hb„)= X„(Bg/Bb,) .
The over-all rms error in g from its best value g(b 0) is
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Now since b and a are linearly related,

Bg/Bb„= Q g D„'(Bg/Ba() .

Thus, g=g(a, o) with an rms error

gg
—1/2

(~g)= Z
—&& Bc~ Bc~

and if the errors in y are Gaussian,

inp= —Lg a,f„(x)—y;$'/sP.

The constraints are
N

y.=P k „a„d.—=0.

(A15)

(A16)
B&

—' is thus the error matrix associated with the
parameters a.

We now may ask for a similar determination subject
to c constraints.

P~(ay' ' 'ay)=0, a= 1' ' 'C. ; (A10)

This is easily done using Lagrange multipliers p, by
replacing M by M', where

Thus,
N

Q a,f„(x;) y, 2—

M'= Q +2 p-(2 &-a.—d.);
a=1 r

if we «~ne ~N+$ g p$ we can write this compact]y as

and setting

c
M'=M+ Q p.p,

a 1

BM'/Ba, =0, BM'/Bp =0.

(A11)

(A12) where

N+c N+c
M'= Q H„,a„a, +2a„—g,+y',

r, s=l
(A17)

Formally, we may regard M' as being the likelihood
function associated with the E+c free parameters
al aN, p, l p, Accordingly, all of the above analysis
of error can be carried over exactly as before. The
matrix H is an (E+c)X(E+c) partitioned matrix:

f.(x')f.(*')a„= p

0

(A18)
O'M/Ba, Ba, B@~/Ba,

By /Ba, 0
(A13)

r=i . S; s=1 . F' m=1 c. The derivatives are
evaluated at the point determined by (A12). From
(A9) we see that the error matrix associated with the
constrained u's is simply the top X&(E minor of the
matrix H ', since g does not depend explicitly on the p, .

The formulation becomes very simple for linear least-
squares Gts and linear constraints. In this case

(y'is')',

and the solution to (A12) is

N+c
a,'= P (H—')„,u„ (A19)

f(x,a~ a~) = P a„f,(x)
H ' being the error matrix. Thus, we see that the only

(A14) modification necessary to an ordinary linear least-
squares fit is a simple extension of the matrix H.


