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Q'e make a self-contained examination of the ~-x scattering problem on the basis of the S-matrix conjec-
ture, using analyticity, elastic unitarity, and crossing symmetry. The crossing-symmetry relations are derived
without using the double-dispersion relations. The nearest singularity hypothesis is adopted. Inelastic
eBects and distant left-hand singularities are crudely incorporated by means of polynomials. Nearby left-
hand singularities are chosen in such a way the functional forms are correct near the branch point with
unknown parameters. The amplitude so constructed satisfies elastic unitarity exactly in one channel; the
parameters are adjusted through self-consistency conditions derived from crossing symmetry. By use of
the inverse amplitude, we are able to construct simple amplitudes and find solutions by hand calculation.
A p-wave resonance is generated for negative values of X with X ( &0.39. Solutions exhibit the development
of 1=0 s-wave bound states for negative values of X with

~
X &0.44 and of I= 1 P-wave bound states for

negative values of X with ~X~ &0.39. We find the range of X, —0.3&X&0.1, to be self-consistent.

of the original amplitude. Our amplitude, as is generally
the case, will thus satisfy elastic unitarity exactly and
crossing symmetry only approximately. By use of the
inverse amplitude, we keep the problem simple enough
so that we are able to construct nontrivial amplitudes
and find solutions by hand calculations.

~

~

~

~

E wish to make a limited examination of the z-m-

scattering problem which we hope will shed some

light on the conjectures about analyticity and crossing
symmetry made by Chew and Mandelstam. Elastic ~-m-

scattering provides the simplest physical application of
the S-matrix approach. ' We have attempted to make
this article self-contained (we do not attempt, however,
an axiomatic approach), and we hope it will be read by
many who have not yet studied m-z scattering.

In elastic x-x scattering, there are three physical
channels. The amplitude thus describes the same

process in each of the three physical regions of the com-

plex plane. The basic conjecture is that the amplitude
can be continued analytically from one physical region
to another, thus very strong conditions are imposed.
These crossing-symmetry conditions are especially
strong where the three physical regions are close to each
other. The crossing-symmetry relations are derived
without using the double-dispersion relations.

There have been two approaches to practical calcula-
tions: Some emphasize the description of the amplitude
in remote regions of the complex plane, others stress
detailed satisfaction of the conditions in a limited region.
(Note that neither of them explicitly examines inelastic
processes. ) We adopt the latter approach. We wish to
construct an elastic x-m. amplitude satisfying the condi-
tions of analyticity, elastic unitarity, and crossing
synunetry in a limited region of the complex plane. It is
hoped that the information from the nearest singu-
larities leads to estimation of the most important aspects
of the processes.

A simplified description of our procedure is as follows:
We write down an amplitude which manifestly satisfies
the analyticity and unitarity requirement in a single
channel in the low-energy region. By continuation and
crossing symmetry, we then obtain self-consistency con-
ditions which we try to satisfy by adjusting parameters
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I. INTRODUCTION

It is convenient to introduce the invariant variables,

s= (pt+ ps)'=4(V'+I"),
t = (Pr+Ps)'= —2q,s(1—cos8,),

u = (Pt+P4)' = —2g,s(1+cos8,),
where q, is the barycentric momentum of one of the
pions and 8, is the barycentric scattering angle (see
Fig. 1).

With the aid of energy-momentum conservation, s, t,
and I are not all independent but satisfy

(1 2)s+1+u= 4ps

g,s)0 and
) cos8,

~
(1,

which means s) 4p', t&0, and I&0. Similarly, we have
two other sets of physical regions corresponding to two
other reactions: For the reaction (1+3~ 2+4), t) 4p',
s(0, and u(0. For the reaction (1+4—+ 2+3),u) 4u',
s&0, and t&0.

Frc. 1. Pion-pion elastic scat-
tering, m+x —+ ~+a.

(pj, a} (P2, b)
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For the reaction (1+2—+3+4) to be a physical
process, we require



THEORY OF LOW —ENERGY x —m SCATTERING 81325

t a4p2

t 0 u 0
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——s-4p2

for

where

and

q,2)0, I
cos8.

I
&1,

cosg, = 1+(t/2q P),
cos(g„g') =cos8, cosg'+sing, sing' cosP',

dD' = sing'd8'dp'.

Fzo. 2. The Mandelstam diagram for 7l-71- —+ m71..The shaded regions
are the three physical regions.

As was stated before, the discontinuities in the scat-
tering amplitude come from the requirement of uni-

tarity.
The Heisenberg 5 matrix is related to the invariant

amplitude F(s,t,u) by the relation

F (s,t,u)
S/; 8/;+4——xi (2m)454 (p f . p,)— (I 3)

GOyM 2G03M4

and F is now related to the T matrix by

F(s,tiu) = (MiM2(d3Q)4) I T/~ ~ (I.4)

where ~~, ~2 and cv3, cv4 are the energies of the initial and
final pions, respectively. Unitarity expressed in terms of
the T matrix reads

i(fl 7't —&I i) =4~(2~)' Q. (f I
2't

I u)

x(ul &li)&'(p;—p.). (I.5)

This can be rewritten as

Im(fl Tli)=(2~)'2-(fl 7'lu&(ul2'li)8'(p' —p-), (I 6)

and

Im(il Tli) = (2~)' 2- I(ul 2'li& I'8'(p' —p-)
= (1/2') (q,/W, )0,.„(1.7)

where 8', is barycentric total energy, i.e., gs in the
process 1+2—+3+4. The relation (I.7) is the well-

known optical theorem for the forward scattering. From
(I.4) the total cross section is given by

0;.,(s) = (8~/q, Qs) ImF(s, t—u=0). (I.8)

The three physical regions corresponding to the three
channels are well illustrated by the Mandelstam dia-
gram in Fig. 2.

I.et us show that unitarity requires the presence of a
branch cut on the real axis, say, in s for s) 4p, '. Consider
F(s, t—u) at a fixed real t u. Fro—m the basic postulate
of the 5-matrix approach that the amplitude is analytic
except for requirement of unitarity, if the unitarity
relation (I.6) holds in a neighborhood Res&4ti', then
we deduce that F(s, t u) is—real for Res&4p, ' and is
analytic in this neighborhood. Thus, the amplitude
satisfies the general theorem of the reQection property,

F(s*, t—u) =F*(s, t—u). (I.10)

Now because of unitarity, F (s, t —u) has a nonvanishing
imaginary part for s)4ti'. These result that F(s, t—u)
must have a branch point at s= 4p', and it is clearly con-
venient to take the cut on the real axis for s&4y'. The
discontinuity across the cut is

ImF(s, t—u)
= )F(s+ie, t u) F—(s —ie, t —u) j/—2i (I.1.1)

The right-hand cut (physical cut) extends in s from 4tl, '
to ~. It is an accident of the equal mass case that
those branch cuts associated with t and I channels
are coincident. From G-parity conservation in strong
interactions, ' only the production of pairs of pions is
allowed; the threshold for inelastic scattering with two
additional pions occurs at s=16u2(q, '=3ti') on the
right-hand cut and at s= —12p,'(qP= —4y') on the left-
hand cut (see Fig. 3).

Unitarity takes a simple form if we consider the
partial-wave amplitude

1

f&(q, ') =— d(cos8, )p&(cosg, )F(q, ', cosg,). (I.12)
2 ]

If the energy is so low that only the elastic channel is
open, then the elastic unitarity relation for the invariant
amplitude can be written

16pe
Res

1 2gs
ImF (q, ', cosg.)=-

4m- gs
dQ'F*(q, ' cos8')

XF(q, ', cos(8„8')), (I.9)

FIG. 3. Singularities in the complex s plane.

'T. D. Lee and C. N. Yang, Nuovo Cimento 3, 749 (1956).
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Froin (I.9), we obtain

Imf i(q.2) = (2q,/gs)
~ fi(qP) ~

', (I.13)

for q,'&0. Elastic unitarity is satisfied if we write the
partial-wave amplitude as

fi(q, ') = (gs/2q, )e'"&' sinai(s), (I.14)

where the phase shifts are real.
At higher energies, s&16'' or q, '&3@,', the phase

shifts become complex but we can generally specify
unitarity by

Imfi(q ') = (2q /V") If i(q ') I'Ri(q '), (I »)

(see Appendix I).
A (s,t,n) = ip(A'(s, t,u) —A'(s, t,u) ),
B(s,t,u) =-,' (A'(s, t,u)+A'(s, t,u) ),
C (s,t,u) = —-'(A'(s, t,n) —A'(s, t,u) ),

(I.19)

A (s,t,u) =A (s,u, t), s+-+ s
under (I.20a)

B(s,t,u) =C(s,u, t), t&-+t;

where A', A', and A' correspond to the total isotopic
spin quantum numbers I=0, 1, and 2, respectively.

The permutations of s, t, and I give three sets of
simple symmetry properties.

or

where
Im(1/f i(q ') )= —(2q /V's)Ri(q. '), (I 16)

R i(q, ') = o i(total)/o-i(elastic),

A (s,t,u) =C(u, t,s),
under

B(s,t,u) =B(u,t,s),
(I.20b)

t E-+ t;

which is 1 for q,'(3'. The discontinuity of the partial-
wave amplitude across the right-hand cut is thus given
by unitarity (I.15) or (1.16). The discontinuity across
the left-hand cut where q, '& —p,

' is not obtained directly
from unitarity because the unitarity relation cannot be
used for negative values of q,'. However, the fact that
the unphysical cut is associated with the physical
processes of the second and the third channels is a
guiding idea to obtain the discontinuity across the left-
hand cut. Since the amplitude can be continued from
one physical region to another, it is meaningful to dis-
cuss the behavior of the amplitude under a transforma-
tion crossing, which takes us from one region to
another.

By assuming charge independence, Ii may be written
as the sum of three terms,

Il(s, t,u)=A(s, t,u)p, bp.e+B(s&t,u)& fib'

+C(s, t,u)b dhb. , (I.17)

where a, b and c, d are the isospin indices running from
1 to 3 to label the pion-charge degree of freedom of the
initial and final pions, respectively.

It is well known that when there are two or more
identical particles among the four involved in the scat-
tering, the exchange of two identical particles at most
changes the sign of the amplitude. Such an interchange
means switching two of the s, t, I variables, leaving the
third alone. In x-+ scattering, the amplitude is sym-
metric under the exchange of two particles. The physical
significance of crossing symmetry is even clearer if we
introduce invariant amplitudes corresponding to the
well-defined isotopic quantum number I. Using the
three projection operators

p"'=p(ii &2+1)(ii I2—1),
p"' = ——,

' (Ii I2+2) (Ii.I2—1), (1.1g)

p"'=-'(Ii I2+1)(Ii I,+2),
corresponding to the three isotopic spin states I=0, 1, 2,
the three invariant amplitudes in (I.17) can be identified

A (s, t,u) =B(t,s,u),
C(s,t,u) =C(t,s,u),

s~t,
under (I.20c)Q~ Q.

From (I.19), we see that (I.20a) is an expression of the
generalized Pauli principle for the s channel.

A r(s, t,u) = (—1)rA r(s n t) (I.21)

which means that A' and A' are even functions of t—I
or cos8, while A is an odd function which is in ac-
cordance with Bose statistics.

Equations (I.20b) and (I.20c) are similar expressions
of the principle for t and u channels, respectively. To see
this, let us introduce the following invariant amplitudes:

(I.20b) gives

Xp A+B+C,——
Xg ——A —C,
X2=A+C —2B.

(I.22)

X,(s,t,u) = (—1) 'X, (u, t,s) . (I.23)

It is also seen that the third set of syinmetry (I.20c) is
automatically satisfied if (I.21) and (I.23) are satisfied.
Moreover, under (I.20c), the transformation of X,(s, t,u)
gives

where

Ar(t, s,u) = g Xrr, Ar'(s, t,u),
II=O

(I.24)

3
(X»)= p

3

I
2

2

Y
5
6

6

(I.25)

The crossing relation (I.24) is only useful in practice
if the right-hand side or left-hand side is evaluated in or
very near a physical region. There are two cases of
interest: (i) the right hand is in, say, the s channel.
(ii) We are very near all three channels, i.e., near the
maximum symlnetry point s=t=u=-, p, . Let us con-
sider case (i) first. The partial-wave expansion of the
right-hand side of (I.24) does not converge for the
region Res&0, since as soon as s reaches zero, there are
singularities from physical t and I, channels. Analytic
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continuation in s below Res=0 still gives, however, the
function A tr(s) from (I.12). Consider fixed s(0 where
we have two cuts t) 4tr' and u) 4tr' (see Fig. 2). There
will thus occur a discontinuity of A ir(s) for s(0. Some
parts of the two cuts overlap each other below s( —4p, '.
The discontinuity can be easily obtained from the
crossing relation (I.24). From (I.24), we obtain

A'(s, t,u) =g xrr.A'(t, s,u), (I.26)
7/

A'(s, t,u) = (—1)'p x„.A'(u, s, t) ) (I.27)

where (I.27) is obvious from (I.21).It will be convenient
to use (I.26) for s(0 and t) 4tr' and (I.27) for s &0 and
u&4p'. We also notice that approaching the cut from
above in s plane, at fixed negative real part, corresponds
to approaching the physical cut in t plane from below
Lsee (1.37)). For the range of s from 0 to —4/r', the
angular integration ranges over three regions at a fixed
s, from N=O to t=4p, ' where the t channel contributes,
from 1=4',' to N=4p, ' where no singularities occur and
from N=4p, ' to t=0 where the I channel contributes.
Therefore, at a fixed s&0,

ImA i'(s) =-',
A ( t=4ttt2)

d (cos8,)P i(cos8,) ImA r (s, cos8,)+ rz

B(+=4@2)

(&=4P )

d (cos8,)P i(cos8,) ImA'(s, cos8,)

(+=4', )

d(cos8, )Pi(cos8,) ImAr(s, cos8,), (I.28)

where A (t=4tr'), B(u=4p, ') are two points on t= 4tr', u=4tr' for the fixed s, —4p'(s&0, respectively. The second
integral of (I.28) vanishes for —4p,'(s(0. Thus, we have

ImA i'(s) = ——'
ri ( t=4tlt2)

d(cos8, )Pi(cos8,)g Xrr ImAr'(t, cos8,)

—
z (—1)' d(cos8, )Pi(cos8,)g Xrr ImAr'(u, cos8„), (I.29)

where

Remembering

(I.29) can be rewritten

4@2

ImA, '(s) =-
4/8 —4 Qg

cos8i ——1+s/2gP, cos8„=1+s/2q„'.

cos8, =1+t/2g '= —1—u/2g. s,

dt I ~ 1 Xrz/ IIl1A t& COSH'
2q2

4 qs2

+(—1)'
4/8 4' &

du I &
—1— Xrr/ IM.A

'
u~ cosg„. I.30

2g8 I'

Since odd I contains only odd angular momentum states from (I.21), two terms of (I.30) can be combined.

4 qs2

ImA i'(s) =
2gq 4~&

t
dt PJ 1+ P Xrr. ImA'(t, cos8,),

2q 2 rl
(I.31)

or expanding ImAr(t, cos8i) in terms of partial-wave amplitudes,

—4 ett2

ImA i'(s) =
2gq 4p, &

S
dt I'i 1 Xrr 2l' 1 I'~ 1 ImApl' t .

2q 2 r/ )/ 2gt
(I.32)

The series (I.32) can still be used below s= —4p,', if we allow for some cancellations between overlapping parts of
the cuts, which will be possible according to the double spectral representation for s& —32' . 4 If we introduce, in

' G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960). These authors derived (I.25) and (1.34) from the double dispersion
relations.

4 See,
'

for example, Ref. 3, or L. A. P. Balazs, Phys. Rev. 12S, 1939 (1962).
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the physical t channel, the variables

then (I.32) can be rewritten

~= 4(q p+~')
s= —2qP(1 —cos8~),

I= —2qP(1+cos8, ),
(I.33)

—Ce —P

ImA )'(q, ')=-
qs 0

( qp+p ) q, +&l
&(qP)P, I

1+2 IZ &» Z(2f'+1)Pv 1+2
~

ImA ~ '(qP) (I.34)
qP qp )

for q (0. If q is su%ciently close to —p, so that
ImA ~r(qP) in (I.34) may be argued to behave as qP',
then the function ImA~r(q, 2) for qP(p' is well ap-
proximated by the lowest one or two partial waves in
the sum over l'. When q,' is large, the contribution from
many partial waves with relatively small phase shifts
may not be negligible in the sum over l'. Thus, certain
low partial waves which are dominant to the physical
scattering amplitude may not dominate in (I.34) except
for —q,' very close to p2.

Now let us consider the second application of the
crossing relation (I.24). The partial wave expansion
converges in the neighborhood of the symmetry point

$= t=l= 3P, (I.35)

as will the corresponding expansions for channels t and
N. The common region of convergence for both sides of
(I.24) can be denoted by the small triangle in Fig. 2,
bounded by $=0, t= 0, I=0, in which

ss
A (s,s,) = P (21+1)P& ~A&1(s), (I.36)

L=O s—4p')

where s, =4qP cos8, = t u. From (I.21—), even /'s appear
in the sum of (I.36) for even isotopic spin states and
odd 1's for odd isotopic spin state. Under the crossing
$ ~ t, u +-+ u, the new variables t, s~ become

t= ——,'(s—4p')+-', s, ,

s( ——-', (3s—4p')+-', s, . (I.37)

Differentiating X;with respect to $ and s, and evaluating
at the symmetry point, we get

From the oddness of X~ of (I.22), we obtain at the
symmetry point

A'(s=-'p' s =0)—saA'(s=~p' s =0)=0
(I.38)A'(s=-'p' s, =0)=0.

point,
g2A 0 $ g2A 2 9 $2A1

7

8$2 2 8$2 2 8$8z,

$2AO 5 $2A2 3 $2A1

Bs,' 2 Bs,' 2 8$8s,
(I.40)

82A ' 82A 2

—7
82 Bs

82A 0 82A 2

8$2
)

8$

is obtained. Such a process can go indefinitely to give an
infinity of syrrimetry point conditions, keeping in mind
that any even times of differentiations of A' and any odd
times of di6erentiations of A', A' with respect to s,
vanish at the symmetry point. We hope that well inside
the convergence region, very high partial waves can be
neglected so that the higher derivative conditions are
not of practical interest, since we can limit ourselves, at
low energy, to a finite number of partial waves which
satisfy elastic unitarity. Thus, we have obtained from
the crossing synunetry relation (I.24), the relation
(I.34) which holds for Res(0 and (1.38), (I.39), and
(I.40) which hold in the common region of convergence, '
bounded by $=0, t= 0, I=0 in Fig. 2.

In Sec. II, the derivation of the amplitude on the
basis of analyticity, elastic unitarity, and crossing
symmetry is given. The further assumptions that are
made to get numerical answers are discussed.

In Sec. III, our results are compared with those of
others. In doing so, the difference in methods and as-
sumptions used by others are briefly reviewed.

Finally, Sec. IV includes discussions of future applica-
tions of our calculations, and possibility of our ap-
proximation scheme converging toward a unique answer.

II. CONSTRUCTION OF THE PARTIAL-
WAVE AMPLITUDES

The /th partial wave of the total amplitude for a
given isotopic spin state I is given, from (I.11), by

BA' 1 BA0

OSe 2 8$
(I.39)

1

A P(p) =— d(cos8)Pi(cos8)A'(v, cos8), (II.1)
2 ]

' Conditions (I.39) and (I.40) are exactly the same as those of
Proceeding further differentiations, at the symmetry G. F. Chew and S. Mandelstam, Nuovo Cirnento 19, 752 (1961l.
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where
v=g =4$—1,

cos8= cos8, = (t/2q, s)+1=—(u/2q, 2) —1,
and the mass of the pion p, is taken to be unity. We
write, in the elastic region,

A i'(v) = (II.2)
Mi (v) —iLv"+'/(v+1))'1'8(v)

We feel it may be useful not to consider high-energy
contributions explicitly, but to cut o6 at some finite
values of the energy. It is also hoped that sensitive de-
pendence on the cutoG values of the dispersion integrals
is eased by introducing regulated discontinuity func-
tions of F ir(v) across the cuts.

Let us write down integral equations for Fir(v)
applied to the contour C in Fig. 4.

where

Mi (v)=Lv"+'/(v+1) J1'cotbi (v) (II.3)

Cl vs+i 8 p r(v')
Fir(v)= P avvv+ dv

=0 'jf 0 v v —v

for v) 0, and 8(v) is the usual step function. Equation
(II.2) implies the convenience of using the inverse
amplitude. The discontinuity of the inverse partial
wave amplitude across the right-hand cut is given
by (I.16)

( '/ '())=—('"'/+ )'" '(), ( )

for 0(v(3, Air(v) = 1 and a simple calculation gives
where

vM+1 —1
p ~I(v&)

dv
z v™1(v'—v)

Fi'(v')
dv', (II.8)

/
circle

where

2(1—rl(v) cos2 Remi')
E"(")=,

rl'(v)+1 —2rf(v) cos2 Re8,'

.'()=-8()L"'"/(+1)j'"~ '(), (»9)
(II.5) pi'r(v) = —(v' ImA ir(v)/ l

A ir(v)
l
')8(—v —1), (II.10)

qi=max(X, M)) l

v' v' ImA ir(v)

(Im
(v)

(II.6)

where the function ImA ir(v) may be calculated from
the crossing relation (I.34) for v( —1. The proper
threshold behavior of the partial-wave amplitude has
been accounted for in (II.2). Branch cuts extend from
0 to + ~ and from —1 to —~ in v. Let us denote the
inverse amplitude by

Fi'(v) = "/A i'(v). (11.7)

The partial-wave A ir(v) is bounded at infinity in virtue
of (I.14). Fi (v) goes to a nonvanishing constant at
v=0 and shares the same branch points and cuts as
A i (v). We assume in this article that A i has no zero.

-1 0

C

sJ

Res

Fro. 4. Singularities of Fi (v) in the v plane. The contour C is the
one to which Cauchey's theorem is applied.

~ (v)
—e—s Imb ir ( v)

0&rl(v) &1.
The discontinuity of the inverse amplitude across the
left-hand cut is given by

and we have used

1 ImF(x')
dx

ImF(x')
dx'+ P a„'xv. (II.11)

x'"(x'—x)

The last term in (11.8) is the integral over the large
"circle." The actual threshold for inelastic process
occurs at v=3 but generally it is believed that the
inelastic effect is small up to v=10. The upper limit of
the 6rst integral in (11.8) is taken at some value around
v=10 and Air(v) is set equal to 1.pir(v) is regulated by
v~+' where E is an integer such that the integral is
insensitive to the cutoff value R. It is interesting to
notice from (II.9) that the minimum value of such an
integer S is l. The lower limit —I.of the second integral
in (11.8) may be taken from the range of energy values
for which the crossing relation (I.34) converges, as we
have no good, simple way to calculate the left-hand cut
beyond that point. The regulation factor v~+' on pi'r(v)
is introduced for the same purposes as in the first
integral.

The polynomial has qi+1 terms where qi is the larger
integer between Ã and M. The contributions from the
large circle of the contour C of Fig. 4 can always be
approximately absorbed into this polynomial as long as
v is not near to the circle.

In Appendix 8, several cases of inelastic effects are
sketched. Among other things, we consider two types of
inelastic effect: (i) Ei (v) tends to a constant as v ~~.
(ii) Rir(v) blows up, but less rapidly than v'. In these
cases the minimum order of regulation for pir(v) would
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be N=l or l+1, respectively, to eliminate sensitive de-
pendence on Z for large R. As for p&' r (v), its high-energy
behavior is also discussed in Appendix 8, using the
results from Regge theory. However, /et Ns assume that
with the use of 1th orde-r Poly23omial ar3d regulatioe N =M
= l, the amPlitude will be sugcier3tly accurate for ! v!«10
(In particular, we need an accurate representation for

!v! &1 and roughly correct expressions for! v! &5.) Our
severely approximated forms for left-hand discontinuity
and elastic unitarity on the right happen to give con-
vergent integrals with M=1, and for calculational con-
venience, we take E=+~ and L= ——~ although
this is not necessary.

Let us also assume that s ar/d P wa2/es are domirtar3t irt
both direct artd ir3direct cha/3/3els. Then (II.10) can be
approximated to a reasonable accuracy only for v very
close to —1. Since we are assuming that the major part
of the two-pion forces comes from the relative s and p
states of the exchanged pair, the remaining part of two-
pion forces as well as multipion forces may be repre-
sented by the stre/3gth Parameters approximating (II.10)
near v= —1 such that the forms of the discontinuity are

5v+1 —v —1) '/'

!P~ (P) =71=3. (II.13)

In Appendix C, the effect of the p-wave resonance is
included to approximate the left-hand cut forms and the
values of the parameters are calculated by repeating
essentially the same calculation as the one we are about
to explain.

Under the assumptions we made, we get for the two
s waves,

exact there, together with those subtraction parameters
introduced in (II.8). In approximating (II.10) near —1,
the p-wave in the right-hand side of (I.34) is not
contributing much compared to the s waves. The left-
hand cut form is approximated by (I.34) in which s
waves are taken in the right-hand side in such a way
that it has a correct form near v= —1 with a parameter
pi mentioned above. Namely

3v+1 —p —1)'"
p3' ="(p)=Vr=3 2 ! (II 12)

p —v )

v " p' )'/' dv' v
—' —v' —1) 3/2 (3v'+1)dv'

F3'(v) =o/z I' ——
! +V r J'—

3 p'+1) p'(p' p)— P V P

1 1/2 3v+1 —v —1
+3 —

! ! 0(v)+yr 0(—v —1), (I=0, 2) (II.14)
&v+1) P P

and for the p wave,

p2 M( p 1/2 dp p2 —1( 1 1) 3/2 (5 1+ 1)d
~~'='(v) =-~~+/3v —~ I. . . +»—~

3 '1v'+1 v'(v' —v) 2r „k —v' ) p" (p' —p)

( p3 1 1/2

+- —
I I 0()+7
Evy1)

5v+1( —v —1
8(—v —1) . (II.15)

v & —v

The integrals in (II.14) and (II.15) are easily carried out;

v' '" dv' 2/' v=—f(v) =—
I lnr (v+1)'/2+ (r )'"] for v) 0 or v& —1,

2r p v'+1 v'(p' —p) 2r 1v+1

2 p
—p ) '/2 (1+p

tan 'I for —1&p&0,
~&1+p) E —p

'( —v' —1)"' (3v'+1)dp' 2= (»+ 1)fi(v)—v' ) v"(v' —v) Sx
and '(—v' —1) '/' (5v'+1)dv' 2 4

=(5p+1) fi(v) +-—
—v' ) v" (v' —v) 5~ 35m.

where

(II.16)

(II.17)

(II.18)

21 1 v+1 p+1
P lnf (—v —1)'"—(—p)'"j

X'P 3 P P
for P) 0 or v( —1,

21 1 +1 C1+ )'~'
for —1(P(0. (II.19)
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The s-wave phase shifts 801=0
' in the physical region are given by

lj2 2
Mo ="(v)= cotbo '==nr 0=2+, f(v)+yr=os, (3v+1)fr. (v) ——

v 1 5~
' (II.20)

while p-wave phase shift 52' is given by

v3 1/2 2 4v~'='()= cot~' '==+0+ f()+7 (5+1) f.()—+
v 1 Sm. 35m

(II.21)

The p-wave state can develop a resonance behavior for suitable values of nq and P. It appears that a positive nt
and a negative P will produce a resonance in the physical region. It also seems that the magnitude of P is likely to
be the order of 1. The p-wave amplitude obtained from (II.15) can be written in the physical region

A, '(v)

Sv+1( 2 ) 4
v~ —v 1—I'f(v) —I'72

I f~(v) —I+ —&T
I

f)(v)
v k Sw) 35' vy1&

(II.22)

where
vn= rxt/—P=cxrI . (II.23)

O'A p' 5 O'A p' BA g'
=27A 1'+18

v~ 2 gv~ gv

' If we apply Cauchey's theorem to

(II.26)

G 2( )
P Pl (V)

Al'(v) (v —vp) (v —vl) (v —vp) (v —vl)

for the contour C of Fig. 4, Fll(v) turns out, neglecting left-cut
contributions

Fl (v) =kl(vovl)+P4(vpvl)+vf(v)+ppl (v)e(v)2

where f(v) is given by (II.16) and

ill(vovl) = Lvovl/(vo —»)7(f(vo) —f(vl) 7,
122(vovl) = t.f/(vo —vl) 7Lvl(fvl) —vof(vo) 7.

Comparing with (II.15), 122 (vpvl) is identiimd as p. Taking vp ———-„
and varying vl from —1 to —10, hp(vpvl) turns out to be always
order of 1. In the Grst conjecture of the p-wave ~-m resonance on
the basis of nucleon electromagnetic structure, W. R. Frazer and
J. R. Fulco, Phys. Rev. Letters 2, 364 (1956), also took P to be
order of unity. The numerical calculation by B. H. Bransden and
J. W. Morat, of Ref. 13 con6rms this. We are indebted to Dr.
Moffat for informing us of this.

Our amplitudes (II.14) and (II.15) contain seven
parameters of which four are subtraction constants and
three are the strength parameters related to the contri-
butions from the left-hand singularities.

From crossing symmetry, we obtained (I.34) which
relates the physical region of the crossed channels to the
unphysical region of the direct channel, and relations
(I.38), (I.39), and (I.40) between amplitudes at the
maximum symmetry point inside the common region of
convergence of the partial wave expansion. If we con-
sider all higher partial waves than /= 1 to be small, the
crossing syrmnetry relations (I.38, I.39, I.40) give almost
exact relations between s and p amplitudes at the
symmetry point;

A so(v= —-') =~A 0'(v = —-') (II.24)

BAp'/Bv= —2(BAo'/Bv) = —9At', (II.25)

In obtaining the second derivative relation (II.26), a
small effect from d waves has already been included. "

Giving the value of the s-wave amplitude at the
symmetry point as'

Ao( ——') =-'A'( —2) = —5), (II.27)
we get

X -'A so(v= ——') =—'A 02(v= —-', ) . (II.28

Thus, for a given X, the symmetry point conditions
(II.25), (II.26), and (II.28) consist of five independent
conditions. On the other hand, from our construction of
amplitudes, the discontinuity across the left-hand cut is
given by

ImA1 (v) = —Im(A, )
—'/~A2 —'~' (II.29)

in which the parameters are contained. The crossing
relation (I.34) evaluated by inserting our amplitude
(II.14) and (II.15) in the right-hand side, is compared
with (II.29) at some point v= vv near —1, for each of
the three partial waves. Thus, we have enough condi-
tions to determine all seven parameters not counting X,
with one condition left over.

In order to demonstrate how our simple model gives
rather satisfactory results without too much involved
work, an example of the determination of parameters is

briefly sketched in the following. For a given value of X,

(II.28) gives
—1/SR=no+ f(v= ——,')

—Vol:f~(v= —0)+ (2/Sw) j (II 3o)

1/2) =ns+ f(v= ——-', )
—V2Lfr (v= —s)+(2/Sw) j (1131)

7 The d waves in the low-energy region are taken into account as
1 02 —QI =0,2 (S 4=}2,

From (I.40), it follows that
2Aoo 5 (PA(P
8$~ 2 8$~ 8$8$tt

from which (II.26) follows.
Some authors call it the renormalized coupling constant. See

Refs. 3, lo, and 18.
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From the first condition of (II.25),

df d 2 df 2-
(—5X)' —+yp—(3v+1)f1,—— = —2(2X)' —+ps—(3i+1)fr,

JP dv Sx .dp dp Sm
(II.32)

which gives a linear relation between pp and ps or rr p and as. Conditions of (II.29) give, in the vicinity of v = —1.

Imdp'=' '(p) =— »=p, L(»+ 1)/~hl:( —~—1)/ —~1"'

2- s 3m+1( —v —1)'" '
rrl=p, 2+f(i )+yl p, 2 =(»+ 1)fi.(i') —— + yi=p, 2

5~ -
'

i E —vi

(II.33)

from which a relation for yp/ys may be deduced when

(I.34) is used to evaluate ImApr=P '(v) near v= —1, in
the left-hand side of (II.33).When this ratio is compared
with that out of (II.30) and (II.31),keeping in mind the
relation between np and ns from (II.32), we have one
equation to be solved containing only one parameter,
say 0.0, for a given value of X. Thus, the s-wave parame-
ters are completely determined which, in turn, can be
used for the determination of the parameters of the p
wave, using the second condition (II.25), (II.26),
and (II.29).

The range of X values are taken from —0.5 to +0.5.
We find a p-wave resonance is generated for negative
values of X with

l
X

l
(0.39. Our solution for negative 'A

also show strong s-wave attraction for I=0, 3=0 which
may accord with the well-known ABC experiment. It is
very amusing to notice that our solutions exhibit the
development of I=O s-wave bound states for negative
values of X with

l Xl &0.44 and of I=1 p-wave bound
states for negative values of X, with lXl &0.39 but
neither bound states nor resonance for the I=2 s wave.
Table I shows the list of the parameters for values of
from —0.5 to +0.5 and some of the results are plotted
on the Figs. 5 and 6. The consistency of our solution is
shown in Figs. 7 and 8. Scattering lengths are plotted in
Fig. 9. We have enough conditions, in principle, to de-
termine all parameters. The final condition, however, as
illustrated by Fig. 7, does not provide a unique de-
termination of the Anal parameter ). Instead one sees
that 0.1&X& —0.3.

2.0

}.0

0.3

-O.l

III. COMPARISON WITH PREVIOUS CALCULATIONS

okubo" has shown that the s-dominant case of ~-m

scattering corresponds to a conventional Feynman
method with interaction Hamiltonian of the form of

TABLE I. Subtraction constants. Notice that scattering length
a.r=1/or where l=0 for I=0, 2 snd l =1 for 1=1.

-2XMo(v)
2

2.0

1.0

l I l l l l & — v
2 3 4 5 6 7 8

(a)

0.3

O.l

FIG. 5. The two s-
wave phase shifts. Our
results are approximate-
ly the same as those of
Chew, Mandelstam, and
Noyes for [P,

l
(0.3.

0.08
0.10
0.15
0.20
0.25
0.30
0.40
0.50—0.08—0.09—0.10—0.15—0.20—0.25—0.30—0.35—0.40—0.45—0.50

—2.9639
—2.4635—1.7959—1.4617—1.2609—1.1269—0.9593—0.8588

2.0323
1.7543
1.5318
0.8641
0.5298
0.3291
0.1956
0.1006
0.0302—0.0080—0.0658

—6.4787—5.2300—3.5663—2.7356—2.2382—1.9069—1.4932—1.2447
6.0330
5.3393
4.7845
3.1211
2.2908
1.7930
1.4602
1.2214
1.0396
0.8465
0.7771

390.0
255.7898
122.1975
73.1599
53.0
35.8799
21.5400
14.3600

266.8872
204.4493
161.00
59.4699
26.4800
12.3700
5.4400
2.00—0.5700—2.0000—3.5

39.2039
33.6828
28.7884
23.1536
27.6281
15.4024
10.7157
7.7368—174.4035—149.5733—128.9902—80.7574—59.3598—47.7179—40.4750—34.6974—32.3264—43.9904—50.0

l f f I

l 2 3 4 5 6 7 8

(b)

9A. Abashian, N. E. Booth, and. K. M. Crowe, Phys. Rev.
Letters 5, 25g (1960).

~P S. Okubo, Phys. Rev. 118, 357 (1960).
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47rXQ„&„), including only the chain diagrams. Bincer
and Sakita" deduced an inequality relation for ) on the
basis of a dispersion relation for the scattering phase
shift

—0.29 &P«0.15.

Chew and Mandelstam' estimated an inequality relation
for I, from s-dominant solutions, by requiring the ab-
sence of zeros of the denominator function of I=O s
wave, on the negative real axis

~
v~ &10, neglecting,

)L MI

Frc. 8. Imago from
two methods (see
caption of Fig. g) for
~ = —0.1. The two
curves are in good
agreement up to
p ~ 3

-10
I

lnvers
Amplitu

-1 0
0

- -0.05

—-0.10

FIG. 6. Development of
the p-wave resonance for
physically acceptable
values.

1 2

v

-0.08

g -0.1

Crossing
Symmetry

15—

-—lmAO (v -1-e)I o

X

0.5—
se
ude

10

0.3—

0.2—

-0.4 -0.3 -0.2 -0.1
I I I I

0.1—

I I I l

0,1 0.2 0.3 0.4

I

-0.4 -0.3 -0.2 -0.1 0

X

I

O. l 0.2 0.3 0.4

—-0.1

— -0.2

Pro. 9. The scattering lengths as a function of X.

however, contribution from the left-cut singularities,

- -0.3 or

—1.5 &up&1.8,

—0.36 &X &0.3.
— -0.4

- -0.5

Fro. 7. Imd 0'(v = —1.2) from the inverse-amplitude method and
the crossing-symmetry relation (L34) in which our solution is
inserted, are plotted as a function of 'A. The two curves are ap-
proximately equal within —0.3 &X&0.1.

"A. M. Bincer and B. Sakita, Phys. Rev. 129, 1905 (1963).

Bransden and Moffat"" obtained solutions using the
inverse amplitude derived by Moffat' for negative X

with
~

&
~

&0.5 by numerical calculations, but with posi-
tive ), the existence of solutions was not sure for
A&0.25 and for X)0.25, solutions did not exist.

We have varied )I, from —0.5 to +0.5. For all positive

"B.H. Bransden and J. W. Moffat, Nuovo Cimento 21, 505
(1961);Phys. Rev. Letters 6, 708 (1961).

'3 B.H. Bransden and J.W. Moffat, Phys. Letters g, 145 (1962).
'~ J. W. Moffat, Phys. Rev. 121, 926 (1961).
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X, the solutions fail to give p-wave resonances. For
negative ) with ~X~ (0.39 the solutions show p-wave
resonance behavior. It appears also that as the value of

increases, the position of the p-wave resonance

energy moves towards zero energy, and the p wave be-
comes bound for

~

X
~

&0.39. For negative X with

~
X~ &0.44, there occurs a bound state in I=O s wave

which confirms Desai's argument" of the large enhance-
ment by strong final-state s-wave interaction corre-
sponding to the well-known ABC anomaly. ' Our solu-
tions are in good agreement with Regge pole analysis of
x-x scattering" that a strong attractive s-wave potential
might well produce a bound p state.

Although some authors'7 have made an analysis of
~-m. s-wave phase shifts from 7t--X scattering and produc-
tion data to get the values of s-wave scattering lengths,
because of the question of validity of such an analysis,
we feel it is better to say, solely from the existence of the

p resonances, that the solutions for negative A with

~
X

~

&0.3 are all physically acceptable.
The inverse amplitude technique was first applied to

x-m problem by Moffat" and practical calculations were
carried out by Bransden and Moffat. "The left-hand-cut
contributions were obtained by a numerical iteration
scheme keeping s and p waves only in the crossed
channel.

As we have seen in Sec. I, the crossing-symmetry
relation (I.34) may be safely used up to v= —2, how-

ever, below v( —2, the cancellation of the overlapping
singularities is not clear, at the moment. Furthermore,
the crossing symmetry relation (I.34) may be we11 ap-
proximated by certain lower partial waves only when v

is sufficiently close to —1. For larger —v, many partial
waves with relatively small phase shifts may not be
negligible due to the fact that the argument of I'~

ranges from —1 to —~ as explained in Sec. I.Thus, we

feel that using the form of the unphysical cut near
u= —1 with appropriate parameters will not lose the
general character of the problem when we keep just the
lowest partial wave in the crossed channel. The poly-
nomial terms in Moffat's inverse amplitude arise from
consideration of threshold behavior of the amplitudes
near the zero-energy region, while, in our case, the high-

energy contribution is suppressed by the cutoff of the
integrals as well as by the polynomials in which the
contribution from the large circle, the higher partial
waves in the crossed channel and the multipion ex-
change effect are hoped to be absorbed. We emphasize
that the number of the terms in the polynomial is not
necessarily 1+1 for the 1th partial wave as in Moffat's
case, but may vary according to the behavior of the
unphysical cut at higher energies and the behavior of

"B.Desai, Phys. Rev. Letters 6, 497 (1961).
' G. F. Chew, S. C. Frau, tschi, and S. Mandelstam, Phys. Rev.

126, 1202 (1962).
"H. J. Schnitzer, Phys. Rev. 125, 1059 (1962); J. Kirz, J.

Schwartz, and R. D. Tripp, ibuS. 126, '763 (1962). J. Hamilton,
P. Menotti, G. C. Oades, and L. L. J. Vick, ibid. 128, 1881 (1962).

the inelastic factor R ~r (v) as we have discussed in Sec. II
and Appendix II.

Uretsky and Smith" have recently obtained solutions
for pion-pion scattering with the partial-wave dispersion
relation in the Mandelstam representation taking up to
second-order terms of the perturbation series based on
I;«——XP' as the left-hand singularities. They obtained
solutions very similar to those of Chew, Mendelstam,
and Noyes" who used the crossing symmetry relation
(I.34) to estimate the left-hand discontinuities keeping
only s waves in the crossed channel. Both solutions are
obtained from the E/D technique and are characterized
by small p-wave scattering for physically acceptable
values of P, unlike our case. They point out the analogy
of the partial wave dispersions to the Schrodinger equa-
tion of nonrelativistic quantum theory and the analogy
of the left-hand-cut singularity to an interaction Hamil-
tonian, in other words, to a form of the generalized
potential. ' But the analogy is imperfect; in the X/D
method, information as to the existence and uniqueness
of solutions, as we have in the Schrodinger problem, is
almost lacking. The solution may fail to exist if the
X/D solution involves a spurious "ghost" pole not
present in the dispersion relation. A brief examination
by us indicates, however, that our new results are to be
associated with the handling of the left-hand cut and
crossing relations rather than use of 2' ' instead of N/D
methods. A calculation shows that if we change our
procedure and use a two-pole approximation for the
left-hand cut of the p-wave amplitude, then we obtain
a solution similar to the dominant s-wave solution ob-
tained by others using the 1V/D approach. The solutions
obtained by Uretsky and Smith" are based on unitarity
and analyticity conditions but they hope that crossing
symmetry is satisfied, to the extent that the notion can
be meaningful in a perturbation treatment. Their main
interest is to investigate the dynamics of the &d' type
and perhaps to show the similarity in results of this
model to those of the S-matrix approach. However,
there still remain questions on this, "and also the con-
vergence of the perturbation series is not at all clear.
The third-order calculation by Uretsky and Saperstein"
leads a fundamental difference between their results and
those of the S-matrix approach such as an attractive p
state from repulsive s state.

Since they could not get the p-wave resona, nce for
physically acceptable values of X, some have thought to
start with a resonant p wave in the crossed channel.

' K. Smith and J. L. Uretsky, Phys. Rev. 131, 861 (1963).
'9 G. F. Chew, S. Mandelstam, and H. P. Noyes, Phys. Rev. 119,

478 (1960).' A derivative coupling scheme is also shown to be possible in
e-s problem by Y. Miyamoto, Progr. Theoret. Phys. (Kyoto) 24,
840 (1960) and A. V. Efremov, Chou Hung-Yuan, and D. V.
Shirkov, Zh. Eksperim. i Teor. Fiz. 41, 603 (1961) )English transl. :
Soviet Phys. —JETP 14, 432 (1962)]. Our form for the p-wave
amplitude was shown to be associated with L; t, =2m.a(p 8„@p—pp8„@ )' by Miyamoto, while s waves are from L; t =4vrX(@„p~)'.

"A. Saperstein and J. I. Uretsky, Phys. Rev. 133, 81340
(1964).
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Ball and Wong" obtained a four-parameter resonance
form of p wave using the N/D technique not only by
inserting the p resonance in the crossed channel in p-
wave state, but also by replacing the left-cut contribu-
tion by a pole term, in each s-wave state, together with
numerically calculated nearby left-hand cut contribu-
tions up to a cutoff point keeping only s and p waves.
However, their solutions cannot be represented by the
usual two parameter resonance form, and correspond to
a nearby left-hand discontinuity that is an order of
magnitude larger than that estimated by Chew and
Mandelstam, "perhaps due to the fact that they do not
require the second-derivative condition at the sym-
metry point. There are two points which have to be
mentioned. First of all, the P wave $v'/(v+1) j'~' cot3r'
is increasing near the threshold as energy increases. This
is due to the fact that the left-hand discontinuity is too
large as mentioned above. Secondly, their solution
shows a zero in the I= 2 s-wave state amplitude. A zero
in the amplitude is not possible in the present formula-
tion of our inverse amplitude. However, we have de-
veloped the possibility of describing such zeros in the
inverse amplitude formulation using inelastic correc-
tions. This will be reported in a subsequent paper. We
are unable to discuss this point at present.

Balazs'4 made a further simplification of Ball and
Wong's technique: He kept only the p-wave resonant
state both in direct and indirect channels, neglecting all
other states. "The left-hand-cut contribution is replaced
by two-pole terms, according to an argument which
involves interpolating the denominator, hoping the
imaginary part of amplitude at high energy to be
varying very slowly. The p-wave amplitude and its
derivatives obtained in this way with the N/D tech-
nique are compared with those from the fixed mo-
mentum transfer dispersion relation at v= —2 to de-
termine parameters. We have noticed that for physically
acceptable values of X, s waves are very significant, thus
the idea of the bootstrap method should be viewed with
caution. " Moreover, the crossing symmetry relation
near v= —1 is completely neglected in his calculation.
The interpolation of the denominator of the integrand
without considering the inelastic behavior carefully at
high energies should not be overlooked. However, since
his approach was aimed mainly at predicting the p

"J.S. Ball and D. Y. Wong, Phys. Rev. Letters 7, 390 (1961).
2' See footnote of Ref. 15."L.A. P. Baldzs, Phys. Rev. 128, 1939 (1962).
"The philosophy behind the bootstrap method in strong inter-

action is well discussed by M. Udgaonkar, Proceedings of the 1963
Midwest Conference on Theoretical Physics, May 31—June 1, 1963,
p. 65 (unpublished)."F.Zachariasen and C. Zemach, Phys. Rev. 128, 849 (1962)
showed that in some model, large s waves have little effect on the
p wave. However, if one stresses a detailed satisfaction of the con-
ditions in a limited region as in our case, the s waves are playing
an important role. In this connection, it is very interesting to
notice that the s state itself in the crossed channel cannot be
neglected in a self-consistent calculation of the s-wave scattering
by L. A. P. Ba16zs, Phys. Rev. 129, 872 (1963).

resonance, it is possible that it is not necessary to
satisfy conditions in detail in the low-energy region.

In our calculation we have taken the view that the
position and the width and even the existence of the
p-wave resonance need not be put into the formulation,
but that we can determine them through our conditions.
Our work is essentially a one-parameter formulation,
and if we need more subtractions due to the behavior of
left-hand singularities in the higher energy region or due
to the behavior of the inelastic coefficient E~'(v), we can
develop more conditions to determine all except perhaps
one. Eventually, we feel that even this last parameter
might be approximately determined unambiguously.
The possible development of more conditions will be
discussed in the next section.

The strength parameters y~ will approach 1 as the
forms of left-hand cuts become more and more accurate,
namely, by iterating our solutions.

Figure 5 shows that our s-wave results are approxi-
mately the same as those of Chew, Mandelstam, and
Noyes" for

~
X~ &0.3. Figure 6 shows the development

of the p-wave resonance for physically acceptable X

values. As —X increases, the resonance position moves
toward the zero energy. Figure 9 shows the scattering
lengths as a function of X. A weakly attractive p wave
appears when s wave is strongly attractive.

It is very dificult to compare our results with experi-
ment at the moment. But it is still interesting to com-
pare with some of the analysis based on pion-nucleon
scattering data, to give at least a qualitative idea on the
scattering lengths. Schnitzer'~ obtained scattering
lengths

+o=0 5, as ——0.16, ar ——0.07,

using the Chew-Low extrapolation technique. This s-
wave analysis can be fitted by making the choice
X= —0.08 in our solutions, for which we obtain

ao= 0.5, a2= 0.168, ay= 0.0035.

Uretsky and Smith's solutions show for X= —0.09

a0=0.5, ay=0. 17, ay=0.003,

while ours, for this choice of X, are

co= 0.54, a2= 0.189, ay= 0.006.

It becomes most interesting when we compare our re-
sults with those of Ilransden and Moffat's. The p-wave
subtraction constants n&, and P correspond to harv p and
(1/a&) —f(re) —

$&, respectively, in their notation. At
X= —0.1,

B-M: Cp= 0.67, ao= 0.2 Cy= 0.0075,
ours: Op=0.653 Qg=0.209 ay=0.0062.

This tells us that our simple approximation give the
same values of scattering length as the numerical calcu-
lations of Bransden and Moffat without losing the
general character of the problem. Moreover, our simple
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model exhibits the resonance behavior of the p wave for
physically acceptable values of X, (say at X= —0.08,
P~=400 MeV) which one could not get from the
perturbation theory"" or s-dominant solutions of X/D
technique. "

We also mention that our solutions satisfy Shirkov's'7
crossing symmetry condition

which was obtained for the forward scattering direction
under the second crossing symmetry set (I.20b).

We conclude this section by saying that we feel our
simple model gives a physically reasonable answer for
low-energy x-z scattering, but that correct values of the
position and the width of the p-wave resonance will be
predicted only when the left-hand cut and the inelastic
effect are more adequately handled.

IV. CONCLUSIONS AND FURTHER REMARKS

We have constructed the scattering amplitude on the
basis of two essential factors in addition to unitarity,
analyticity and crossing symmetry. First of all, the
partial-wave expansion of (I.36) is terminated at I . In
particular the d waves are neglected in carrying out the
conditions (I.38) and (I.39) while for the relations of
(I.40), the d waves are included in the sca, ttering length
approximation. The estimated d-wave amplitudes are
not so significant as to affect the conditions (I.38) and
(I.39) at the symmetry point. " Secondly, the explicit
consideration of higher energy region (in both positive
and negative directions) is suppressed by using gath
order of polynomial and regulating the integrals as
discussed in the text following (II.11).

We need 3 —+~ to satisfy crossing symmetry com-
pletely in the small triangle of Fig. 2, because of di-
vergence of (I.36) as v —+—1. According to others, there
may be a principle allowing us to adopt a small q~, but
(i) the left-hand-cut prescription is uncertain in all but
the nearby region, (ii) the right-hand cut depends on
unknown inelastic processes. We choose to incorporate
this uncertainty in the polynomial. The better we
handle (i) and (ii), the smaller qi will be needed. Un-
fortunately, we know of no simple prescription as to the
g~ and / . We propose to experiment with increased q~

and increased / . We have not investigated the unique-
ness or convergence problem of our formulation which

~7 A. V. Efremov, V. A. Meshcheryakov, D. V. Shirkov, and H.
Chou, Proceedings of the lg60 Annual International Conference on
bligh-Energy Physics at Rochester (Interscience Publishers, Inc. ,
New York, 1961), p. 279.

"See footnote 7. From the relations (I.40), the two d-wave
constants C =' ' of footnote 7 turn out to be

pe 2

20 8s' '

and

C2
1 1 g2Ap2 g2Apo

100 2 ps' ps'

respectively. At the symmetry point C ~10 and C'~10 5.

is in some sense opposite of Balachandran's problem. '9

Increasing q~ and / will give solutions satisfying
crossing more and more accurately. Thus, we hope these
solutions will converge toward a definite answer, e.g.,
the lower partial waves near threshold will converge to
definite values.

It seems obvious however that this procedure is
practically limited. If we wish to predict higher partial
waves or distant resonances, we will be dealing with tiny
effects in the symmetry point region, e.g., we need to
extend R (explicitly treat inelastic processes) if we hope
to describe higher resonances. Furthermore, although
we have unlimited crossing conditions in the small
triangle, since the higher derivative conditions are more
and more sensitive to higher partial waves, they may
not give any new conditions to lower partial waves.

We remark that instead of fully using all conditions
in our present formulation, we preferred to keep one
parameters X free. The last condition may be used to
select out sensible values of X. Figure 7 shows us that the
I=O s-wave absorptive parts from our solution and
from crossing symmetry (I.34) in which our solution is
inserted, are in good agreement for —0.3&X&0.1.

If we keep the same l but increase q g, then we can use
for example the crossing symmetry (I.20c) in a particu-
lar direction, say, backward. From (I.24), we obtain

with s+3=4p'This rela, .tion shows the symmetry of
singularities around s=2p, '. One can easily see that
Shirkov's crossing relation is a special case of this
relation. "

Future applications of our solutions may be classified
as follows: (i) We increase number of partial waves.
(ii) We increase q i or improve construction of right-hand
and left cuts. In this category: (a) We are working on
an approximate representation of inelastic effects; (b)
we are working on the nearby left-hand cut through the
relation (I.34) by machine calculation, so that we may
not need to increase q& very much in order to obtain
much better amplitude.

We will find our procedure convincing if upon making
an improved evaluation we find similar results.
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APPENDIX A inhnity, in certain cases, 8& becomes m-. Then E& re-

IIsing the projection operators of (I.18) for the mains finite unless 2) ~ 1 and (1—cos23)2)/(1 —ri) ~ 0.
isotopic spin states I=0, 1, and 2, respectively, one can W ' r ( '5) w n "~1 and ( 3 )/
calculate the matrix element (1—rt) ~0

F(s, t,u) =(cdl 2 p")Ar(s, t, u) I ab),
I=O

(A1)
Ri'(v) =—

(8)b r67r)2—+312 &r
(B2)

with

(uII;I b)= —ze;.„
where the antisymmetric tensor t.; & satishes

From (A2) and (A3), we obtain

(Il'I2)(cd)(ab) bcbbad babbcd y

(Il'I2) (cd)(ab) bcd3ab+bcabd6 q

and thus

where 8&=Renoir(v) and br ——1mb&1(v). The asymptotic
(A2) behavior br may now be determined in this case from the

dispersion relation

(A3
1 "L(v'+ 1)/v']'(22) (v') sin23~ (v')A3

dv
7l p v v

1 "L(v'+1)/v']'"(1 —rt(v')
dv

2(v' —v)

+left-hand cut (B3)
(«I p"'I ~b) = l3"b.b,

(«I p"'I~b)= :(3-3- -3"3.),—
(A6)

(A7)

or

A=s(A' —A')

8=-'(A'+A2)
C= ——,'(A' —A')

(A10)

(«I p") Idb)= 2(&..&-bd+3 dbb sb bb d), (A8)

and finally

F(s,t,u) = ,'(Ao A-') 3 63—„+-2'(A +A )3 bbd

—-'(A' —A2)b dbbc, (A9)

which identifies the three invariant amplitudes of (I.19)

apart from subtraction terms. We find that 81 goes to
zero less rapidly than 1/v' so that if N=l+1 the
integral (B1) will converge.

Omnes'2 has shown that the discontinuity of A r(v)/v!
at infinity is determined by the position of the leading
Regge pole at zero total energy ar(0) and not by the
spin of the physical bound states or resonances, for a
partial wave Air(v) of the amplitude A(s, t) which
satis6es the Mandelstam representation and has the
asymptotic behavior of the Regge type (i.e., one Regge
pole behavior). Both discontinuities in ImFqr(v) ' at
v —+ &~ behaves as v '") ' ' up to logarithmic factors
and in fact A 1 (v)/v' —+ va'( ) ' ' when

I
v

I
~cc) for both

real and imaginary parts. Thus,

A'=3A+8+C,
A'=8 —C,
A'= 8+C.

APPENDIX B

(A11)
p I(p) ~ piR r(p) ~ p ar(0)+l+1—

t)
'

(p) —ImF1 (p) & p
—a ( )+ +()1

(B4)

(B5)

It is perhaps interesting to sketch the inelastic effects
in Fir(v) of (11.8). If we were to extend the contour to
infinity on the positive real axis we would have to deal
with the integral

pN+1 cc
p 1(p&)

dv
plN+1 (p~ p)

pN+1 ~ R ir (p')
I

p'/( p'+ 1)])/2

dv', (Bi)v'"—'+'(v' —v)

where Rir(v) is given by (II.5). We consider some
typical cases: If rt =0 at high energy, then R,r(v) = 2 so
that N= l will make the integral (B.1) converge.

Also from the analogy of potential scattering" at

"N. Levinson, Phys. Rev. 73, 1445 (1949); G. Frye and R. L
Warnock, ibid 130, 478 (196.3).

From the Regge pole analysis of Chew, Frautschi, and
Mandelstam "

~'(0)=1, ~'(0)=2, ~'(0)=-2

Thus, we see that the minimum orders of regulation for
(B1) and for the corresponding expression for the left-
hand side is X=M=l, i.e., for I=O and I= j.. For
I=2N=3II=l+1 is needed.

APPENDIX C

It is also interesting to consider the effect of the p-
wave resonance on the values of the parameters. LThe
p wave was neglected on the right-hand side of (I.34).]
From the resonance formula (II.22), we can see that the
actual resonance position is slightly shifted from vz and

"R. O)nnes, Phys. Rev. 133, 81543 (1964).
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given by

1—I'«" ) —«((5 +1)/ )&f ( ) —(2/5 ))—(4/35 )]v
(C1)

Since the effective width from our first calculation is small, we may approximate the absorptive part of the p wave
by the zero width resonance formula,

ImAi'(v) =

vzz —v 1—I'f(v) —I'

I'v)v'/(v+ 1)]'~'

Sv+1 f 2) 4
+I"

v 4 Sod 35m

(C2)

=~1'Pggb(Pg —v) .

Inserting (C2) into (I.34), we notice that there occurs a new cut starting at —P~ —1 due to the P-wave exchange
in the crossed channel,

—v—1 v'+1
ImA P (v(—1)=— dv'P ( 1+2 (Xzp ImA'(v')+ xz2 ImA'(v') )

0 P

6r v+1 Pzz+1
+ Xzi 1+2 Et 1+2 |t(—v —1—Pg)0(Pg) (C3)

P

This behavior of symmetry of singularities about v= —~i (or s= 2) has been shown independently by several other
investigators. "'0 Again, by making severe approximations for the first term of (C3) near v = —1—e for each partial
wave, we repeat the same procedures discussed in Sec. II to determine the parameters. For example, in case of
X= —0.1, we approximate pP(v) by

0.42961 3 +1(——1 "' 1 (——1 "' 1 —y —1)"'-
po"="(v)= +—

I
+—

0.298672 3v k —v 5v( —v 7v —v

po 61IIPg( v+1
i

1+2 0(—v —1—Pg)e(Piz), (C4)
Y2 V k vB

5v+1 —v —1)@' 2v+1tz —v —1
pi'z='(v) =0.1056yz

I +
3v —vi 5v k -vl

37rl'P& tz P &+1 v+1
i

1+2 1+2 8(—v —1—Pg)0(Pzz) . (CS)
v & v &B

Inserting v~=0.83 (=380 MeV) and I'=0.008 (see Table I) into (C4) and (CS), after repeating the same pro-
cedure as in the text with newly obtained P~z(v), we get for X= —0.1,

1/no ——0.661, 1/n2 ——0.206, 1/ni ——0.0059 ) P= —55.3697,

u, =1.3, r=0.018.

We notice that as we improve the left-hand singularities, the magnitude of P becomes smaller' but without much
change of the value of scattering length in both s and p states.


