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Using a simple representation derived from the strip approximation by Singh and Udgaonkar (and re-
sembling the Cini-Fubini approximation), an integral equation can be obtained for the partial-wave ampli-
tude. This can be solved by the S/D method. By making certain approximations, the resulting equations,
when combined with the requirement of self-consistency, lead to simple algebraic equations for determining
the parameters of the p resonance. The only parameter is the width of the strip. This, however, can be cal-
culated by using the Chew-Frautschi principle of maximum strength.

1. INTRODUCTION is the width of the strip. In Sec. 5, methods of calcu-
lating this parameter are discussed. Also, an actual
calculation with somewhat improved approximations
is carried out, in which the principle of maximum
strength' is imposed. This leads to somewhat Inore
complicated equations which, however, are still alge-
braic and can be easily solved to obtain the strip width
as well as the p parameters. These results are completely
independent of any experimental quantity except the
pion mass, which is needed to Gx the energy scale.

S INCE Chew and Mandelstam' 6rst introduced the
bootstrap idea, many calculations have been

attempted in which particle parameters have been
calculated self-consistently. Most of the methods used
are quite dificult to implement in practice, however.
In particular, they often entail the numerical evaluation
of integrals, which usually requires the aid of an elec-
tronic computer. The difhculties become particularly
acute if one attempts multichannel calculations, which
are essential for testing the approximation of keeping
only the lowest intermediate states in the unitarity
condition. It would thus be desirable to 6nd an approxi-
mate approach whose principal feature is the simplicity
of the numerical calculations. This would make it
possible to extend bootstrap calculations to much more
complicated problems.

In the present approach, we shall develop a method
which is particularly amenable to simplifying approxi-
mations. We start from the strip approximation of Chew
and Frautschi. ' Although the same 6nal result can often
be obtained by starting from a partial-wave dispersion
relation with a cutoff, the present approach is valid
even if distant singularities are important. The usual
partial-wave dispersion relation arguments would fail
in this case.

In Sec. 2, the strip approximation is used to obtain a
representation for the partial-wave amplitude, following
a procedure suggested by Singh and Udgaonkar. ' This
representation resembles the Cini-Fubini approxima-
tion. By imposing unitarity, we obtain a nonlinear
integral equation. In Sec. 3, this is reduced to linear
equations by the X/D method. These equations can be
solved by using a pole approximation.

In Sec. 4, the general method is applied to a self-
consistent calculation of the p resonance. By making
certain reasonable approximations, the entire calcula-
tion reduces to the solution of a quadratic equation in
the resonance position. The only remaining parameter

2. THE SINGH-UDGAONKAR REPRESENTATION

For simplicity, we shall consider the scattering of
two spinless equal-Inass particles, although a similar
procedure can be followed for other scattering problems.
If we set the mass p= 1, the Mandelstam representation'
gives

A, (t', s) 1
dt' +-

t' —t x

A„(N', s)
dl I —Q

1
A(s, t) =—

where A(s, t) =invariant amplitude, s= (total energy)',
t = —2t (1—cose), t = (s/4) —1, tt= scattering angle,
n=4 —s—t, A~= t-channel absorptive part, and A, =N-
channe1 absorptive part. The integrals in Eq. (1) can
be defined either in the elementary sense or by con-
tinuation. ' We shall hand it convenient to split each
integral into two portions to give

A t(t')s) 1 "' A„(se',s)
dt' +— dst'

t —t m 4
t' I —Q

1
A(s, t) =—

1 " A, (t', s) 1 " A (I',s)
+ — dt' +— dl'

1t —t x „, I —I
where t1 and N1 are the values which separate the low-
and high-energy regions in the crossed channels. The
regions t&tl and e&N~ are essentially the resonance
regions where two-body unitarity is roughly valid,
while t)t& and N&u& are the high-energy continuum
regions. In other words, t~ and N~ correspond to strip
widths in a strip approximation. '

*Work supported in part by the U. S. Atomic Energy
Commission.
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3. THE N/D EQUATIONS

If we impose the elastic unitarity condition

ImA l(v) = Lv/(v+ 1)]'I'f A l(v) f' (13)

Eq. (10) becomes a nonlinear integral equation. It is
interesting to note that we need Eq. (13) only in the
region 0(v(~1. This is because the region v) v1 has
already been taken into account through the strip
approximation, which means that a large class of in-
elastic effects is automatically included. This should be
contrasted with most methods, where such effects have
to be explicitly put in. Of course, this is true only for
the region v) ~1. Inelastic effects for v(v1 would have
to be inserted if accurate results are desired.

We can solve Eq. (10) in the usual way by the X/D
method. The Uretsky version of this method' gives

determine the D(—el~), we simply evaluate D(v) at
v= —co, to give

n

D(—ol;) =1—P b,H( —ol, , pp, )D(—ol,). (21)
~1

If we set j=1, , e, Eq. (21) represents a set of tt

simultaneous linear equations in the D(—ol;).

4. THE g BOOTSTRAP

%e shall now specialize to the mw problem, assuming
that it is dominated by the I=1, /=1, p resonance at
low energies. ' In this problem, ' Bose statistics imply
that all three channels are symmetric and that A„(t,s)
= (—1) Al(t, s)= (—1)'Al(t, s). If we use the partial-
wave expansion (8) in the t and u channels, Eq. (12)
thus becomes

with

&()=F ()D()

Al(v) =X(v)/D(v), (14)
3prl

Vl(v) = dt,
'

v' )'i'Fl(v')X(v')
(IS)

5 p'+1j p" (v' —v)

1 "' v' '"E(v')
D(v) =1—— dv'

pl p v+1 v —p
(16)

in the region 0(v(v1. The equations can then be
solved exactly to give

n b,.

X(p) = v' Q D(—cp,)
4=1 tp~+ p

and

where we have normalized D to unity at infinity. It is
a straightforward matter to verify that this Jt//D
representation satisfies unitarity in the interval
0(v(vl and has the same singularities as Eq. (10)
elsewhere. ' One approximate way of solving Eqs. (15)
and (16) is to use the pole method. We make the
approximation

n b,
Fl(p)=" Z

t=l (g~+ p

XImA1 ——1 I'1 1 8- — ) 1 —. 22

with

Pllb=—

F, (v) Vl(v) vb,

dv' ImA l(v'),
v'(v'+1)'

(23)

(24)

where v'= (t'/4) —1 and pl= (tl/4) —1= (sl/4) —1. This
threshold approximation can always be justified a
posteriori (see Fig. 2). Mathematically, it just corre-
sponds to the pole approximation of the preceding
section with r1,=1, b= (bl/ppl), and all= po. Since D is
normalized to unity at v= —~, we thus have

Here, prl is the crossing matrix element connecting the
I= 1 state in the 3 channel to a state with isotopic spin I
in the s channel. In our case, ppl=1, pll ——s, and

21

Suppose we approximate Fl(v) in the I= 1, t= 1 state
by its threshold behavior. Then, assuming that higher
waves are unimportant and using Eq. (22),

with

n

D(v) = 1—P b,H(v, ol,)D(—tp,),
1=1

(19)
and

vI &~ 1/2

H(v pp, ) =— dv' —. (20) where
p v'+1 (v'+ pl, ) (v' —v)

X(p) = vb

ReD(v) = 1—bh(v),

h(v) = lim oil ReH(v, pit).

(25)

(26)

This result can be checked by substituting into Eqs.
(15) and (16) and seeing that they are satisfied. To

' J. L. Uretsky, Phys. Rev. 123, 1459 (1961).
Strictly speaking, this is true only if F&(I ) is the integral over

all singularities of the exact Al(v) outside the region 0&v&v~.
From Eq. (10), however, we see that we can always replace this
function by the approximation (11) in the interval 0 &v(v1, which
is the only region where Fl(v) is needed anyway.

If we make the further approximation that h(v) is
linear, with the exact value and derivative at threshold,

9 G. Button, G. R. KalbQeisch, G. R. Lynch, B. C. Maglic,
A. H. Rosenfeld, and M. L. Stevenson, Phys. Rev. 126, 1858
(1962).

'p G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
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FIG. 2. Typical plot
of Vi(v)/(vt'&R) using
Eqs. (22) and (34), with
vg =3. The error in
making the threshoId
approximation (23)
(dashed line) is seen to
be of the order of 15%.
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and use the fact that v~))1, we obtain

h(v) =—L(v,—-', ln4vt)+ v!n4vt]. (27)

function approximation

ImAt(v) =irI'tR3(v —vtt) (34)

Suppose we have a resonance at v= vg. Then

ReD(vIt) = 1—bh (vs) =0,

and the half-width in the v variable is

(28)

into Eq. (24). If the resonance is narrow, a is large, in
which case E 1. The approximation is then equivalent
to treating the resonance as a stable particle.

Therefore, taking R=1, and inserting Eq. (31) into
Eq. (28), we have, using Eq. (27),

I',= L
—X(v~)/Rea'(v~)7= L~v, /ln4v, j. (29)

We can thus find I'~ once we know v~ and v~. To find vg

from Eq. (28), we must evaluate b Now from E. q. (16),
Ima= —fv/(v+1) J"X. Using this together with

Eqs. (14), (25), (26), (27), and (29), we obtain

E(v+ 1)/v3'"(viva)'P t'
ImA t(v) = . (30)

(v —»)'+Lv/(v+1) j(v/v~)'pt'

Let us insert Eq. (30) into Eq. (24). If we assume that
the p resonance is narrow, we can neglect all v' depend-
ence in the integrand except for the term (v' —vs)'.
Everywhere else, we shall set v'= vz. We then have

&=LPttI't~(»+2)l/5»(»+1)7, (31)
where

R= (1/ir)Ltan t((vt —vtt)/vtt)a+tan 'ttj, (32)
and

v ted+2 v], 1
ReD (vtt) = 1—Pt t —-+vtt

——0. (35)
(vtt+1)' ln4vt 2

This is just a trivial quadratic equation for vz, if we
take the strip width v~ to be given. Once vg has been
determined from Eq. (35), P t can be found immediately
from Eq. (29). Some of the results are shown in Table I.
In choosing v~, we have assumed that the strip width
corresponds roughly to the resonance region. Since the
highest known resonance in the irir system is the fe
with v 20," we thus take v~=20. The case v~=40 is
given to show the sensitivity to v&. From Fig. 1 it is
obvious, however, that this sensitivity is reduced if a
more accurate approximation than Eq. (23) were made
for Ft(v).

In both of the cases shown in Table I, the second
solution of the quadratic equation (35) has vz& —1.
This is unphysical and is thus rejected.

(33)tt = (vIt/r, )$(vtt+1)/vtt j't'. » W. Selove, V. Hagopian, H. Brody, A. Baker, and E. Leboy,
Phys. Rev. Letters 9, 272 (1962); J. J. Veillet, G. Hennessy,

Equation (31) is equivalent to inserting the delta H. Bingham, M. 8 loch, D. Drijard et at. , ibid 10, 29 (1963). .
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5. DETERMINATION OF THE STRIP WIDTH

In the above method, the strip widths are arbitrary
parameters. Suppose that in a complete scheme, where
all particle masses are calculated, we set all strip widths
equal. Then as pointed out by Chew, "this width m can
be used to 6x the energy scale, which in any case is
undetermined, since only energy ratios are calculable
in a bootstrap scheme. For instance, if the pion mass
is taken to be unity, we can vary m until the mass of
the pion calculated in, say, the xp problem is also unity.
This determines the value of m.

In a more limited calculation, such as the p bootstrap
of Sec. 4, we cannot calculate zv by this method. How-
ever, it was suggested by Chew" that m couM be Gxed

by imposing the principle of maximum strength. ' In
the simple version of the xw problem given in Sec. 4,
this means that if we continue the E/D equations
together with Eq. (22) to unphysical values of /, then
in the unphysical "state" I=O, /=1, we must have
D( 1)=0. In o—ther words, this "state" must have a
bound state at s= 0. This guarantees that the
Pomeranchuk. Regge trajectory is such that the total
cross section is constant at very high energies.

If we attempt to 6x v& in the calculation of Sec. 4 by
this method, we find that the approximation R= 1 leads
to difficulties. We shall thus use its actual value as given
by Eqs. (32) and (33). This is just a crude way of
bringing in some of the effects of the 6nite width of
the p. i4 Equation (35) is then modified to

vg+2 vi 1
ReD(vg) = 1—PiiR —-+ vie

——0. (36)
(vir+1)' ln4vi 2

Similarly, the condition that ReD( —1)=0 in the

"G. F. Chew (unpublished).
"G. F. Chew, Phys. Rev. 129, 2363 (1963).
'4 Thus, in the calculation of this section, it is found u posteriori

that the b calculated from Eq. (31) differs from the correct value
calculated from Eqs. (24), (25), and (26) by about 30%. On the
other hand, the approximation 8=1 increases the error to about
60%. Nevertheless, for a given v~, this approximation does not
seem to change the self-consistent results in any drastic way, as
can be seen from Table I.

TABLE I. Self-consistent values of the p parameters for given
strip widths T.he experimental mass and width (Ref. 9) are 767
and 120 MeU, respectively.

0.804

20
40
26

3.7
7.3
3.1

2.6
4.5
2.1

Mass
(MeV)

600
800
560

Width
(MeV)

300
410
250

I=O, /=1 "state" leads to

vive+2 vl
ReD( —1)= 1—PpiR —— =0. (37)

(v~+1)' ln4vi 2

To obtain vir, we first write Eq. (37) in the form

vi/ln4vr = —,'+ p(vive+1)s/R(va+ 2)$.
If we substitute this into Eq. (36), we obtain

R= (vir+1)/(vg+2),

which, when inserted into Eq. (39), gives

vi/ln4vi ——vir+-', .

(39)

(40)

(41)

If we now choose a particular value of v~, we can
obtain vg from Eq. (41).Then R can be calculated both
from Eq. (40) and from Eqs. (38) and (32). The self-
consistent value is just the point at which these two
curves of R versus ~» cross. This gives vi=26, where
R=0.804. At this point, v+=3.1 and Eq. (29) gives
I"~=2.1. This corresponds to a mass and half-width for
the p of 560 MeV and 126 MeV, respectively.
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Equations (36), (37), and (32) can now be solved for R,
vg, and vi. Thus, the quantity a in Eq. (32) can be
found by using Eqs. (29) and (33), which give

(38)


