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When using power-series expansions in the coupling constant(s) for the computation of scattering ampli-
tudes in singular potential theory, it is necessary to introduce some cutoff in order to avoid divergences of
the individual terms in this series. In earlier work this was done by cutting off the potential. It is here shown
that the general scattering formalism actually contains an intrinsic limiting operation which makes it
unnecessary to introduce a cutoff as an extraneous computational device. For regular potentials one tacitly
and justifiedly exchanges this operation with another step in the derivations. It is not clear whether such a
"built-in" cutoff procedure also exists in unrenormalizable field theory.

r'( V (r) (
dr & ~

for any c)0, and for which V(r) is bounded for all
r~& c)0. To begin with we consider s-wave scattering.
Let f(k, r) be the required radial wave function for wave
number k which satisfies a suitable boundary condition
near r =0, and which behaves for large r asymptotically
as

f(k,r)~-,'ik 'Le ""—$(k)e'""). (1.2)

For more detailed definitions see Sec. 2. In terms of the
Jost function4 f(X; k,r), where X denotes the strength
of the potential, Eq. (1.2) may be rewritten as

1. INTRODUCTION

ECENTLY there has been a revival of interest in
the problem of scattering by a static singular

potential. ' ' These explorations were motivated by a
desire to have some understanding of unrenormalizable
field theories. In order to make contact with field
theory, attempts have been made to expand in powers
of the potential strength. For this purpose, cutouts are
usually introduced by modifying the singular potential,
or equivalently by considering the singular potential as
the limit of a sequence of nonsingular potentials. It is
the purpose of this paper to show that an intrinsic
limiting operation is already contained in the scattering
formalism, so that the introduction of an extraneous
cutoff as a mathematical device is actually unnecessary.

We confine ourselves to potentials for which

so that

where

P(k, r) =g(); k,r)+A (k)f(X; k,r)—, (1.5)

r~ V(r) (dr& ~, (1.7)

in addition to (1.1), the following relation between f,
g and A is well known:

A (k) = —limg(X; k,r)/limf(X; k,r). —(1.8)
r 0 7 0

It must be emphasized that the validity of Eqs. (1.2)—
(1.6) is independent of the behavior of V(r) in the
neighborhood of r =0, and in particular does not require
the existence of the integral (1.7). In other words,
Eqs. (1.2)—(1.6) also hold for singular potentials, i.e.„
potentials that are not regular. On the other hand,
Eq. (1.8) does not have such general validity. For
example, for a repulsive r ' potential, neither of the
limits on the right-hand side of (1.8) exist.

It will be shown in Sec. 2, however, that the following
modification of Eq. (1.8) holds for regular as well as for
singular potentials:

A (k) = —limLg (X; k,r)/f (X; —k,r)j. (1.9)

g(X; k, r) = (—2ik) —'Pf(X; k,r) —f(X; —k, r)j. (1.6)

For the conventionally so-called regular potentials,
i.e., potentials that satisfy

The scattering amplitude A (k) is

*Alfred P. Sloan Foundation Fellow.
' N. N. Khuri and A. Pais, Rev. Mod. Phys, 36, 590 (1964).' G. Tiktopoulos and S. Treiman (to be published).
s A. Pais and T. T. Wu, J. Math. Phys. S, 799 (1964).' R. Jost, Helv. Phys. Acta 20, 256 (1947).

P(k, r) =-,'ik 'Lf(X; k,r) $(k)fP, ; —k,r)$.—(1.3) Equation (1.9) is derived in Sec. 2 by a judicious choice
of the Green's function in the scattering integral
equation, whereby A (k) appears explicitly in the
integral equation. If the right-hand side of Eq. (1.8)

1.4 exists, as in the case of regular potentials, then Eq. (1.9)
reduces to Eq. (1.8). This reduction is discussed in

some detail in Sec. 3. If the right-hand side of Eq. (1.8)
fails to make any sense, then one must use the limit of
the quotient Eq. (1.9) instead of the quotient of the
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limits. In Sec. 4 examples will be found of different
ways in which Eq. (1.8) fails.

The substitution of Eq. (1.9) into Eq. (1.4) im-
mediately yields

S(k) =limLf(X; k,r)/f(P, ; —k,r)j. (1.10)
gmO

However, Eq. (1.9) is more general than Eq. (1.10)
since Eq. (1.10) has no content for k=0.

Equation (1.9) also suggests a new classification of
potentials into the regular and the singular varieties. We
propose that a potential is called regular if and only if
Eq. (1.8) holds in addition to Eq. (1.9). Potentials that
satisfy Eq. (1.7) Lin addition to Eq. (1.1)j are always
regular in this new sense, but Eq. (1.7) is by no means
a necessary condition, as shown in example C of Sec. 4.
It seems that this new classification is more natural
physically, because there does not seem to be a simple
physical interpretation of the absolute value of a
potential.

It should be emphasized that Eq. (1.9) is not an ad
hot,- prescription for the order of limits. This equation is
rather a straightforward consequence of the theory. It
also leads to some new insight into the nature of the
limiting processes for singular potentials.

The point is this. In singular potential theory, power-
series expansions in the coupling strength, such as the
Born series, have no meaning as every term in the series
is divergent. In earlier work, one first introduced a
cutoff in the potential, then legitimately expanded in
a Born series, then resummed this series to get a finite
answer as the cutoff tends to zero. Now we shall see in
Sec. 2 that it is possible to 6nd A(k) by using power
series expansions in the coupling constant mithout ever
to have to introduce a cutog The reaso.n for this is that
gP.,k,r) and f(X,—k,r) in Eq. (1.6) are, for given r/0
and given k, entire functions in the coupling constant.
This property has played an important role' in the
study of convergence of expansions in scattering theory
for regular potentials. But it is also true for singular
potentials that we may legitimately use Born series for
the functions g and f, for any r) 0. Then what operation
takes over the role of the limit operation on a cutoff?
This is precisely the limit process which appears in
Eq. (1.9) prescribed by the theory as arl, irttrAssic rather
thars an added prescription. In order to make effective
use of this intrinsic property, it appears essential to
use integral equations with boundary values which are
independent of the coupling constants.

It would be a major step to have a formulation of
unrenormalizable field theory with a "built-in" limiting
process, as we have found here for potential theory. We
do not know how to achieve this in general. However,
we hold it likely that procedures similar to the present
ones can be developed for Bethe-Salpeter equations.
We hope to come back to this elsewhere.

' R. Jost and A. Pais, Phys. Rev. 82, 840 (1951l.

tP(k, r) k ' sinkr+cf (k) e's' (2.2)

where A (k) remains to be determined. If k=0, the first
term on the right-hand side of (2.2) is to be interpreted
as r.

The condition near r=0 has been discussed by
Kramers. ' We shall take the following formulation.
Consider the set of all possible nontrivial solutions to
(2.1) without any boundary condition. Since (2.1) is
a linear differential equation of second order, this set
may be parametrized by two complex numbers. We
distinguish two possible cases.

Case I. One carInot divide the set in two parts, such
that, as r —+ 0, the solutions lt t in one part are small
compared to the solutions its in the other part, so that

(2.3)

is not true. This case has been discussed in detail by
Case~ and we shall not consider it any further.

Case II. One cue divide the set as indicated, and
Eq. (2.3) is true. Let tP, (k,r) be any solution of the
"small" kind. ' Without loss of generality we choose
P, ( kr) to be real.

We use as a, condition on lb(k, r) that

P(k, r) = const&, (k,r) . (2.4)

Equations (2.1), (2.2), and (2.4) determine $(k,r)
uniquely.

Write Eq. (2.1) in the form

L(d'/dr')+k')P(k r) =XV(r)tP(k r) (2.5)

and consider the right-hand side as the source term. Let

tPs(k, r) =tP(k, r) Xdr'k ' si—nk(r' —r) V(r')lt (k,r').

(2.6)

Then P, (k,r) satisfies the homogeneous equation

$(d'/dr')+k']P, (k r) =0. (2.7)

6 H. A. Kramers, Quantum Mechanics (Interscience Publishers,
Inc. , New York, 1957), pp. 183, 184.

7 K. M. Case, Phys. Rev. 80, 797 (1950).
8 Qf course, any other solution of the "small" kind is a constant

multiple of iV, (k,r}.

2. SCATTERING FORMALISM

We consider, for clarity, the case of s-wave scattering
first. Let P(k, r) be the s-wave part of the wave function
multiplied by r. Then P satisfies, in the range (0,~),

P(d'/dr')+k' —XV(r) j&(k r) =0. (2.1)

Here k &~0. We shall put no restriction on the behavior
of V(r) near r=O H. owever, to avoid unnecessary
complications, we retain the restrictions stated at the
beginning of the introduction, in particular Eq. (1.1).
Asr~ ~,
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By (2.6), (2.7), and (2.2) we find that

fs(k, r) =k ' sinkr+A (k)e'" (2 8)

Equation (2.6), with (2.8), is an integral equation for
f(k,r). Note that in this integral equation A (k) appears
explicitly, and is yet to be determined by Eq. (2.4).

Define f()&, ; k,r) and gP, ; k, r) by

f() k r) —
)&, dr'k ' sink(r' —r)

X V(r') f(); k,r') = e '"", (2.9)
and

"avoids the origin. "This in turn is possible due to the
choice Eq. (2.8) of the boundary value.

Once again, as in earlier work on singular potentials'
(and on unrenormalizable field theory') it appears
expedient to split the sought for scattering wave
function in two parts. However, the present splitting is
not identical with the one used earlier. To see this
consider the zero-energy equations

f(),.; O,r) —X dr'(r' r) V(—r') f(l&.; O,r') =1, (2.15)

g()&. ; k,r) —) dr'k ' sink(r' —r) g()&, ; O, r) —
)&, dr'(r' —r) V(r')g()&, ; O,r') =r, (2.16)

X V(r')g()&. ; k,r') =k ' sinkr. (2.10)

Then Eq. (1.5) follows from Eq. (2.6). Here f(); k,r) is
the Jost function. ' Since Eqs. (2.9) and (2.10) are
Volterra integral equations, for any fixed r) 0, f()&, ; k,r),
and g()&, ,k,r) are entire functions of ) by Eq. (1.1).From
this it does not follow that P(k, r) has the same property
Lsee Eq. (1.5)$ because the dependence of A (k) on X

changes in general the analyticity properties of P as
compared to f and g.

I.et f,'(k, r) be a solution of (2.1) linearly independent
of f, (k,r). Since f(X;—k,r) and g(); k,r) both satisfy
(2.1), they are linear combinations of P, and P,':

which follow from Eqs. (2.9) and (2.10). From these
equations it is readily checked" that the split used
earlier is as follows. One part is a linear combination
of f and g, the other exactly soluble part is essentially
A/r. With this last method the introduction of a cutoff
could not be avoided.

Finally, for /~&0, Eq. (2.1) is replaced by

d' l(l+1)—+ks — —
)&,V(r) P&(k,r) =0. (2.17)

dr2 r'

Asr —+ ~,

and
f(); k,r) =(qf, (k—,r)+n'P, '(k,r), (2.11)

f~(k&r) k ' sin(kr —-,'hr)+A~(k)e'"". (2.18)

g(X; k, r) =PP, (k,r)+P'P, '(k, r). (2.12) The discussion of the condition near r=O is the same
as before. The integral equations (2.9) and (2.10) are

P'+An' =0. (2.13)
f ();k, r)+)&, dr'(rr')'/'t Js&.1(kr) I'~1(kr')

—J&+1(kr') V~1(kr))V(r') f&()&; k,r')

= (-,'skr)'/s( —i)'+'H~ & 1(sk&r), (2.19)

dr'(rr')'IsLJt+1(kr) V~1(kr')

—Js&.1(kr') Y~+.,(kr) $V(r') g~ ()&, ; k,r')

= (ss.k—'r)'~'J~. (kr), (2.20)

while Eq. (1.9) is essentially not changed:

It is not possible for both n' and P' to vanish, because,
in that case, f and g would be linearly dependent, which
contradicts Eqs. (2.9) and (2.10). We thus consider
two cases: (a) u'=0 and (b) u'WO.

Case (a): n'=0 In this case. , P(k, r) does not exist,
as Eq. (2.13) cannot be satisfied. Moreover, fP, ;

—k,r)
is a constant multiple of a real function. Hence the
right-hand side of Eq. (2.9) is a constant multiple of a g ()&, k r)+),
real function. This requires k=0. Thus case (a) corre-
sponds to the situation of a zero-energy bound state,
f, (O,r) being the bound-state wave function. In this
case, we say that 3 is infinite.

Case (b): n'40. In this case, there is no bound state
at this energy, and

A (k) = —P'/a'. (2.14)

By Eqs. (2.2), (2.11), and (2.12), Eq. (2.14) can be
written in the form Eq. (1.9). Moreover, this limit is
guaranteed to exist in this case by (2.14).

Thus we have now shown what was contended in
Sec. 1. The simple trick by which we have reached our
aim is to use in Eq. (2.6) a Green s function which

g((); k,r)
A, (k) = —limr~ f&()&, ; —k,r)

(2.21)

» G. Feinberg and A. Pais, Phys. Rev. 1SB, B477 (1964).
' The detailed connection is as follows. Using the quantities %&

and%2 defined in Ref. 1, Eq. {2.6) and +&&1), 0 &(~) ibid. Eq. {2.12)
one has r+ &' sg,&r%s&'&+1= f, r+'&=A, r%'s=g+A(f 1). —
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3. REGULAR POTENTIALS

We consider in this section potentials which in addi-
tion satisfy Eq. (1.7). In this case, considering again
only the s wave, we define P, and P,' as the solutions of
the integral equations

r

P, ( kr)+X dr'k ' sink(r —r')
0

&& V(r')P, (k,r') = k ' sinkr, (3.1)

while

g(li; O,r) r(1—v)
A (0)= —lim = —(vVi')'", (4.6)"-' fP„O,r) I"(1+v)

as obtained before. '

Example 8
As a second example, let

r

f,'(k, r)+'A dr'k ' sink(r —r')

)& V(r')f. '(k, r') = coskr. (3.2)

r-', r&1,
V(r) =

0.
(4.7)

It is easily verified in this case that, for r & 1,

(3.3)limp, (k,r) =0,
and

and
(3.4) g(X; k,r) =-,'err'~'{sinkLY„'(k) J„(kr)—Y„(kr)J„'(k)7

—(-,'k—' sink+ cosk) $Y„(k)J„(kr)—Y„(kr)J,(k)1),
(4 9)

limp, '(k, r) = 1.
r o

Thus they satisfy all the conditions previously pre-
scribed for f, and f,'. With this choice of p, and p, ', ~blare
Eqs. (2.11) and (2.12) yield

(4.10)v = (k+~)'".
limf(lw, ;

—k,r) =u'
r o

(3.5) This belongs to case I if X& —~. If X~& ——,', it belongs
to case II(b). Again in the latter case, as r —+ 0,

l.3.6)
f(X —k r) ~ ', ~r'i'e'-"

XL(-', +ik)J.(k) —kJ„'(k)jF'„(kr), (4.11)

and
limg(X; k,r) =P'.

Therefore, by Eq. (2.14) we obtain Eq. (1.8) for case
II(b). Thus, for regular potentials, Eq. (1.8) holds in
addition to Eq. (1.9).

By the theory of Volterra integral equations, " the Born
series converges uniformly in r for both (3.1) and (3.2). f(X; —k,r) = 2i7rr'i'e'"{kf Y„'(k)J„(kr) Y„(kr)—J,'(k) j
Moreover —(2+ik)LY„(k)J„(kr)—Y„(kr)J„(k)j}, (4,8)

4. EXAMPLES

We give here three examples to illustrate the various
possibilities.

g (X; k,r) —,'err'"

)&L(—,'k ' sink+cosk)J„(k) —sinkJ„'(k))Y„(kr). (4.12)

and

where

and

f(X; O,r) = (vX' ')-"r(1+v)r i I„(s)

gP. ' 0 r) = (vXii )"I'(1—v)r i I (s)

v = (rN —2)-',

2 =2vX'"r—'«'")

Example A

As a erst example let k=0, and

V(r)=r m

with m&3. In this case'

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

limf(li; —k,r) = limg(X; k,r) =0.
7-+0 r~o

(4.13)

Thus Eq. (1.8) is meaningless, but Eq. (1.9) gives

(—', k ' sink+cosk) J„(k)—sink J„'(k)
A(k) = —e

(-', +ik)J„(k)—kJ„'(k)
(4.14)

Thus we have now seen two possible ways in which
Eq. (1.8) can fail. It does so in example A because we

get ~/ao and in example 8 with 0)X)&—i4 because we

get 0/0. In either case Eq. (1.9) works well.
If X)0, then, near r=0, f(X; —k, r) is unbounded,

and g(X; k,r) is unbounded unless

Thus this belongs to case I if 'A&0. If X&0, this belongs
to case II(b). In the latter case, it is easily verified that
both f(X,O,r) and g(X;O,r) are unbounded as r —+0,

"We are indebted to Professor H. McKean for a helpful
discussion on this point.

(2k ' sink+cosk) J„(k)—sink J„'(k)=0. (4.15)

These are just the points where the phase shift is a
multiple of 7r. Again Eq. (1.8) is meaningless but
Eq. (1.9) gives Eq. (4.14).
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r 'sinr ', r&1,
(4.16)

In this case, we can define P, (k,r) and It,'(k, r) by
Eqs. (3.1) and (3.2). It can be verified that the two
Born series converge, and Eqs. (3.3)—(3.6) and (1.8)

Example C

Consider, as a last example, the rather pathological
potential

hold. Thus, for this potential, all the properties of a
regular potential are obtained even though it does not
satisfy Eq. (1.2).

Note added irt proof. We want to thank Dr. M. Beg
for drawing our attention to a paper by N. Limic
LNuovo Cimento 26, 581 (1962)] which contains the
statement that for singular potentials the S-matrix
element for given l is the limit of the quotient of two
Jost functions.
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Two-channel processes are studied to determine whether sizeable peaks can be produced in elastic scat-
tering for one of the channels by threshold eGects arising from the second channel (taken to be in an 5-wave
state). The problem is first examined by means of a simple model whose analytic properties can easily be
deduced. It is found that, when all the particles are stable, large cusps occur if there is a pole of the S matrix
on an unphysical sheet in the vicinity of the inelastic threshold. The cusps become "woolly" when one of
the particles in the second channel is allowed to be unstable. Similar results are obtained in a calculation
using an ED ' formulation. These S-matrix poles correspond to virtual states of the particles in the in-
elastic channel, their positions on the unphysical sheets depending on the force of interaction between the
particles. It is further suggested that some of the peaks observed in experiment may be of this type, having
their origins in inelastic thresholds rather than direct particle resonances. In particular, the I'0* at 1815
MeV and the XII( 1 peak near threshold may be manifestations of this.

I. INTRODUCTION

"ANY authors have discussed threshold effects, or
~ ~ cusps, in elementary particle reactions, including

the case of a threshold for the production of an unstable
particle. ' ' Questions naturally arise as to whether
these threshold effects can be responsible for sizeable
peaks in cross sections; and if so, whether such peaks
should be classified as elementary particles or as
phenomena of an essentially different character. The
purpose of this paper is to call attention to a situation
in which threshold effects do indeed produce sizeable
peaks; namely, when there exists a pole in the S matrix
close to an S-wave threshold on the unphysical sheet
reached by passing through the branch cut associated

*Work supported in part by the U. S. Atomic Energy
Commission.

t Alfred P. Sloan Foundation Fellow.
' E. P. Wigner, Phys. Rev. 73, 1002 (1948). R. Newton, Ann.

Phys. (¹Y.}4, 29 (1958}.L. Fonda and R. Newton, Phys. Rev.
119, 1394 (1960).' J. S. Ball and W. R. Frazer, Phys. Rev. Letters 7, 204 (1961).' M. Nauenberg and A. Pais, Phys. Rev. 126, 360 (1962).' A. Baz', Zh. Eksperim. i Teor. Fiz. 40, 1511 (1961) (English
transl. : Soviet Phys. —JETP 13, 1058 (1961)); Y. Fujii, Nihon
University, Tokyo, Physics Department (unpublished); Y. Fujii,
Progr. Theoret. Phys. (Kyoto) 29, 71 (1963); Y. Fujii and M.
Uehara, Progr. Theoret, Phys. (Kyoto) Suppl. 21, 138 (1963).

with the threshold. Moreover, we conjecture that this
situation is very likely to be responsible whenever a
threshold effect manifests itself as a peak comparable
to those associated with particles. From the point of
view of S-matrix theory, a threshold effect of this nature
can quite properly be called a particle since it arises
from a pole in the S matrix.

In Sec. II, we shall discuss these points in more detail
by considering some examples. The simplest example,
given in Sec. IIA, of the type of threshold effect we are
discussing is the "virtual state" occurring in the 'S state
of the neutron-proton system. In Sec. IIB, the case of
two channels involving only stable particles is discussed,
and in Sec. IIC, two channels where one of the particles
in the second channel is unstable. The latter case is an
extension of the work of Nauenberg and Pais. ' In
Sec. III, we consider threshold effects within the
framework. of a dynamical model, using the matrix
ED ' formalism. Some clarification is thereby obtained
of the work by Ball and Frazer on peaks in cross
sections near the threshold for production of an un-
stable particle. ' Lastly, in Sec. IV we discuss some
possible experimental manifestations of threshold
effects.


