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We obtain simple analytic formulas to express the amplitudes for stripping a particle into an orbit of
arbitrary L value, using a Coulomb wave to describe the relative motion of the incident particles and a plane
wave to describe the relative motion of the products. This approximation may be appropriate for the descrip-
tion of (X,n) reactions, where X is any charged projectile, and n is a neutron, particularly when the incident
energy is well below the Coulomb barrier. Initially, the neutron is assumed to be bound to a particle which
is later captured by the target; the wave function of this initial bound state is taken to be asymptotic and of
zero orbital angular momentum, of the form e ~"/r. The resulting nucleus is described as a bound state of two
particles moving with arbitrary relative orbital angular momentum L; the radial wave function of this
bound state may be taken to be of the form rz '(e e"—e e'"). The cross sections predicted by these ampli-
tudes are compared to the cross sections predicted by the analogous plane-wave Born approximation, and
graphs are shown for a representative case. The qualitative appearance of the angular distribution is found
to be much the same in both cases; however, the Coulomb-wave calculation predicts cross sections of smaller

magnitude with previously assigned values of the reduced widths.

I. INTRODUCTION no free parameters. It is a erst-order Born approxima-
tion; it does not differ from the simplest plane-wave
treatments except in the use of a Coulomb wave instead
of a plane wave. Because the analytic expressions ob-
tained involve only elementary functions and have a
manageable simplicity, the comparison between the
theoretical predictions and experimental results can be
made very straightforwardly.

Our analytic expressions for the amplitudes result
from making the following approximations:

(1) Initially the neutron to be emitted is in a bound
state of I.=O, whose radial wave function is described

by an asymptotic form e ~"/r, where cr is the wave
number related to the separation energy of the neutron.

(2) The interaction of the emitted neutron with the
target is neglected.

(3) In the initial state, we neglect all reaction waves;
we describe it as a pure Coulomb scattering of target
and projectile.

(4) The resultant nuclear state is described by a
two-body wave function having a unique value of the
orbital angular momentum, that is, it has an angular
wave function Fl,~(Q); its radial dependence is taken
to be rL-'e &"

" 'N a previous paper' we have obtained convenient
~ - analytic expressions to represent the amplitudes of
stripping reactions which occur by capture of a particle
into an orbit of angular momentum L=O, using a
Coulomb wave for the description of the relative motion
of the incident particles, and a plane wave for the
relative motion of the products. Ig. this paper, we

present an analogous treatment appropriate when the
particle is captured into an orbit of arbitrary angular
momentum L,, and we include specifically the possibility
that the particles involved have spins. The calculation
of analytic expressions including the Coulomb distor-
tions in both entrance and exit channels may be carried
out with analogous methods' but the mathematical
handling is considerably more involved, and. the
amplitudes cannot be expressed in terms of elementary
functions; such calculations are the subject of a paper
now in preparation.

The aim has been to develop expressions for stripping
amplitudes which should be nearly as easy to under-
stand and use as plane-wave expressions, yet have the
enormous advantage of not ignoring the Coulomb
distortions. Heretofore it has not been possible to take
into account Coulomb distortions without going into
full optical-model treatment. ' Our theory includes th
distortion which undoubtedly dominates the behavi
of cross sections at bombarding energies below t
Coulomb barrier not near a resonance, and introduc
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These approximations lead to our particular form for
the transition amplitude. Its main features are con-
veniently summarized in a diagram such as that of
Fig. 1, where particle 3 represents the neutron. The
description of the process is made in terms of three
particles, A, 8, and C. The reaction proceeds through
the exchange of the particle B. The interactions of A
with 8, and of 8 with C, are treated exactly in terms of
the postulated normalized wave functions and of
reduced widths Gg~ and G~q~ which appear as coeffi-
cients in the amplitude. In our treatment, we assume
that the relative motion in the incident channel is a
pure Coulomb wave, which is something like including
all possible exchanges of photons between the incident
particles.
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It has been possible to arrive at analytic expressions
of manageable complexity because of two reasons.
Firstly, in the computations of the amplitudes we
extend the radial integrations all the way to the origin
instead of having a cutoff at the nuclear surface. This
makes it feasible to use the parabolic type expressions
for the Coulomb wave; we eventually arrive at expres-
sions which contain all the partial waves together, and
thus we eliminate the summations over an infinite
number of partial waves which would be required if we
used spherical Coulomb waves. Secondly, we have
chosen the particular form r~ 'e ~" to represent the
radial wave function of the final bound state. This
permits a key intermediate simplification in the course
of the computation. This form is in itself suitable for
representing bound states among the light nuclei. In
any case, since the answers obtained are analytic, the
amplitudes corresponding to wave function forms con-
taining the higher powers of r may be generated by
taking derivatives of our answer with respect to the
parameter p.

II. DESCRIPTION OF THE FINAL BOUND STATE

Within the framework of a nonrelativistic treatment,
the final bound state should presumably be described
by a function which is the solution of a Schrodinger
equation. Our form Yz,~(Q)r~ 'e ~" corresponds to a
potential which bears no particular resemblance to those
used in nuclear theory. Thus, it might perhaps be best
to look upon P as a variational parameter which is to be
adjusted so as to make Yi,~(Q)r~ 'e ~" correspond as
closely as possible to the wave function itself. Since 1/P
is the characteristic dimension of the nucleus repre-
sented, it is very unlikely that the best value of P will
be greatly different from the bound-state wave number,
that is, O'P'—2mE, where m is the reduced mass and E
is the separation energy.

As an estimate of how well the trial functions can
represent other wave functions, we may present the
result corresponding to assumed "true" wave functions
of the same form as the hydrogen wave functions of
lowest radial quantum number. These functions are the
following:

X(L,M,r,8, &p) = Yl~(8 p)r
y L(2P )'r+'/(2L+2)!]'/' (2.1)

For applications among light nuclei, states having
radial nodes would ordinarily be so high in excitation
that stripping theory need not consider them. The
normalized trial functions corresponding to a parameter
p are

X, (L,M,r,8, p,P)*=Yl,~(8,p)*r~ 'e e'

y L(2P)~i+i/(2L)! j~/~ (2 2)

The overlap of this trial function with the hydrogen-
type wave function is easily computed. If we choose to

express its value in terms of the ratio x=P/Po, where
O'Po' ——2' exactly, we find that the maximum overlap
occurs when

x, = (2L+1)/(2L+3), (2.3a)

(y
~
x) —(2L+ 1)I+1(2I+3)Xi+3/2/(2L+2)2L+5/2

(2.3b)

The maximum overlap is worst for L=O; the numerical
values for L=O, 1, 2 are 0.92, 0.98, 0.99. Analogous
estimates for the overlap of our trial functions with
wave functions corresponding to potentials of the
square well or harmonic oscillator or Hulthen shapes
yield maximum values of the overlap all in the same
range. Thus, we may conclude that the single-parameter
description of the final bound state may be very suit-
able, especially for the values of L greater than zero.

(BC)

FIG. 1. Diagram illustrating the
interactions which are included in
our calculation. The relative mo-
tion in the incident channel is
described by a Coulomb wave,
which is symbolized by exchanges
of photons. The small circles repre-
sent interactions which are treated
exactly, in terms of a normalized
wave function and a reduced
width.

(AB)

We may note that a radial dependence such as
r~'(e ~" e~'") may b—e considered by simply taking
differences of amplitudes corresponding to two decay
parameters, P and P', and making a suitable change in
the normalization constant. It is clear that by using
these two variational parameters P and P', any reason-
ably smooth radial function having no nodes might be
represented with excellent accuracy. For applications
among heavier nuclei, wave functions with radial nodes
may be constructed by taking suitable linear combina-
tions of terms of the same form.

III. EVALUATION OF THE TRANSITION AMPLITUDES
FOR SPINLESS PARTICLES

where mo, m~ are the reduced masses of the relative
motions, k and kr are the initial and final wave vectors,
and Tyo is the transition amplitude. In our treatment,
the following formal expression is the result of the

If the incident and final relative motions asymp-
totically tend to plane waves e'"' and e'"&', the cross
section for a reaction is given by

(d /dQ) = ( m, r/4 'h') (kf/k)!, Tro~!', (3.1)
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assumptions 1, 2, and 3 of Sec. I:

Tt p (———2s.PP1Vp/m»)

of the conAuent hypergeometric function' '

F(b,c,s) = [F(c)/F(b)F(c—b)j

&& e ' "Xf( r)*o—pa+(r)r'dry, (3.2)
ezztM1(1 t)c—Mldt (3 5)

which is deduced as Eq. (2.8) of Ref. 1; Eo is the con-
stant which normalizes the initial bound state, m» is
the reduced mass of the initial bound system (z48),
Xr(r) is the wave function of the 6nal bound state,I =kryo/(rlo+rn~), and y~+(r) is the initial scattering
state. We shall use for qg+ a Coulomb wave which
asymptotically tends to the incident plane wave, plus
outgoing scattered waves. We hrst do the calculation
as though all particles were spinless, and later quote
results in the general case of arbitrary spins. To repre-
sent the initial and final bound states, we use the
following:

with c=i, b= i—n, s=ikr —ik r. The spaceintegrations
are easily carried out after expanding in spherical
harmonics and spherical Bessel functions the factor
e'&', where q= Q —kt. To do the angular integration
we use the orthogonality of the spherical harmonics;
the remaining radial integral is expressible4 in terms of
a hypergeometric function times other factors. Our
choice of the form for the bound-state function makes
one index of the hypergeometric function identically
zero, hence the result is particularly simple. The
expression which remains to be integrated over the
parameter 3 is

Xf(r) =Nrr L le er IrLM—(II—)

Xp(r) =Ilrpe "/r,

&r'= (Geo')'(2P)'~'/(2L)

g '= (G»')'(2n)/4'

(3.3a)

(3.3b)

q'Lq'+ (P ikt)'1—

where

&( VL~(q)to —'(1—t)' o'dt —(3 6a)

I(P, k, K', Qe, L, M) = D, [F(c) /F( b) F(c—b)j

Tfo(L M,p) =D XI(p, k,K',Q,N,L,M),

D = ( )~'(2n&o&f&—'/m»).

(3.4a)

&&F(1+iv)e " t', (3.4b)

The parameter n is given by cr'= 2m»E»/It', where
E» is the separation energy, the energy required to
separate the initial state into particles 2 and 8. We
note that Xf(—r)= (—)LXt(r). The amplitude for a
transition to a particular magnetic substate (L,M

~

con-
sists of an energy-dependent factor D, which contains
kinematic dependences and the Coulomb parameter e,
and a space integral which contains all the angular
dependences

D = (4 )i I'(—)I'(2L+2)/[2 + I'(L+—)j. (3.6b)

The argument of the spherical harmonic appearing in
Eq. (3.6a) is understood to represent the direction of
the vector g relative to an arbitrary reference axis,
whose orientation we are still free to choose. The most
explicit comparison with the plane-wave theory can be
made if we choose our axis of reference to lie along the
direction of the incident wave vector k. The spherical
harmonics referred to this axis [which we denote by
I'L~(q; k)$ may be expressed in terms of an azimuthal
angle and a homogeneous polynomial of order I. in
products of sing and cosy, where y is the angle between
the vectors; the sine and cosine may be calculated from
the definitions of the vectors as follows:

rt =ZeZ»e'mp/h, 'k, (3.4c)
cosy = (k q/kq) = (Q/q) cos8[1—(k'/k Q) tj, (3.7a)

I(P,k,K',Q,e,L,M) = exp(iQ r) V LM(r)'r~'e e" sin7= [1—cos'yjrt'= (Q/q) sin8, (3.7b)

)(Ii ( i+, i,ikr ik r—)dry, (3—.4d)

Q= —I'+ k, (3.4e)

where eZ», eZ& are the charges of target and projectile,
and Q is the vector representing the change in linear
momentum of the particle C; it plays the role of the
"momentum transfer" in the plane-wave theory. We
may carry out the space integrations indicated in
Eq. (3.4d) after introducing an integral representation

where 8 is the angle between the vectors Q and k. When
we insert the expressions (3.7a,b) into formulas for the
spherical harmonics appearing in the integral (3.6a),
the factor q~ is canceled out, and effectively replaced
by QL, which is independent of the parameter t. At the
same time, sinp is replaced by sin8, which is also
independent of t. Since it is possible to express
F'L~(q; k) in such a way that at most L

~

M
~

powers

4 P. M. Morse and H. Feshbach, Methods of Theoretica/ Physics
(McGraw-Hill Book Company, Inc. , New York, 1955), p. 605,
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of cosy are required, ' the dependence of the integrand
of Eq. (3.6a.) on the parameter t may be simplified con-
siderably. An expression valid for L=O, 1, 2 is

I(P,k,K',e,n, L,M) =Ip(L) Fr,~((};k)

that n —+ 0; the factors R(L,M), P (1+in) and e " ~' are
replaced by unity in this limit.

IV. DIFFERENTIAL CROSS SECTIONS IN COULOMB-
WAVE AND PLANE-WAVE THEORIES

where

&[P( )/P(f')P( —&)] f' '(1—f)

X (1—G«)-~'(1 —)~t+pP jdf (3.8a)

The usual experiment does not measure the spin
polarization of the nuclei; in the plane-wave theory
(PWBA) with spinless particles, a summation of the
transition rates to all the final magnetic substates
(L,M~ leads to the following expression for the cross
section:

I (L)=D.e'/(e'+~')~',
G,= (2iPk+2k Q)/(es+ P')

p= 2e cos'f)8(
~

M ~, 2)/(3 cos'0 —1)
e=k'/k Q

(3.8b)

(3.8c)

(3.8d)

(do/d") pwBA= ~[e /(Q'+f3') ']'(2L+1)/4~, (4 1a)

W= (mpmr/mABs) (kr/k)

&( (GBcrG„BP)s (2P) '~'(2 c)r(4s)
&&[r(-',)r(2L+2)/2~ir(I+-, ')]s. (4.1b)

For the cases of interest, L is a positive integer or zero.
The factor involving the hypergeometric functions can
in these cases be expressed entirely in terms of ele-
mentary functions, and it may be seen that it leads to
a rather weak angular dependence. The quantity in
braces in Eq. (3.9) may be rewritten as

(1—Gp)'" R(L,M),

R(L,M)=[F(—L, —', 1, Ho)

+ (in) (1—Gp) 9.F(—L+1, —in+1, 2, Hp)
+-', (—in) (—in+1) (1—Gp)

—'
&(fJF( L+2, —in+2, 3, Hp)—]

Hp ——Gp/(Gp —1) . (3.10)

Since the first index of the hypergeometric functions is a
negative integer, the expansion' in powers of Hp coIl-
tains a finite number of terms, (L+1) from the first,
or (L) from the second. Putting together Eqs. (3.4a,b),
(3.9), (3.10), (3.8c), and (3.6b), we have our explicit
expression for the transition amplitude T~p. The plane-
wave theory is the special case obtained in the limit

This is obvious by inspection of a list of the spherical har-
monics, as given by A. R. Edmonds, ungula~ 3fomentum in
Quantum Mechanics (Princeton U'niversity Press, Princeton,
New Jersey, 1957), or, for M&0 by successive application of the
lowering operator I. =e '&$8/88+e cote'/ae7 on the function
Fss(e, e), which is well known to be proportional to (sine)se's&.
For M(0, we may use the symmetry rule Fr, ™= (—)™Fs~~.

The remaining integrals over the parameter t may now
be recognized as being representations of the hyper-
geometric function. 4 The final result is

I(P,k,K', Q,n, L,M)
=Ip(L) Fr~(Q; k)(F(L+1, in, —1, Gp)

—(—in)XF(L+1, in+—1, 2, Gp)

+—,'(—in)( —in+1)pF(L+1, in+2 3 —Gp)). (3.9)

In the Coulomb-wave theory (CWBA), the summation
over the final 3f values cannot be carried out by manipu-
lations; we must have a specific expression or an
evaluation of the transition rates to each magnetic
substate. The structure of the answer is the same as
that of Eq. (4.1); the only change is that the Coulomb
penetration factors appear, and the sum over M replaces
the factor (2L+1)/4s. The cross section is

(if&/df)) CWBA (d&/d~) PWBA

&& [2s.n/(e'~" —1)][47r/(2L+ 1)]
&&exp(2n arctan[2Pk/(K' —k'+P')])Rp, (4.2a)

where
Rp ——ZM i R(L,M) i'. (4.2b)

The arctangent is to be chosen so as to lie between 0 and
m.. The only new angular dependence comes from the
factor Rp, which is the sum of absolute squares of
polynomials having at most L powers of Hp. In terms
of the wave numbers and the angle 8, the quantity Hp is

Hp ——2 (k' —kK' cos8+iPk)/(P'+K' k' 2iPk) . (—4.3)—

The dependence of this quantity on the angle 0 is not
particularly strong; hence, we may conclude that it is
unlikely that the Coulomb distortion will alter the
appearance of the angular distributions to something
radically different from the predictions of the plane-
wave theory.

Now, since the only neutral particle in nuclear physics
is the neutron, which has a spin, we must carry out a
calculation for particles with spin before having a
theory applicable to cases of interest. The particles A,
8, and C are assumed to be endowed with spins Jg, J~,
and Io. The spins JA and JB are coupled (with L=O)
to form the initial state, of spin Jp. We let the spin of
the final state be J~, we assume it is formed from J~,
J~, and L by first coupling J~ and L to form an inter-
mediate j, which then couples to J& to give J~. The
only change when we sum over final projections and
average over initial projection occurs in Eq. (4.1),which
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c'~ (a,n) N's

3.53 MeV

Ke have carried out a numerical evaluation of the
cross sections predicted by Eqs. (4.1a) and (4.2a) for
the case of the reaction Ci4(d, n)N" (ground state) at
3.53-MeV bolnbarding energy, which is exothermic
with an energy release of 7.987 MeV and appears to
proceed by an 1.=1 capture. ' In Fig. 2 we show the
theoretical curves predicted by the expressions (4.1a)
and (4.2a) for the case that the reduced widths take
their maximum value of unity, and with a decay
p»arneter P= -',Po.
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I'IG. 2. The differential cross sections predicted by the plane-
wave theory and the Coulomb-wave theory for the case of the
reaction C'4(d, I)N" at 3.53-MeV bombarding energy, assuming
1.=1, for the case that the reduced widths take on their maximum
possible value of unity, as explained in Sec. IV.

must be modified by multiplying it by a statistical
factor

L(2~o+ 1)(2Jr+1)l (2~e+ 1) (2L,+1)j
XL1/(2Jo+1)(2Js+1)j. (4.4)

It is possible to use the same mathematics to generate
analytic expressions in the approximation that the final
state is described by a two-parameter wave function, of
radial dependence r~'(e e"—e ~'"); all that we need
to do is to use a difference of terms of the form of
Eq. (3.9) in the new formula for E(I.,M). This proce-
dure will in most cases have a negligible effect on the
predicted angular distributions, because the new term
modifies only the contribution of the integral (3.4d) in a
region near the origin, which is suppressed both by the
weighing factor r~', and by the Coulomb repulsion.
The only significant change occurs in the normalization
factor, so that a somewhat larger value of the reduced
width corresponds to a cross section of the same
magnitude.

V. CONCLUSIONS

The preceding discussion and example indicate that
the Coulomb-wave expressions obtained in this paper
predict the qualitative features of the angular distribu-
tions to be little different from those of the plane-wave
theory; it may thus be expected that our formulas will
prove satisfactory for the fitting of many angular
distributions. Thus, it is shown that the recurrent puzzle
of having obtained good fits with plane-wave expres-
sions is not a mystery, but to be expected to the extent
that it is the Coulomb repulsion which dominates the
distortions. This is the same conclusion obtained in our
previous paper' dealing with the I.=O case only. The
chief difference between plane-wave and Coulomb-wave
theory lies in the magnitude predicted, if we assume a
given value of the reduced widths. The Coulomb-wave
theory predicts cross sections of smaller magnitude;
conversely, if we obtain reduced widths by fitting the
data, the Coulomb-wave theory will yield larger values
for the reduced widths. This is in the direction of better
agreement with shell-model theory and with other
experimental evidence. ' It will undoubtedly be of great
interest to carry out a fit with these expressions to a
large variety of experimental data, in order to test the
general usefulness of the method. A future comparison
with analogous DWBA calculations should also be of
interest.

ACKNO'WLEDGMENT

The author is grateful to Dr. J. Eichler for having
guided him to some of the earlier work on the subject,
and for his many valuable comments.

6 M. H. Macfarlane and J. B. French, Rev. Mod. Phys. 32, 657
(1960).


