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actions. Whereas the Peaslee" and True and Ford"
interactions do not have any triplet component, the
interactions determined by TWP," Raz and French"
and BKS2' vary from 0.2 to 0.4. It must however be
remembered that these interactions have been derived
from various available data such as nuclear energy
levels, transition probabilities, magnetic moments and
stripping reactions. Though it is obvious that any of
these properties must be satisfactorily explained by a
given set of parameters, due to the approximations that
are involved in determining these properties (and the
insufhcient knowledge about the nucleon-nucleon po-
tential), the situation becomes complicated. In other
words, forms of interactions are different as one goes
from one property of the nucleus to another, which is
not at all surprising. It should also be mentioned that
while the parameters of Barker" and Peaslee" have
been determined from the analysis of p&t& and sl/Q

doublets in the A = 16 region which would not involve

any configuration mixing as far as the 2 x j doublets are
concerned, the effect of admixtures has been quite pre-
dominant as far as the quantitative agreement of the
positions of the energy levels are concerned. The analysis

"W. W. True and K. W. Ford, Phys. Rev. 109, 1675 (1958).
21 V. K. Thankappan, Y. R. Waghmare, and S. P. Pandya,

Progr. Theoret. Phys. (Kyoto) 26, 22 (1961).
B.J. Raz and J. B. French, Phys. Rev 104, 1411 (1956)."I.M. Band, Yu I. Kharitonov, and L. A. Sliv, Nucl. Phys. 35,

136 (1962).

of our work in Secs. III and IV differs from the rest of
the authors in two ways: (1) while the conftguration
mixing is entirely neglected by Dawson, Talmi, and
Walecka, ' the triplet forces are entirely neglected by
Peaslee" and True and Fords' (2) The nature of the
interaction is assumed the same in all the configura-
tions. It has however been indicated by Thankappan,
Waghmare, and Pandya" that the two-body effective
interaction in Zr" is configuration-dependent. This is
more evident from our present analysis where we take
into account both the singlet as well as triplet forces and
the effect of configuration mixing as well. In view of the
calculations on the many-body systems, such an effect
may not be observed in Be". However, it is certainly
important in the case of Ni58 where the first excited
state in Ni'~ lies close to the ground state. It is thus
clear that the interactions that we have derived in
subsequent sections determine the nature of the effec-
tive nucleon-nucleon potential. It is also clear that it is
not possible, at this stage, to get such an information
about the d—s she11s.
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An expansion of the shellmodel matrix elements of the velocitydependent potential m 't p'V (r)+ V(r)p']
in the Talmi integrals of V is derived and applied to calculate the energy levels of 0'8 using the nucleon-

nucleon potential of Green. It is found that the correct ordering of the levels is obtained but the potential
must be altered slightly to obtain agreement comparable with that given by Dawson, Talmi, and Walecka
using the Brueckner-Gammel-Thaler potential.

1. INTRODUCTION

HE possibility that velocity-dependent potentials
(v.d.p.) could replace the hard core of the

nucleon-nucleon potential, permitting more tractable
calculations in many-body problems, was suggested by
Peierls' at the Kingston Conference. It has since been
discussed by many authors. '

R. E. Peierls, Proceedings of the International Conference on
nuclear Structure, Kingston, 1960, edited by D. A. Bromley and
E. W. Vogt (North-Holland Publishing Company, Amsterdam,
1960), p. tp'.

~ M. Razavy, G. Field, and J. S. Levinger, Phys. Rev. 125, 269
(1962); O. Rojo and L. M. Simmons, ibnl 125, 273 (1962); A. . M.

Green's calculations are the most extensive, and they
have been supplemented by Preston, Armstrong, and
Bhaduri. The phase-shift data were 6tted quite well,
although the agreement obtained is probably not the
best possible. The triplet odd parameters, in particular,
could be readjusted with advantage. The potential used

by these authors was of the form

I'(r)+rn '(P' (")+ (")P')

Green, Nucl. Phys. 33, 218 (1962); M. A. Preston, P. J.
Armstrong, and R. K. Bhaduri, Phys. Letters 2, 183 (1962);
E. Werner, Nucl. Phys. 35, 324 (1962); F. Peischl and F, . Werner,
ibid 43, 372 (1963.).
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where V is a mixture of Gaussian and Yukawa forms,
and includes tensor and spin-orbit forces, and co is a
Gaussian potential. In view of the success obtained in
representing the two-body data with such a potential,
it would seem to be useful to do shell-model calculations
using it.

0' has been investigated in the shell model by
various authors. The early work of Elliott and Flowers'
showed that reasonable agreement with the experi-
mental level structure could be obtained using a
Rosenfeld type potential which fitted the low-energy
two-body data, and that the ground state was at too
high an energy, unless the id@2 configuration were
included. Similar results were obtained by Dawson,
Talmi, and Walecka, 4 who used the Brueckner-Gammel-
Thaler potential, treating the hard cores by the Bethe-
Goldstone method. There have also been some attempts
to obtain the matrix elements of the residual inter-
action from the energy levels of 0", 0", and O'. The
most recent attempt is that of Pandya. ' He included
only 1d5~2 and 2s~f2 configurations, so the results of
Klliott and Flowers and D.T.W. w'ould suggest that
he would overestimate in magnitude the matrix element

((1dst,)' J=O
( V( (1ds/s)' J=O).

In all cases, the interaction of the two outer neutrons
with the core is taken empirically from the position of
the ~+, —,'+, and 2+ levels in the 0' spectrum, shown in
Fig. i. The core energy and the contribution of the
particle-core interaction is subtracted out of the experi-
mental data for comparison with the results of the
calculation. In Fig. 1 the ground state of 0" is placed
at an energy

B.E.(0'")—B.E.(0")
and the ground state of 0"at the energy

B.E.(0")—B.E.(0")—2{B.E.(0")—B.E.(0")}.

A shell-model calculation of the energy levels of O'I

using the velocity-dependent potential of Green has
been carried out. It is found that this potential leads to
matrix elements which are similar to and slightly less
than those obtained by D.T.W. The energy levels have
been calculated using id5~2 and 2s~~2 configurations only,
diagonalizing the matrices in Table I, and are found
to be correctly ordered but to lie rather high.

A detailed comparison with the results of D.T.W.
suggests that an increase in the strength of the Gaussian
singlet potential and a decrease in the strength of the
velocity-dependent part would be the simplest way to
improve the agreement. It is not at present known
whether it is possible to choose a potential which would
improve the agreement with the energy levels and not

' J. P. Elliott and B. H. Flowers, Proc. Roy. Soc. (London)
229, 536 (1955).' J. F. Dawson, I.Talmi, and J. D. Walecka& Ann. Phys. (N. Y.)
18, 339 (1962). Referred to as D.T.W.' S. P. Pandya, Nucl. Phys. 43, 636 (1963).
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Fto. 1. Observed energy levels of 0'r and 0' (energies in MeV).

be inconsistent with the two-body phase shifts. How-
ever, it appears that the answer to this problem will be
more straightforward with velocity-dependent po-
tentials than with hard-core potentials.

where r and p are the relative position and momentum
of the two nucleons, and l s and Sts are the usual spin-
orbit and tensor operators. '

TABLE I. Hamiltonian matrices for 0'8, including the
1d5~2 and 2s~f2 configurations.

Es = ((1d5/o) oJ
I
V

( (tdo/o)o J)
E (o(2s )'J//o=Oi V i (2s//o)oJ =0)
&s'= (1do/o2si/o J

(
V )1do/o2s&/o J) for J=2, 3

Fo=((1do/o)oJ=O[ V[(2s//o) J=O)
Po —((1do/2)'J =2

~
V

~
1do/o2suo J=2)

6 is the difference between the ~5+ and &+ levels in the 0'
spectrum.

J=O &o ~o
Fp Fo'+26
+2 pg
~2 &2'+~
E,'+a

jv4

2. J=2

3.
4

J=3
J=4

o M. A. Preston, Physics of the f/f o/clegs (Addison-Wesley
Publishing Company, Inc. , Reading, Massachusetts, 1962),
Chap. 5.

2. CALCULATION OF MATRIX ELEMENTS

Because the isotopic spin of 0' is unity, only the
singlet even and triplet odd potentials contribute.
These potentials will be denoted by Vo and V&. Green's
potential has the form

Vp ——Vp'(r)ytN-'(p'Vp (r)+Vp (r)p')

Vt ——Vto(r)+ Vro(r)I s+ Vt'(r)Srs,
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TABLE II. Pat'ameters of Green's Potential. The radial Potential is central potential V(r)
V (r) = —A e xp ( r—s/c') B(ts—r) 'e &"(1 —e ~I")

(n'k'][ V[]nk) =P„Il(n'k', nk; p)I„LV],
Force A

Singlet central
Triplet central
Triplet spin orbit
Triplet tensor
Singlet v.d.p.

49.1 MeV 1.268 F

82.9 MeV 1.04 F

—1.14 0.695 F

11.02 MeV 6—3.69 MeV 6

—14.5 MeV 6

For the radial factors V(r), Green assumed a form

V(r)= —2 exp( —r%') —8(ttr) 'e p"(1—e &"),

with @=0.7082 F '. The parameters of his singlet even
potential (a) and triplet odd potential (a), used in the
present calculation, are given in Table II.

The matrix elements of the potential have been
obtained using the transformation to relative motion
and center-of-mass states first discussed by Talmi. '
The notation of Brody and Moshinsky has been fol-
lowed. The relative and center-of-mass coordinates they
introduce are slightly unusual, being de6ned by

r'= 2 '"(rt—rs), p'= 2—'t'(p& —p,),
R'=2 't'(rt+rs), P'=2 't'(p +ps).

~
ntttns4LM) =P ~

nkNELM) (nkNKL
~
ntltnslsL),

where the summation is over all values of e, k, E, E,
which are consistent with the conservation laws. The
transformation brackets (nkNEL

~
ntltnslsz), which are

known to be independent' of M are those tabulated by
Brody and Moshinsky. ' They also tabulate the co-
efficients B(n'k'; nk; p) of the expansion in terms of the
Talmi integrals IpftV] of (n'k'~~v((nk), " the reduced
matrix elements between relative motion states of a

~ I. Talmi, Helv. Phys. Acta 25, 185 (1952).
T. A. Brody and M. Moshinsky, Tables of Transformation

Brackets (Monografias del Institio de Fisica, Mexico, 1960).
~E. U. Condon and G. H. Shortley, The Theory of Atomic

SPectra (Cambridge University Press, Cambridge, England,
1963), p. 49.' The reduced matrix element is defined here so that the matrix
elements and reduced matrix elements of a scalar are identical.
See Brink and Satchler, Angllar 3IIomentum (Clarendon Press,
Oxford, England, 1962), p. 57.

The transformation from rt and rs to r' and R' leaves
the harmonic oscillator Hamiltonian invariant in form.
~ntltnslsLM) is the unsynunetrized two-particle state,
with particle 1 in the state e~L~ and particle 2 in the
state e~l~, the particles being coupled to a total angular
momentum L, M. !,nkNELM) is the state with the
relative motion characterized by the quantum numbers
nk and the center-of-mass motion by EE, the total
angular momentum being L, 3f. We may transform
from one representation to the other

Ip V
( +s).

e *'scstP+'&V(&2asc)doc,

n!IIk (s)= expL ——', (s+t)']t"dt.

The properly symmetrized states
~ ) are built from

the unsymmetrized states
~ ) in the usual way. With

P as a shorthand for n, l, j
(PtPsJMT)=2"'P! PtPs JM)+ (—1)"+" +r [PsPtJM)]

if ptAps and

~

P'JMT) =-,'L1+ (—1)"—s+']
~

P'JM) .

j-j coupled matrix elements are in turn obtained
from L-S coupled matrix elements, which are calculated
using Racah algebra and the Talmi transformations.
o, is used to represent the quantum numbers nJl1e~l2
and 'U, " for the o-, X part of the potential, for example

and

'U = rn '(p'V (r)+ V (r)p')

Vt' ——Vt" (r)1 s.

The L-S matrix elements of 'U " are expanded as a
series of Talmi integrals

(n'L'S'JM
~

~.~
~

nLSJM)
=8 .,5, Q„C."( 'L'; L; J:p)I„(v "].

The results for central spin-orbit and tensor forces are
given by Brody and Moshinsky.

C;(n'L, ;nL; J:p)

=br, .r, P B(n'k; nk; p)
nn'It;

X g (n'kNZZ~ 'Z)(nkvd. z~nz),
NA.

"P. Goldhammer, Rev. Mod. Phys. 35, 40 (1963)."R.Thieberger, Nucl. Phys. 2, 533 (1957).
» British AssociationMathematical Tables (Cambridge University

Press, Cambridge, England, 1946), 2nd ed. , Vol. 1, H. JeGeries
and B. S. Jefferies, Methods of Mathematscat Physics (Cambridge
University Press, Cambridge, England, 1956), 3rd ed. , p. 622.

where a= (t's/mto)'ts is the harmonic oscillator length
parameter. The value a= 1.71 F "has been used in this
calculation. Analytic expressions for IpLV] are given

by Thieberger" for various common potentials. Those
required are

IpLexp( —r'/c')]= (1+2a%') tp+I'
)

Iptte &"/r]=2p+:sr "a '(p!)e'~'"'IIhsp+t(ats),

where Hk„(s) is the Hermitian probability integral
defined by"
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alld

x(—1)"'
L k 1

Ci'(n'L'; nL; I:p) I
120(2I '+1) (2L+1)]

L'1 J
( 1)l+J B(n'k'; Nk; p)

n'k'nk

XD (n'I. '; nL; e'k', ek),
where

D(n'L'; nL; rs'k'; sik) L(2k'+1) (2k+1)] '"
= P (ss,'k'NKL'

I
n'L') (sikNKL

I
nI.)

Ci"(n'L; nL; J:p)

L'
= (—1)'

I
6(2L'y 1)(2I.+1)]'~'

1 L 1

X Q 8 (I'k; sik; p) 2 (n'I', nL; e'sik),
nn'k

where

A( nL' nL rs'ek)[k(k+1)(2k+1)] '~'

=P (~kNKL lnL)(~kNKLlnL)
NK

There are many ways to do this. Possibly the simplest
makes use of the relation

(n'kll-,'m-ip'2+-'~~r' ll~k) = (2m+ ky-,')e~b. .
to relate the matrix elements of p" to those of r". The
wave function (r'8$I nkm) is given by

(r'tty
I
rskm) =R„,(r'/a) Y„„(g,y),

where YA (8,&) is the normalized spherical harmonic
with the Condon and Shortley definitiolI of phases,

R»(x) = (2(k+$)„/n!(k+ i2)!)'~'x"e &*'a 't'

X iFi(—rs; k+ 2; x'),
(a)„=a(a+1) . (a+san —1),

and iFi (a; b; s) is the Kumrner confluent hyper-
geometric function. Using the recurrence relation'4

a iFi (a+1; b; s)= (s+2a —b) iFi (a; b;z)
+ (b —a) iFi (a—1; b; s),

we can show that

LX'—(2nyk+ 3)]R A(x) = —(rs+1)'"(n4k+ ')'~-'—
XR„+i q(x) —n'~'(ii+k+2)'~'R„ i,q(x).

The reduced matrix elements of r" are therefore given
by

NK

k 2)k'L'K
!(—1)%+A +IC

(0 0 01 L k 2

giving

ek) —(2m+ k+ 2)b„.„
n" (n—+k+ ')'~'8 ~-

—(is+ 1)'~'(is+ k+-', )'"b

The 3j and 6j symbols are defined with the same

phase as in Brink and Satchler. "
The calculation of the C coeKcients for the velocity-

dependent potential is outlined in the next section.

3. THE VELOCITY-DEPENDENT POTENTIAL

The velocity-dependent term in the potential is,
when written in terms of r' and p' (omitting the sub-

and superscripts),

La'/i'](e'kll p'2ll~k) —(2~+k+-;)b„,„
= si'"(is+a+-')'~'8„. „ i

+ (n+1)'"(n+k+-,')'~2b„. „+,.
The coefficient C,~(n'L'; nL; I:p) may then be

expressed in the form

C.'(n'L', nL; I:p) = &'i p (~'k»KI
I

n'L, )
/fag n' nk NK

'U= 'srs '(p'2V-(v2r')+ V(Ver')p").

Using the Talmi transformation we obtain

(n'LSIIrII t) InLSJm) = 2 (~'kll~llmk)

where
X(~kNKLlnL)r(~ „k:p),

r (si'nk; p) =Q B(sk; tk; p)y(N'ek; s]),

n'nk

XP (n,'klVKL
I
n'L) (rskNKL

I
nL) .

It is obvious that

(~'kllp"vll~k) = 2 (~'kllp"ll~"k") (~"k"Ilvll~k)

and

(~'kll vp" ll~k) = 2 (~'kll vll~"k") (~"k"
II
p"ll~»

n" Ic"

and the p coeScient is given algebraically in Table III.

TAsiz lII. The coeKcient y(n'nk; st).

n' —1 n")'(n'+ 0+ ') '~~

n' n' '(n+k+')' ' 2(n'+n)+2k+3 (n+1) ~ (n+&+—') )'

n'+1 (is'+ 1)'i'(e'+ k+-') 'I'

'4 I. N. Sneddon, Special Functions of Mathematical Physics and
so the essential step in 6nding the matrix elements of chemistry (pliver and boyd, Edinburgh, Scot]and, 1961}, 2nd
~ is the determination of the matrix elements of p". «., p. 38.



BRUCE H. J. McKELLAR

The velocity-dependent potential is very short
ranged, so the Talmi integrals decrease rapidly as p
increases, and therefore C~(:P) is required for small
values of P only. In F(n'nk; P) P takes the values k,
k+1, , k+m'+m A. lgebraic formulas for the B
coefFicients are used to derive an algebraic expression
for F(e'mk;k+q) which is simple for small g. The
general expression given by Brody, Jacob, and
Moshinsky" for 8 is very complicated, but more
straightforward formulas may be derived for

B(e'k; ek; k+q)

for small q. When g=0

B(N'k ek k)={(k+-') (k+s) ie'!e!)'i',

C7l
L
Ol

LU

E
s
Ckl

CL
X

U3

0&

4&

2+ —— 3+
pt

2~
p+
4+

p+

p+

and for g/0 define

B(e'k; nk; k+ g) =b(e'ek; q)B(e'k; nk; k) .
Then

0+

—b(e'ek; 1)= (I'+n),

b(e'nk; 2) =

—b(e'Nk; 3)=

m'(e' —1)+e(e—1) 2k+5
+tt'B

2! 2k+3

~'(m' —1)(n,
' —2)+ e (I—1)(n —2)

3!
e'e(m'+e —2) 2k+7

2! 2k+3

FIG. 2. Energy levels of 0' . v.d.p. given by the present calcu-
lation using Green's potential and including 1dni2 and 2sII2 con-
figurations. D.T.W. (a): Calculated by D.T.W. using 1d5i& and
2siiq con6gurations. D.T.W. (b): Calculated by D.T.W. using
1d512, 2sIi2, and 1dai2 configurations.

4. RESULTS

If the series to first order for

Substituting in the equation for F, the following ex- and
pressions are obtained:

are compared,

(~'kif~ J[~k)

(n'k/Jv J[ek)

F (I'nk; P) =B(n'k; Nk; k)I"(m'ek; P),

F'(I'mk; k) =4(e'+I)+4k+6,
—F'(e'nk; k+1)= [4(e'+n)+4k+6](e'+I)+2k+3,

I"(e'ek; k+ 2) = —2e'e —(e'+m) (n'+n+ k+-', )

+2(I"+n') (e'+a+0+1)

2k+5
+f4(&'+~)+4k+6]

2k+3

+-', (e'+e) (2k+5) .

(~'klieg il~k) =B(~'k; ~k; k)I,LV ]+".
(~'ki[V iJ~k) = L4(~'qn)+4k+6]B(~'k; ~k; k)

&&I,)V~]+
it is apparent that the velocity-dependent potential
cannot be taken into account by a modification of
Iq(V'] because the contribution is dependent on I
and e'. D.T.W. took the hard core into account by
modifying IsLV']. In principle, this gives a means of

TAsr.z IV. Matrix elements of the residual interaction.

In this calculation we retained only the terms in

IsLV ] and Irgv ].This is equivalent to the assump-
tion that the velocity-dependent potential is sufIiciently
short ranged to affect the s and P states only, and is to
be compared with the approximation of D.T.W. that
the hard core affects only the s states.

"T.A. Brody, G. Jacob, and M. Moshinsky, Nucl. Phys. 17,
16 (1960).

Matrix
element

Ep
E2
E4

Pp
P2

Present
calculation

—1.558—0.715—0.337—1.834—0.986—0.312—0.515—0.560

D.T.W.

—1.964—1.602—0.766—3.019—1.689—0.649—0.952—0.780

Pandya

—3.00—1.20—0.37—2.90—1.65
+1.50—1.50—0.93
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FIG. 3. Energy
levels from a Green-
type potential with
velocity - dependent
part z U~.
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FzG. 4. Energy
levels from a Green-
type potential with
a singlet Gaussian—1.252 exp (—r'ic')
and a velocity-de-
pendent part z UP.
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TABLE V. Contributions to matrix elements
((&~5i2)'~ I

~
I (t~~is)'~)

Singlet
central Central

Triplet
spin-
orbit Tensor Total

distinguishing the two potentials. However, comparing
the energy levels D.T.W. (a) obtained by D.T.W.
using the 1dsi2 and 2sii2 configurations, and the levels
v.d.p. given by Green s potential in Fig. 2, it is diKcult
to discern the difference. The necessity of including the
1d3i~ states is illustrated by the comparison of the levels
D.T.W. (a), which omit them, and D.T.W. (b), which
include them.

To illustrate the effect of changing the potential,
Fig. 3 shows the energy levels for a potential similar to
Green's, but with the velocity-dependent part multi-
plied by a factor s plotted as a function of s. Figure 4
1s similar bu t lQ th1s case the Gauss1an part of the
static singlet potential has been multiplied by a factor
1.25. This suggests that a better fit can be obtained by

increasing the static singlet strength and decreasing
the velocity-dependent strength.

This same conclusion may be arrived at by a more
detailed comparison with the results of D.T.%. The
matrix elements derived from Green's potential, those
of D.T.W. and of Pandya are given in Table IV. The
present matrix elements are consistently less in mag-
nitude than those of D.T.W. (Table V) which shows
the contribution of the various parts of the potential
to the matrix elements ((1d~i2)'Ji Vi (1dqi2)'J) suggests
that the singlet potential is too weak.

%bile variation of the singlet potential seems to be
necessary to obtain results comparable with those of
D.T.W., it is possible that variation of the triplet poten-
tial would also improve the fit to the observed energy
levels. It is, at present, an open question whether it is
possible to alter the potential, at the same time to im-
prove the agreement both with the energy levels of
nuclei in the shell model and the two-body data.
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