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It is remarked that even in the classical limit the behavior of a charged particle interacting with a stationary
current distribution exhibits paradoxical behavior. This comes from the inequality of action and reaction
forces. It is shown that the vector potential term appearing in the expression for the canonical momenta
represents the electromagnetic 6eld momentum.

I. INTRODUCTION

''T has been shown by Aharonov and Bohm' that
- ~ according to the general principles of quantum
mechanics the behavior of a charged particle will be
affected by the presence of a static vector potential even
though the particle should be constrained to move in a
region of space where the magnetic field, B=g X A, is
zero. This paradoxical situation has since been discussed
by several authors, ' and Furry and Ramsey' have
discussed a similar effect involving the scalar potential.

The effect follows from the canonical quantization
procedure wherein the momentum canonically con-
jugate to the position, p=mv+q/cA, is represented by
(h/i)g operating on the wave function. p then has a
fundamental significance in that it determines the wave
number of the Schrodinger waves.

In the two-slit experiment considered by Aharonov
and Bohm one has a solenoid between the two slits such
that a magnetic Qux is enclosed between paths which

go from the source to the detector through the different
slits, but the magnetic field is zero on all such accessible
paths. Then the classical motion of charged particles
going through either of the slits is unaffected by the
solenoidal currents; but there is a phase difference,
equal 5 '(q/c)+A ds, in the waves going through one
or the other slits which causes a shift of the diffraction
pattern dependent on the value of the solenoidal Qux.
The sense of paradox arises from the dependence of the
quantum behavior on a physical parameter, the en-
closed Qux, which the corresponding classical particle
behavior is seemingly independent of. It may be said
that this shows a peculiar quantum significance of the
vector potential but this is not quite true. The total
momentum, angular momentum, and energy of a
system have fundamental quantum-mechanical signific-
ance as the generators of space translations, rotations,
and time translations, and the potentials appearing in
nonrelativistic problems represent the contributions of
the electromagnetic field to these physical quantities.

Classically, the physical significance of the q/cA(r)

* Supported in part by U. S. National Aeronautics and Space
Administration.' Y. Aharonov and D. Bohm, Phys. Rev. 118, 485 (1959).' W. H. Furry and N. F. Ramsey, Phys. Rev. 118, 623 (1960);
M. Peshkin, I. Talmi, and L. Tassie, Ann. Phys. (N. V.) 12, 426
(1961);L. Tassie and M. Peshkin, Ann. Phys. (N. V.) 16, 177
(1961).
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term in the canonical momentum is that it is the
"interaction" momentum of the electromagnetic Geld,
just as qp(r) is the interaction energy of the electro-
magnetic field, q/crX A(r) is the interaction field
angular momentum. For an isolated charged particle
we know that a portion of its momentum, mass, etc. ,
reside in the surrounding field and the above terms
represent the change in these quantities when the
particles are brought into interaction. (It is of course
only in the nonrelativistic regime that the field proper-
ties may be "integrated out" and expressed as potentials
depending on the positions and velocities of the
particles. )

If, then, a charged particle is incident on a system of
currents P=mv+MV+q/cA(r —R), is the total mo-
mentum, where nz, v, and r are the mass, velocity, and
position of the particle, and M, V, and R represent the
corresponding quantities for the body carrying the
currents. P is of course conserved, .whereas mv+MV is
usually not (action forces usually not equal to reaction
forces in a system of charged particles and currents).

The invariance of physical laws under space trans-
lations leads to the identification of the operator for
the total momentum with the generator of space
translations,

P=P, m, v; +(q; /c)A(r, R)—
+%V~ (A/i)( P, g,+p'ii),

where we have generalized slightly to allow for the
presence of several charged particles. With the assump-
tion that if M is indefinitely large then the state vector

may be represented as a function of the r; with R
entering only as a parameter then it becomes reasonable
to identify (lii/i)Q; with p;=m;v, +q,/cA(r; —R). In
the classical limit the mechanical momentum mv and
the interaction field momentum are separately measur-
able but of course in the quantum limit the separation
is limited by the uncertainty relation. Naturally we
cannot "go behind" the identification of p with (Jr/i) &,
our point, which is modest, is only that the two parts
of p are classically "physical" momenta.

II. THE CLASSICAL LIMIT

We now wish to derive the classical results alluded
to in Sec. I, and incidentally to show that in the classical
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limit the systems considered exhibit a behavior fully
as paradoxical as that of the quantum systems.

We consider a system of stationary currents and a
particle of mass m, charge q, and velocity v incident on
the currents. To avoid irrelevant complications we
suppose that electrostatic imaging effects and the
change in the currents due to induced emf's are negli-
gible. If the currents should be "wound" such that the
magnetic Qux is entirely contained within a certain
region of space, e.g. , the interior of a tightly wound
infinitely long solenoid, or a toroid, then if the
particle does not penetrate this region there is no force
exerted on it by the currents and it maintains constant
velocity. However, the particle does exert a- force on
the currents and will cause the current carrying body to
move as it passes by.

The force on the currents to first order in v/c is —(4src) ' EXBd'r= —(q/c)A(r).
dt

(6)

Newton's equation and Eq. (4)

M V= —(q/c) A(r —R) .
For an infinite straight solenoid carrying Qux 4,

A(p, p)=C(2srp) 'ijr, thus a charged particle placed
at a distance p will cause the solenoid to circle around
it with angular velocity to= (q/c)C'(27rp'M) '. Similarly,
a charged particle a distance s along the axis of a
ring solenoid will give the ring a s momentum
= (q/c)C a'(s' ja') 't', where a is the radius of the ring.

From the general conservation laws of electro-
dynamics the sum of the forces on the particle and
currents is equal and opposite to the rate of change of
the momentum of the electromagnetic Geld, and so
from Eq. (4)

= —q/c(vX &)XA(r),

= —q/cI (v P')A(r)+vX(lvrXA) —v(P' A)], (1)

We now have

where,
p+M V= const,

p = nt v+ (q/c) A (r), (g)

where

(2)

is the vector potential at the particle's position r due
to the currents. We have supposed the currents sta-
tionary, then from lvr j=O, Q A=O follows.

The force on the particle is

F,= (q/c) vX (V'X A), (3)

and so from Kqs. (1) and (3)

F„+F;=—q/c(v &)A= —(d/dt)(q/c)A. (4)

We have tacitly assumed that the current-carrying
body was so massive it did not move, however, if it has
finite mass M, velocity V, and c.m. position R then
Eqs. (1), (3), and (4) remain correct to first order in
v/c and V/c if the substitutions v ~ v —V, r +r—R ar—e
made in Kqs. (1)—(4).'

We see from Kq. (4) that forces between a charged
particle and a system of currents are usually not equal
and opposite (e.g. , neutron-electron interaction in the
classical limit). The most striking examples are those
for which there is no force on the particle then from

3 This follows most easily from the fact that forces on a sta-
tionary body are invariant under Lorentz transformations except
for terms of the order V'/c', see R. C. Tolman, Relativity, Thermo
dynamics, and Cosmology (Oxford University Press, New York,
1934), p. 45.

and the (q/c) A(r) term with A given by (2) represents
the field momentum (strictly speaking it is the "inter-
action momentum" obtained by crossing the E from
the particle into the B from the currents and vice versa).

We now give the direct elementary derivations for
the field momentum pr and angular momentum Lt. We
suppose the currents stationary and choose the gauge
Q A=O. Neglecting terms of second order in v/c,
'vrX E=O. It is then elementary to show that EXB
=4trpA+gE A—g EA —g AE. In integrations
over all space the terms involving l7 equal zero, and
we obtain

pt= EXBdr= (q/c)A(r),
4mc

(r—ri) X (EX B)dr = (q/c) (r—r,) XA (r) .

(10)

In Eq. (10) we have computed the angular moinentum
about a fixed point r~.

Note added in proof. The discussion given above of
the significance of the vector potential term in the
canonical mornenta is similar to one given by Murray
Peshkin, 4 which I was not aware of at the time this
paper was written.

Murray Peshkin, Proceedings of the Midwest Conference on
Theoretical Physics held at the Argonne National Laboratory,
June 1962.


