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ficients in Eq. (23). In addition, they a,re used to find a,

general expression for the coeKcient of the leading
term of G'(s). We calculate the determinant

DetLe(p, ,qs)] for the case in which each set consists of
the numbers 0, 1, 2, (j—1). If the rows and
columns are arranged so that all the odd indices appear
first, the determinant is in clearly factorable form, with
zeros in all positions of the two off-diagonal (even-odd,
odd-even) blocks. The dimensions of the factors will

be equal or will differ by one, depending on whether

j is even or odd. The P,q& element of either factor is

(p~+qs+1) '. Either diagonal block is designated as
D(srt), where nz is the largest value of p; or q~. Evalua-
tion of D(m) is straightforward and may be found

(A6)

in the treatise by Muir and Metzler":

(2t+n)!
D(2st+n) = II

(4t+2n+1)!!
X (4t+2n+1); n=0 or 1. (A5)

Whether j is odd or even, one may write DetLe(p;, q&)j
as D(j)D(j—1). Evaluating this product from Eq.
(A5) and substituting the result in Eq. (23) yields, for
the leading term of G&'(s)

kt
i-II —

i II
l ~& i 2 J .=t (2h+1)!!(2h—1)!!

"T. Muir and W. H. Metzler, A Treotsse oN the Theory of
Determinants (Dover Publications, Inc., New York, 1960), p. 429.
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The transition amplitude for the gravitational Geld as given by the Feynman sum over histories expression
is analyzed in analogy to the electromagnetic transition amplitude. The analysis is based on an explicit
representation of the Feynman sum by means of a lattice. The measure is found by consistency requirements
and differs from those proposed by other workers. Particular attention is paid to the subsidiary conditions
associated with the gauge group. It is shown, that the present approach is equivalent to the quantization
by means of canonical variables as proposed by Dirac.

I. INTRODUCTION

HIS paper deals with the problem of assigning a
well-defined meaning to

histories

if 5 is the action for the free gravitational field. The
present approach may actually be extended to the more
general case of gravity interacting with matter. For
simplicity we shall deal with the gravitational field
only.

The prescription given by Feynman' to compute (I.1)
is not completely straightforward, because the action
for the gravitational field is degenerate. The presence of
an invariance group generates various diKculties which
are well known for the case of the electromagnetic field
and its Abelian gauge group. The quantization of the
electromagnetic field in the framework of the Feynman
sum over histories is analyzed in some detail in Sec. II

*Permanent address: Institut fiir Theoretische Physik Uni-
versitKt Bern, Switzerland.

t Supported by Janggen-Pohn-Stiftung and Schweizerischer
iVationalfonds.

' R. P. Feynman, Rev. Mod. Phys. 20, 267 (1948).

and constitutes the basis of the present approach to the
quantization of the free gravitational field. In particu-
lar, we examine the subsidiary condition associated with
the gauge group, which in the case of the electromagnetic
transition amplitude states that this amplitude is in-
variant with respect to a gauge transformation of the
potential at the initial and the final surface. Section III
deals with the generalization of this discussion to the
gravitational case in a purely formal and heuristic
manner. A more precise framework for the evaluation of
the gravitational amplitude is set up in Sec. IV and the
derivation of the subsidiary conditions in this frame-
work is given in Sec. V where we also proceed to convert
them into differential form. Finally, it is shown in Sec.
VI that the results obtained are equivalent to the results
of the Hamiltonian quantization procedure as proposed
by Dirac. ' One could and should trace out in a similar
way the connection between the sum over histories
formulation and the canonical formalism given by
Arnowitt, Deser, and Misner. ' However, to treat this
connection would lengthen the present account unduly.

' P. A. M. Dirac, Proc. Roy. Soc. (London) A246, 333 (1958);
Phys. Rev. 114, 924 (1959); R. Arnowitt, S. Deser, and C. W;
Misner, Phys. Rev. 113, 745 (1959); 116, 1322 (1959); 117, 1595
(1960); 118, 1100 (1960).
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S= Z(g)d'x;
(I.2)

We write the amplitude formally as

De6nition of the Sum Over Histories
on a Lattice of Points

We adopt the original de6nition of the Feynman sum
over histories, where the integrals involved are de6ned
on a lattice of points. In our case, the lattice covers a
region in four-dimensional space time between two
space-like hypersurfaces r' and 7-". The lattice will then
consist of a family of hypersurfaces between r' and v"
and a family of curves connecting r' and v-", whose
intersections with the surfaces are the points of the
lattice. The transition amplitude from one member of
the family of hypersurfaces to the next one is set pro-
portional to' expiS' where S' is the classical value of the
action S for stationary histories. The action is speci6ed
as

where

t—= e(X+1), t,= t+se, q~yi= q, qo= q ~

We write the measure Sq as

N

nq= g f(q;)dr;d8;d p;, (I 7)

What we want to emphasize is that the function fwhich
appears in the measure X)q is determined by con-
sistency. For a given action there is only one measure
such that the limit e~ 0 exists. To show how f(q) is
determined by the action, consider Eq. (I.6) and insert
explicitly the in6nitesimal amplitude from tN to t".

with an as yet unknown function f(q) Equ. ations (I.5),
(I.6), and (1.7) define the amplitude and give meaning
to the formal expression

(q",t" I
q', t') =x e'ex)q.

X 8' Sg
(q' t" Iq t') — i' e'e iq", "tc, "—)

(I.3)

where the measure Sg includes the product of the
differentials dg00. dg33 for each point of the lattice. The
action S is not a quadratic functional of its arguments.
We therefore have to expect that the measure will
depend on the history g„„(x).

Analogy: Free Particle in Spherical Coordinates

In order to understand how this comes about, let us

briefly investigate the transition amplitude for a non-
relativistic free particle in spherical coordinates. Here
the action is

5=— {r'+r'(8'+ j' sin'8)}dt
2

)(f(q)drd8dy(q, t" e
I
q', t') . —(I.9)

As e —+ 0, X~~ the amplitude from t' to t"—e con-
verges to the amplitude from t' to t"; therefore, we
conclude

X,e' '«" "~& " '&if(q)drd8dy%(q)

=+(q")(1+o(1)), (I.10)

where %(q) is an arbitrary function of q. Using the action
(I.4) one finds

So(q" t"
I q

t"—e

= (nz/2e)L(r" —r)'+r'{ (8"—8)'+ (y"—&p)' sin'8}j
&& (1+o{(q"—q)'}) (I.»)

lim(27rie) '~' exp (ix'/2e) = 8 (x),
e-+0

(q", t'+ e
I
q', t') =N, e'e'«""+'~ &"&(1+o(c)), (I.5)

What is the analog of X)g in this caseP
By means of the formula

According to Feynman's definition, the in6nitesimal
amplitude is given by4

where q is shorthand for r, 8, q, and o(e) indicates that
terms of higher order than e are irrelevant; in what
follows limit e~ 0 will always be understood and w'e will
disregard the terms vanishing in the limit. The ampli-
tude for a finite time inverval is de6ned by

which is the essence of the method of stationary phase, '
the integral in (I.10) may be evaluated with the result

(I.12)

N

II (q'+i, t'+i I q*,t') &q,
i 0

This shows that it is not consistent to put f(r,8, q) = 1,
(I 6) such that the measure X)q would be independent of the

history q(t), but that f has to be taken as
3We use units such that A=c=16mG=1. Greek indices p, v

=0, 1, 2, 3; Latin indices i, k = 1, 2, 3. Signature (+———).
Actually, the transition amplitudes are distributions. In order

to carry out the indicated manipulations properly one has to
smear the equations with suitable test functions on both sides.
Such an operation will always be understood.

f(r,8, rp) = r' sin8; 1V,= (2~i /m) es" (I.13).
5 See Appendix 4.
'Of course, f and E, are only determined up to a constant

S,—+c 'E„ f~cf.
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This result could of course have been derived by
transforming the measure in Cartesian coordinates,
g; P dx;dy, ds; to spherical coordinates; but there is
no analogous transformation at hand to determine the
measure in the gravitational case.

valid for a lattice whose hypersurfaces (including r" and
r') are characterized by x'= constant and curves
x"=constant. gr, is a product over all points of the
lattice, detg is the ordinary determinant of g and detg is
the determinant of the intrinsic metric of the hyper-
surfaces.

This result differs from the measures given by
Misner, Klauder, s Laurent, g and DeWitt. ' How do we
understand the fact that our measure is not invariant
under coordinate transformationsP The reason is not to
be found in our choice of the action, but in the very fact
that we are dealing with a lattice to de6ne the ampli-
tude. Unless one finds a way to define the amplitude
without making use of a lattice, he cannot expect the
measure to be invariant. In the framework of a lattice
the covariance of the amplitude has to be distinguished
from independence of the choice of lattice, in which it is
evaluated. As one sees from (I.13) the normalization
constant depends on the spacing ~ between the points of
the lattice. The normalization constant will therefore be
different for different lattices, even if the number of
points of the two lattices are the same. The invariance
argument given by Misnerv consists of two steps. First,
one renames the lattice points performing a coordinate
transformation and then compares this lattice to a
lattice whose points have the same coordinates in the
old frame as the original points in the new frame. This
clearly involves the comparison of two different lattices
and therefore one has to account for a change of the
normalization constant in the course of the argument
which destroys its usefulness to find the measure. In
other words, the lattice singles out a particular coordi-
nate system. From now on we shall work in this particu-
lar coordinate system, where the family of hypersurfaces
is characterized by

x = 0'~= T +'se = coils t. '

l
Tp

ts=0, 1, , X+1
I/tN+1= 7

(we use the same letter r to denote the surface as well as

"C.W. Misner, Rev. Mod. Phys. 29, 497 (1957).' J. R. Klauder, Nuovo Cimento 19, 1059 (1961).' B. Lsurent, Arkiv Fysik 16, 279 (1959)."B.S. DeWitt, J. Math. Phys. 3, 1073 (1962). Note however
that the 8 function occurring in the metric of the functional space
leads to factors of the type fb'(0) j' in the measure. Expressed in
terms of lattice variables this is equivalent to 6 ' e ' .

The Measure for Gravity

In Sec. V we apply the above procedure to the
gravitational transition amplitude with the result

ng= Const III detgI
—"'IdetgI II &g~ (I 14)

hatt& V

its associated time) and the curves are given by
x'= constant.

II. THE ELECTROMAGNETIC FIELD

In order to illustrate the method we will use to
quantize the gravitational 6eld, let us consider the
analogous steps in the simpler case of the electromag-
netic 6eld. The simplicity of this system is due to the
fact that its gauge group is Abelian which implies the
linearity of the field equations. "The quantization of the
electromagnetic field in the framework of the Feynman
sum-over-histories formalism has been investigated by
Wheeler" and Laurent. "The formal expression for the
probability amplitude reads

(A "r"
I
A. 'r') =x e's~A

1
S=—— I'„„I'~"d'x;

nA =g dAsdA, dA, dAs

A„denotes the vector potential and P„„=B„A„—B„A„,
the electromagnetic field strength. gr, indicates a
product over all points of the lattice,

Classical Action for Electromagnetic Field

The specification of the measure is not enough to
define the integral completely. We also have to adopt a
rule how to compute S as a function of the variables
over which we integrate, i.e., as a function of the
A„(xz,), where xz, is any point of the lattice. Feynrnan's
original definition 4 speci6es S as the sum of the con-
tributions from the slices between successive surfaces of
the lattice. The contribution from one slice is defined to
be the value of 5 at the classical history A„'(x) which
satisfies the classical equations of motion and assumes
the prescribed boundary values A„(xl,) on the two
successive surfaces. We shall accept this de6nition in
principle. However, we meet with the following difhculty
characteristic of systems with a gauge group. Our
Lagrangian is degenerate in the sense that the classical
equations of motion for the potential A„'(x) do not
determine it uniquely. Moreover and more important,
the value of the action at the classical path remains the
same if we change the boundary conditions by a gauge
transformation. Therefore, expiS will be the same for
histories which differ only by a gauge transformation.
Since there are an infinite number of gauge equivalent
histories, the integral will diverge. In order to overcome

"R. Utiyama, Phys. Rev. 101, 1597 (1956);M. Gell-Mann snd
S. L. Glashow, Ann. Phys. (N. Y.) 15, 437 (1961)."J. A. Wheeler, unpublished lecture notes, University of
Leyden, 1956."B.Laurent, Nuovo Cimento 4, 1445 (1956).

~4 R. P. Feynmsn, Rev. Mod. Phys. 20, 267 (1948).
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this difhculty, let us decompose each history into two
parts a„(x) and A(x) by"

A (x)= u (x)+BQ(x) ao(x) = 0 (II.2)

and consider the fields a„(x) and A(x) separately. u„
describes the gauge-independent part of A „while A. is
affected by gauge transformations Z in the simple
manner X=A+X. We fix the choice of the gauge-
independent part u„by the condition a0=0 and fur-
thermore dispose of the arbitrariness in A with the help
of the condition A(x) =0 for xer'.

I.et us first keep A(x) fixed and apply Feynrnan's rule
to the histories a„(x). The extremal history is charac-
terized by

~ '(x) —8 aB'u&'(x) =0, &o'(x) =0,
0, 1=1,2, 3. (II.3)

Although it is not dificult to determine the solution
a&'(x) exactly in terms of given boundary values on r;
and 7.,+~, we restrict ourselves to the following approxi-
mation. "We are interested in the extremal action only
in the limit r;+&—7-;=&—+0. Clearly if we specify
al„-&') and aI,&'+" on 7-; and r;+~ arbitrarily, the time
derivatives of the solution c~' that connects these
boundary values will blow up as e —+ 0 while derivatives
with respect to x', x', x' will tend to some average of
those on r; and on r;~~ and thus remain finite. To And

the extremal history u&, '(x) as &~0 it is therefore
sufhcient to consider solutions with the properties

8&a&, '(x) = o(1); Boa&,'(x) = o(1/e). (II.4)

In this approximation (II.3) becomes

ii&, '(x) =0+o(1).
Thus we have

we keep the integral A.&'+"—A."& fixed. The only condi-
tion we 6nd for the stationarity of the action against
variations of Ao or equivalently of A. is

h(A&'+'& —A&'&) = V (A~'+'& —A&'&). (II.6)

If we let v ~~~ v; this reduces to the fourth of Max-
well's equations

DAO ——V BOA,

which has the character of a subsidiary condition, since
it involves only first-order time derivatives.

If we insert the condition (II.6) in (II.S), we find

1
5';~&;———— (B&'+'&—B"&)'d'x(1+o(e') ), (II.7)

26

B&(x)=A&(x) —8& G(x—y)8&A &(y)d'y,
(11.8)

DG(x) =5(x).

S'~~; denotes the value of the action at the extremal of
both a& and A, or what is equivalent, both A I, and Ao.
BI,is the gauge-invariant quantity formed out of A & and
satishes BA,BI,=0.

Sum Over Histories for Electromagnetic Field

Let us return now to the quantum-mechanical system.
Since the value of the action at the extremal histories is
given by S';+&;, Feynman's rule states that the in6ni-
tesimal transition amplitude is given by E, expiS;+&, ;.
Consider its action on any given state functional. We
have

@~(A (~+&&)

and the expression for the action in terms of the
boundary values aA, "' and uI, &'+" is

1
ge. i .— (a ~+ —a ~&)'d'x(1+0(e')).

26

If we express this in terms of the original variables A„,
by solving (II.2) for a&(x) and A(x), we find

S';+&,,———— LA~'+" —A&'&

2c

—~ (A~ "+"—A "&)j'd'x(1+0 (e') ), (II.S)

A 0 (x)dx".

This shows explicitly, that we may change the history
Ao(x) without changing the value of the action, if only

"See Ref. 14.

=bmoc, e'8"+' '
e~o

Xg dA, &'&dA, &'&dA, &'&dA, ~'&e(A„~'&) . (II.9)

Here g„denotes a product over those points of the
lattice which lie on 7.;. Since S ~~; is independent of
Ao&'+" and furthermore depends on A I,

&'+') only through
the gauge-invariant combination BI,('+'), 4' must also
have this property. We write it as 4'(A

&,
t'+'&) and note

that
4'(A g+ 8 &,x)=4'(A g) . (II.10)

This implies immediately, that as 7 ~&~ ~;, in general,
4 will not converge to 0, since this functional will, in
general, not have this property. "In other words, the
infinitesimal amplitude does not reduce to a delta
functional as 7 '+y~ 7 ' it reduces to a projection

"We discuss only the properties of the amplitude and for that
matter + is an arbitrary test functional. Of course if + is a physical
state functional, i.e., independent of A0 and gauge invariant, then
+' -+ 0'(e ~ 0).
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operator onto functionals independent of Ap and which
are gauge invariant in the sense (II.10).Another feature
of (II.9) is that it displays explicitly the degeneracy in
the integrations over A„. If, e.g., 4 is independent of
Ap then the integration over Ap clearly diverges, which
implies that the normalization constant vanishes. In
other words, we have to average over A p rather than to
integrate in order to keep N, well defined. However,
there is still a remaining degeneracy left in the variables
A&, A2, A3, since 5';+&, ;depends only on 8&&'~. By virtue
of BI,B&=0 these are only two independent variables. If
we put

A&,
——B&,+8&,C; BpAp hC,—— (II.11)

and insert this nonsingular linear transformation in the
measure and at the same time restrict the integrations
on BI, to the infinite-dimensional plane BI,BI,=O with
the help of a delta functional, we obtain

+'(A i'+'&)

lim X,' exp iS;+i, +i D(x)4&IB&,"'(x)d'x
'ri+1~&i

Formal Derivation of Gauge Invariance

Consider the transformation

A„-+A„=A „+B„Z. (II.14)

Since the measure as well as the exponential are in-
variant under such a transformation, we expect to have

(A„"+41„Z",7"
t
A„'+4&„Z', r')

= (A„''r"
~

A„'r') (I.I.15)

Consider the special case Z'=BpZ'=0. The two func-
tions fi(x) = BpZ (x,r")= 8pZ" (x) and fp (x)=Z (x,r")
=Z"(x) may be chosen independently. For fp 0one-—
obtains in particular

(A p"+fi, A p", r"
~
A p', A p', r')

=(Ap" A~" r"lAp Ap r').

Since fi is arbitrary this implies that the amplitude is
independent of Ap". On the other hand, (II.15) is
identical with (II.10) if fi——0 and fp=x.

Xg dA p&4&dBi&'&dB, &'&dB,&'&dCdD

X@(B&,"+8pC Api' &) . (II.12)

In this form the divergencies are entirely contained in
the integrations over Ap&'~ and C which have simply to
be replaced by averages in order to keep the normaliza-
tion constant finite. S(A) =S(A)+ 8 F&"8 Zd4x— B„FI"'Zdo „.

Subsidiary Condition as Differential Form
of Gauge Envariance

Let us discuss still another more interesting deriva-
tion. Consider again the transformation (II.14) this
time with Z infinitesimal. %e have

Gauge Invariance of the State Functional

Applying the method of stationary phase, which will

be discussed in some detail in the gravitational case, one
finds from (II.12)

4'(A )= %(A +8 C, A )gdCdAo

Again using the translational invariance of the measure
this implies

A "r" 8 F&"Bgd4x

B„F~"Zdo „A'r'
i
=0. (II.16)

dCdA p, II.13
By virtue of the 6eld equations in matrix form

if the normalization constant is appropriately chosen.
This displays explicitly the gauge invariance of 0",
since the right-hand side is an average over all gauges.

The property (II.10) may be trivially obtained from
the formal expression (II.1). The reason we went
through this detailed discussion at all is only because its
analog in the gravitational case cannot be obtained in a
satisfactory way by means of formal manipulations.
This is because the analogous equations to (II.10) arise
from invariance under transformations of the coordinate
system. If one wants to derive any formal consequences
of this invariance from the analog of (II.1), he has to
change the lattice as well as the coordinate system,
which makes the derivation of these conditions very
clumsy.

(II.17)

which may also be derived from the translational
invariance of the measure, '" we conclude

(A "r"
~
B„FIP(x)

~

A'r') =0 xpr" or xpr'. (11.18)

Since the amplitude is independent of Ap Ap let us
for simplicity assume Ap"=0. Then for x~7." this equa-
tion reduces to

(II.19)

It may be shown that the matrix element of A A, is given

'~ Consider the more general translation A„=A„+n„and apply
the same argument. See Ref. 7.
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by

(A "r"
~

A a(x)
~

A'r')

i— (A"r"
i
A'r'), xpr", (II.20)

5A "(x)

as may be expected from the canonical formalism.
Thus, the condition (II.19) amounts to

8 a)8/8A a"(x)j(A"r"
~

A'r') =0, (II.21)

which is the differential form of (II.10). We shall refer
to this condition as the subsidiary condition, since it
corresponds exactly to the subsidiary condition in the
canonical formalism, where we have

plaAa=0 (Ap ——0).
We would like to emphasize that neither the inde-

pendence of the amplitude from Ao' and Ao" nor the
fact that the amplitude is a gauge-invariant functional
of A I,

' and A I,
" arise from a particular choice of the

gauge. They are straightforward consequences of the
definition of the amplitude.

The Concept of Reduced Amplitude

In view of the application to the gravitational field
let us briefly define and discuss the notion of reduced
amplitude. As a preliminary note that it is convenient
to use the variables u„(x) and A(x) directly as variables
of integration in the Feynman integral (II.1). In order
to sum over all histories A„, we may sum over all gauge-
independent parts a„as well as over all gauges A. This
amounts to a transformation of the measure

SA = SaSA,

Su=a duidupdup, SA=+ d(Ops), (II.22)

boundary value a~", when we wish to express the
original amplitude in terms of the reduced one. This
boundary value is given by A &"—8&".Clearly only the
boundary value h." of A. (x) enters. To carry out the
integrations over A in (II.24) we have to apply
Feynman's rule to the propagation of the history A.
This is trivial between any two surfaces in the interior
of the lattice, because A(x) does not enter at all in the
infinitesimal amplitude for aI, there. The extremal of a
constant is the constant itself. To keep the normaliza-
tion constant Xg 6nite, we replace the integration over
A again by an average, i.e., we may simply disregard it.
This however does not apply to the propagation of A
from the surface nearest to r" to 7.".Let us explicitly
write the integrations on the last surface. Dropping the
average over A on all other points of the lattice we
obtain

(A "r"
~

A'r') =N, Na e's'"' "' '(u —r" p I uY)—

X g duidupdupdplp+. (II.25)

Here the requirement that S' be stationary with respect
to the history A as well is not trivial. The result is
exactly the in6nitesimal propagator F, expiS'. ..",
we obtained earlier. Thus we 6nd

(A" "iA' ')=N 's'"'"'-(u "—iu" ')

X g du&dupdu, (II.26.)

If one makes use of the result (II.13) he finds

(A-."
I

A' ')

dC. (II.27)

such that

(u r ~u r )=X e'sS

Let us define the reduced amplitude by

(II.23)

The average over Ao drops out since the reduced ampli-
tude is independent of Ao. There is actually no asym-
metry in initial and final states in (II.27), because the
reduced amplitude satis6es

(A a"+&aC, r"
~

A a'+~a&, r') =(A a"r"
~

A a'r')

due to the fact that the choice a0=0 allows for time-
independent gauge transformations.

On the right-hand side, aI,
"has of course to be expressed

in terms of A I,
"and BI,A". The advantage of this way of

splitting up the summation is that the reduced ampli-
tude is a well-defined object, since the classical equa-
tions of motion for the field ua(x) are not degenerate.
The constant X, can be normalized such that the re-
duced amplitude satisfies the composition law analogous
to (I.7). Furthermore, because of gauge invariance, the
reduced amplitude is independent of the history A(x).
The only place this history shows up is through the

III. HEURISTIC ANALYSIS OF THE SUBSIDIARY
CONDITIONS FOR THE GRAVITATIONAL FIELD

In this section we want to exploit the analogy with
the electromagnetic 6eld. Some of the manipulations
will be purely formal and will have to be justified as
soon as we introduce a properly defined framework to
compute the transition amplitude. However, for a first
orientation of what we may expect to find in a proper
evaluation of the Feynman integral, these manipula-
tions will be instructive.
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What is the analog of the statement that the electro-
magnetic amplitude is independent of A p' and A p"? The
reason for this was that in the gauge transformation
(II.14) A o is transformed by the slope BoZ which may be
given arbitrarily on v' and 7", in contrast to the
gradient B,Z whose three components are of course not
independent of each other.

Consider the analogous transformation

Subsidiary Conditions as Di6'erentia1 Form
of Coordinate Invariance

What may we expect to find as subsidiary conditions
in the gravitational case? We have already stressed the
fundamental difference between the gauge groups of
electromagnetism and gravity. The electromagnetic
gauge group leaves the structure of the lattice unaffected
while the gravitational gauge group is the group of
coordinate transformations and therefore affects the
lattice as well as the Geld. Despite this difference, let us

briefly sketch the formal analogy between electro-
magnetic and gravitational subsidiary conditions. In
Sec. V we shall give a detailed derivation of the gravi-
tational subsidiary conditions which accounts for the
modifications due to the eGect of the gauge group on the
lattice. As a first orientation the formal analogy is
instructive.

In analogy to the infinitesimal electromagnetic gauge
transformation used in the derivation of the electro-
magnetic subsidiary condition at the end of Sec. II, let
us consider an infinitesimal coordinate transformation

g„„(x)= B„h"B„A. ~g e(A(x) ) . (III.1)

Since we may choose the slopes BpA arbitrarily, we may,
in particular, take them such that g;p=0, gpp=1 on v'

and on r". If we do not change the coordinate system
inside v' and 7", we have, furthermore, g;~=g;~ on ~'

and on 7.". Near v" a transformation with these
properties is given by

A'(x) =x'—(g'"'/g"") (x'—r")
(III.2)

A'(x) =x'+L(g"") ' '—1](x'—7")

and analogously near v'. How does the action behave
under such a transformation? With the help of the
identity

States are Functionals of the Metric Induced on a 2 —& 2*in Dirac's Hamiltonian theory. "Thus, we may
Space-Like Hypersurface restrict ourselves to orthogonal boundary values g&p"

=gyp =5@, on 7 and 7

~= —~
I g
I"'+~ f I g I"'(g""I'""—g""I'"')&, (»I 3)

where R is the curvature scalar, one finds

g"(*) g..(*)=g,.( )+~g...
8g„,= V„5A„+V„bA„

(III.6)

Z(g)d4x= Z(g)d'A+ q;.—(p, ,

I
gl'"~

I

—lg"d'*
(g'l
(goo]

Here V'„denotes the covariant derivative with respect
to the metric g„„.Again making use of (III.3) one finds
the transformation law for the action:

5S= Z (g) d4x — Z (g)d4x

Since the action differs from J'Rlgl'~'d4x only by a
surface term, only the boundary values of the trans-
formation A&(x) occur in the transformation law, which
are given by (III.2) in terms of g'o and g".

Instead of summing over all histories g„„with the
fixed boundary values g„p', g„p" we may as well sum over
all histories g„„which have orthogonal boundary values
g„p'=g„p"=5„' if only we account for the additional
term in (IV.4). This shows that although the amplitude
is not independent of g„p' and g„p" these variables are
entirely contained in the phase factors expiq, ~ and
exp —iq, . Put

S "8A&lgl'~'do„+6,

S"—R„"——5 "R

lp x g'kp a

—lg..(g'I'-e" —
g "I'-ee)l~g""I gl"'~ i.

Since g„p=8„' on w' and 7", 6 becomes

~=~i+Au,

(III.7)

z, e'emg= e'&"'(g"r"
I gY)e

—'&", (III.S) (g "d i g'k go)~g'
I

—
gl 'd x~

2

» P. A. M. Dirac, Proc. Roy. Soc. (London) A246, 333 (1958),

where the amplitude (g"r"
I
g'r') now is a functional of 1

the spatial components of the metric tensor on v' and ~'gi g ~g' Igl 'dx
7 only. The unitary transformation expi p, on all state
vectors and amPlitudes is trivial and we shall in the The origin of the term g is obvious. The transforme
following deal always with the transformed amplitude
(g"r"

I
g'r'). This corresponds exactly to the transition
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histories g„„(x) do not in general have the properties
g„o=5„' on 7' and r". Therefore we have to perform an
infinitesimal unitary transformation exp@ad, on each of
the two surfaces in order to find the transformed ampli-
tude. (g"r"

I

g'r'). This exactly cancels 6&. We thus have

(f"'lfr')

subsidiary condition into differential form is consider-
ably more complicated than the analogous step in the
electromagnetic case, due to the nonlinearity of the
gravitational system; this will also be carried out in
Sec. V.

Subsidiary Conditions and Bianchi Identities

We would like to discuss brieRy two other ways to
arrive at the subsidiary conditions. The first one makes
use of the Bianchi identities which imply

+il g"r",2 5 "IgI"'5AI'do„+6, g'r' . (III.9)
.( „„I S„"v',bA.~d'x= S„"8AI'do.„. (III.15)

On the other hand,

(f'r" Ifr')

=(g" "lg' ')+ bg, g,"(x)
5g;p (K)

The matrix element on the left-hand side vanishes if the
field equations in matrix form hold, leaving us again
with (III.14). This procedure is not strictly valid be-
cause (a) V'„8A" in (III.15) involves g„„ itself such that
the field equations are not sufhcient to show that the
left-hand side vanishes and (b) Misner's method" to
derive the fieM equations is not applicable to our
noninvariant form of the measure.

+Sg;,'( ) (g" "Ig' ')d'x. (III.10)
bg;s'(x)

Let us look closer at the quantity 6&. It is a linear
functional of the velocities j;&, which we may express in
terms of the canonical momenta

BZ
pcs lgll/2(g~lgsm gikglwa)g,

(g.o=4') (III 11)

The quantity 6& may be written

P "8g s"dsx — P "bg s'd'x. (III.12)

Anticipating the result that the matrix element of
P's(x) with x«" is essentially a functional derivative
with respect to its canonically conjugate coordinate g;I„-,

(e" "Ip"( ) Ic' ')
= —iL~/~g'. "(x)j(C" "IC' '), * "
=+il ~/&g's'(x)l(C"r"

I
C'r') )

x«' (III.13)

which we shall justify later (we disregard factor ordering
ambiguities at the moment), we see that Aq cancels
exactly the terms arising from the transformation of g'
and g" in (III.10).Thus the subsidiary conditions read

(I"r"I5'lgl"'(x)lg'r')=0 x«' or x««" (III 14)

This is the analog of the electromagnetic subsidiary
condition (II.12). We shall see in Sec. VI that these
equations have to be modified slightly in order to ac-
count for the transformation properties of the measure.

The next step which consists of converting this

Coordinate Invariance of the State Functionals

The second way is to argue directly from the gauge
invariance of the amplitude under transformations
which leave the surfaces v-' and ~" invariant. A change
of the coordinate system inside the surfaces 7-' and 7-"

leaves the amplitude unchanged. This implies that the
amplitude depends only on the intrinsic geometries of
these surfaces and not on the components of the metric
tensor directly, which are of course affected by the
transformations. This argument has to be considered as
heuristic since only later will be in a position to prove
the invariance of the amplitude under these trans-
formations, which is equivalent to the subsidiary con-
ditions (III.14) for y = 1, 2, 3.

The fourth condition is associated with the vanishing
of the Hamiltonian and cannot be obtained by this kind
of argument. It involves coordinate transformations
which change the shape of the surfaces v-' and v-".

Therefore we find a relation between two diGerent
amplitudes rather than one which states a property of
the amplitude we are dealing with. This relation is the
dynamical law for the transition amplitude.

For the particular case that the coordinate trans-
ormation under consideration carries the surfaces v'

and 7" again into surfaces x'=constant we obtain the
result that the amplitude is independent of v.' and v".

IV. THE REDUCED AMPLITUDE

In this section we shall develop a method to define
the Feynman amplitude for the gravitational field.
Although no explicit expression for this amplitude is

'9 C. W. Misner, Rev. Mod. Phys. 29, 497 (1957).
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obtained, the framework set up in this section will
enable us to compute matrix elements between two
states, each defined on the intrinsic geometry of a
space-like hypersurface.

Gaussian Coordinates

We proceed in close analogy with the discussion of the
amplitude for the electromagnetic 6eld. As an analog of
(II.2) we take

g„„(x)=B„A (x)B„AS(x)a p(A(x)); a„o—=8„', (IV.1)

i.e., we introduce a Gaussian coordinate system. It is
known that a nonsingular transformation A&(x) leading
to a Gaussian coordinate system exists in a finite region
of space-time. However the extension of this region
depends on the behavior of g„„(x).One may easily con-
struct sets of four-geometries, which are nonsingular in a
common domain, but do not admit Gaussian coordi-
nates in any common region. Suppose, e.g. , that g„,(x)
is nonsingular and admits a Gaussian coordinate system
throughout the region between x'= 0 and x'= T, but not
for x'(0 or x'&T. Define a set of four-geometries

g. '"'(*) by
g„„i"i(x)=X'g „(Xx) X&1.

These geometries admit a Gaussian coordinate system
in the interval 0&x &TjX.If the set includes geometries
g„„&"&(x) with arbitrarily high X then there is no common
region where each of the geometries admits a Gaussian
coordinate system.

This implies that for however small we choose the
spacing between v' and 7-", there are always nonsingular
histories g„„(x) which do not admit a Gaussian coordi-
nate system, nonsingular throughout the region be-
tween v' and v". Our attitude towards these difhculties
will be to restrict the summation to those g„„(x)which
do admit such a coordinate system throughout the
region between v' and v". We shall restrict the summa-
tion furthermore to those histories g„„(x) for which all
the surfaces 7; of the lattice are totally space-like. This
is already implied in the form (I.14) of the measure.
Although these might seem to be enormous restrictions,
we would like to point out, that the subsidiary condi-
tions we want to obtain and which are the heart of the
matter are of differential character. Furthermore they
concern only the boundaries ~' and v" of the domain of
the histories g„„(x).

We complete the specification of A.& and u;~ by taking
A&(x) =xl'(xer') This implies a.,~'=g;q'.

Transformation of the Measure to New
Variables of Integration

Instead of summing over all histories g„„(x) we may
equally well sum over all histories u, &(A) and over all
transformations to Gaussian. coordinate systems A&(x).
The boundary values of these histories at v' and v" have

which contains the two parameters n and P. (We shall
work with this general measure and later determine the
values of n and P to be —

~~ and 1 with the help of the
consistency argument given in Sec. I.) The result we
find in Appendix 1 reads

II dg"=2ldetAI'Ide«l

x I
deta

I II da, II d(&D ), (Iv.3)
$&k

where detA denotes the determinant of 8&'(i, 0 = 1, 2, 3).
The 10 variables of integration g„„are thereby replaced
by the 6 variables a;i, and 4 variables BOA&. With the
further notation

g g ——8 A'8+ a +8 A 8+'=8 A'8& b ~, (IV.4)

n«sa=II cV IdetA" I'i'+'I detAI' +'

X lde«l +'ldet&l' II da'~ (IV S)

~A=III de«l-i II d(ag~),

we have

(IV.6)

Transformation of the Action

The action transforms according to

z (g)d'x= z (a)d'A+ x,-—x, ,

x (A g) (gp~B A vA
(IV.7)

g"a.A„A„i)
I g
—

I
»~d, . -

Because a coincides with g on r' by construction the
surface term X, vanishes. Although the expression
above for x, contains also terms like Bg& (the terms
800A& cancel), these may be expressed in terms of g;~"
and A""(x)=Al" (x,r"). On the other hand the reduced
action, J'Z(a)d'A, is independent of the history Al" (x).
It is therefore convenient to introduce the reduced
amplitude

(a"r"
I
a'~')~=X„exp i Z(a)d'A 0 sa. (IV.S)

I For reasons which will become clear later, we include part of
the normalization constant in X) pg.

to be chosen such that the resulting boundary values for
g„„satisfy g„o'=g„o"=5„'.The Jacobian of this trans-
formation of the variables of integration is computed in
Appendix 1 for a measure of the form"

&«sg=II~ldetgl l«tgl' ll dg„„, (IV.2)
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With this notation the original amplitude may be
written

(P"r"
)
P'r') =&~ e'""'&~""'(a"r"

~
g'r')zSA. (IV.9)

o(1) as compared to o(1/e') of the rest. We have to
solve the resulting second-order ordinary differential
equations exactly, since all terms have the same be-
havior as e ~ 0. This is carried out in Appendix 2.

In this formula a" has of course to be expressed in
terms of g;I,

"and h.&".

The essential point in this way of splitting up the
integrations over g„„ is that the reduced amplitude is
now a well-defined object, since the Lagrangian 2(a) is
not degenerate. For any given fixed history A&(x) we

may perform the limiting operations in the Feynman
sum-over-histories prescription as applied to the his-
tories a, i,. A&(x) determines the location of the lattice
points in A space as well as the shape of the surface r".
The resulting object (a"r"

~

a'r')z may then be inserted
in (IV.9) to carry out the A integrations.

The Special Case A.&(x) =x&

(a) A pproximatiou for Histories Connecting
Nearby Surfaces

Let us discuss the simplest case first, where Al" (x) = x&,

i.e., the lattice in A space is identical to the one we
started with, consisting of equally spaced hypersurfaces
A'= r = r'+ne and'straight lines A. '= constant.

As a first step in the construction of the reduced
amplitude we have to compute the extremal action for
the histories a, &(A). Fortunately, we are not interested
in the general case of prescribed boundary values on two
arbitrary surfaces, but only in the limit of small surface
spacing e. Denote the boundary values on r, =r= by
a, I, , those on r;+~= r+ by a;~+. It is clear that as the
spacing e tends to zero, time derivaties will blow up,
being essentially determined by (1/e) (a, i+—a, & ), while

the derivatives with respect to A', A', A' will tend to
some average of those on r and those on r+ and thus
remain finite. In other words we are interested in a
solution of the equations of motion with the properties"

B,ai =o(1), Boai = o(1/e) . (IV.10)

(b) The Equations of Motion

The equations resulting from the Lagrangian Z(a)
read

R;i,(a)--,'a, ~(a)
=R,,&» —-', a, ,R(» —-', a,,

+sia, i(ag„a'™)'—-'a, ia'"a"'ai„a, =0; (IV.11)

a;~= Boa;~ and R;I,&3) =R(» "&& denotes the contracted,
curvature tensor of the hypersurface A'= constant,
formed with the metric a;~. Thus, as a first approxima-
tion we may disregard the term R;l,(')—~a, l,R(» being

"The situation is exactly the same as in the case of the in6ni-
tesimal propagator for a particle in a potential V(x). See R. P.
Feynman, Rev. Mod. Phys. 20, 267 (1948).

(c) The Pathis Unique

An important result derived in Appendix 2 is that
there is only one classical path connecting two given
boundary values a;~+ and a;~ on r+ and r, in the
limit r+~ r . This property of the reduced action—
together with the fact that the action is quadratic in the
velocities —justifies the sum over histories procedure in
the sense that only for such actions is the Feynman
quantization equivalent to the ordinary quantization. "

(d) Solution iu Terms of Eigenvalue Variables

In Appendix 2 the value of the reduced action at the
classical path is computed and expressed in terms of
eigenvalue variables defined as follows: a;~+ and a;A,

are negative definite by assumption (A'=constant are
space-like hypersurfaces). Therefore they may be simul-
taneously diagonalized.

3

a g+= —Q S'S 'A
l I

To specify S,' uniquely we choose detS=1 and

deta

Furthermore, put

(IV.12)

(IV.13)

A~'= Jdet a+['" n',
(IV.14)

n=L —,', P(lnni)']'" Ay ——[deta+['t'

Then the extremal value of the action is given by

Z (a)d'A

8
(A+'+A ' 2A+A co—shn) d'x+o(e) . (IV.15)

36

This formula is valid for the special case Ar (x) =x" and
expresses the value of the action at the stationary
history as a functional of the eigenvalues of a;~+ and
a;~ in their simultaneous diagonal form.

(e) Integrating Over the Gaussian Metric

We shall deal with the general history A&(x) later.
What we want to do first is to apply Feynman's defini-
tion of the infinitesimal amplitude to the especially
simple expression for the extremal action just obtained.

"In this connection, see also P. Chocquard, Helv. Phys. Acta
28, 89 lt955).
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Let us investigate the action of the in6nitesimal reduced
amplitude, expiS', on an arbitrarily given test functional
%(a), i.e., consider the integral

Euler angles parametrizing the rotation group. This
transformation is carried out in Appendix 3 with the
result

dujy ' ' 'du33 =d A d Rq
d'A =- (A '—A ')(A '—A ')

&((A '—A ')dA 'dA 'dA ', (IV.21)

(IV.16) d'E = siny2dy~dy2dy3. (IV.22)

Here, 5) e'a is the same as S cain (V.5) except that the
product gr, now runs only over the points of the surface
v instead of the whole lattice. According to our restric-
tions on the summation, we integrate only over negative
definite boundary values u;g . The limits of integration
when expressed in terms of the variables u, ~ themselves
are very cumbersome, because the requirement of nega-
tive definiteness is a nonlinear system of inequalities in
the variables u, I, . A much more convenient choice of
the variables of integration is given by the eigenvalues
we already used to compute the action. Of course the
three eigenvalues A ' defined in (IV.12) are not suK-
cient to replace the six variables u, I, . Ke have to
integrate over the matrices S in (V.12) as well. Since
they satisfy

g S,'Sq' ———a, t+A+ 4t', detS= 1, (IV.17)

SS'= m+. (IV.18)

In order to be able to use the well-known results of the
theory of the ordinary rotation group in 3 dimensions
associated with the metric 6;~, we write

(IV.19)

and choose the 6xed matrix T such that it diagonalizes I+

T 'e+(T ')'=1

Then the matrix R satisfies

EE 1

(IV.20)

i.e., it is an element of the ordinary rotation group.
An extra benefit of this choice of the variables of

integration is that the extremal action S' is independent
of E, such that the integration over the rotation group
will be very simple.

(f) Transformation of the Megslre to
Eigemul'ee Vuri ubles

Ke now have to transform the measure to our six
new variables of integration, which we may choose to be
given by A ', A ', A ', y~, y2, y3, where y~, y2, y3 are the

we see that they are the matrices of the rotation group
in three dimensions associated with the metric u;I,+
= —u;A+A+

—4~', which is a three-parameter Lie group.
We have in matrix notation

4'(a+) = tV e'e

M4 I
deta

I
~+e+'d'A-0'(A ') . (IV.23)

Here, + denotes the integral of 0' over the rotation
group.

(g) Asymptotic Exportsi oe

Fortunately, we do not need an exact evaluation of
the integral but are only interested in an asymptotic
expansion in e when e —+0. The method of stationary
phase is particularly suited for this purpose, because S'
has the property that considered as a function of A ',
A ', A ' it has only one stationary point"

8S'/8A '=0 for A '=A (IV.24)

The relevant estimates are given in Appendix 4. They

"This property can be understood directly without knowing the
explicity solutions of the equations of motion. See the discussion in
the case of the general history AI'(a).

The variables of the rotation group appear in the group
invariant measure d'E. This is a consequence of the
invariance of the product of the six differentials on the
left-hand side with respect to the linear transformations

a =Vu V' VV'=1,

which rotate the axis of the coordinate frame in the
space of the Euler angles, thus establishing rotational
invariance of the right-hand side.

In order to establish a one-to-one correspondence
between the variables u;~ on the one hand, and A ', S
on the other hand, let us order the eigenvalues according
to 0&A '&A '&A '& ao. This still does not 6x the
matrix S uniquely. As discussed in Appendix 3 there are
four equivalent matrices S which satisfy these require-
ments. Thus if one integrates over all eigenvalues A
satisfying the above restrictions and all matrices S (the
full rotation group) he obtains all negative definite
matrices u;I, and every one exactly four times. Ac-
counting for this degeneracy by a factor of 4 the limits
of integration become very simple. Ke have to integrate
over the full rotation group and over all A ' satisfying
the above restrictions. Still considering the special case
A&(x)=x&, we have, in view of the fact that the ex-
ponential is independent of the Euler angles
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lead to the asymptotic expansion

e'= 4 (A.,')1V. g M2

. (e/tP)'I deta+
I

+e +'(1+o( e'") ) (IV.25)

The power (e/~3')' is reasonable, since we originally had
six variables of integration a, I, each one giving rise to a
factor (e/2 ')'t'. The exponent n+P+ —', comes about as
follows. The action is invariant under a stretching of the

coordinates A' ~ )A', i.e., under the simultaneous

change a;~+ ~ P 'a;~+, 6~ XD. The measure X) pu in

(IV.5) changes by a factor) 'i~+e+" " which is indeed

the factor picked up by 0' if the same substitution is

inserted in (IV.25). To evaluate twe simply note that
for 2 '=A+' we have a;~+=a;I, independent of S.
Therefore'4

+=+(a;.+) d'R =8rr'4 (a; t+) . (IV.26)

&a+r+I a-r-)a= &-e' a+(a-)

=+(a+)iV g M16s'(e/~')sI de«+I +'+'

X (1+0(e't') ) . (IV.27)

In the limit r+ r e~ 0 th—e co——rrection term o(e't')

vanishes and the right-hand side is of the form 4'(a+).
Note that the constants X, and M depend on e and D.

These constants will be normalized later in such a
fashion that Z = 1;n+P+-', =0. Therefore in the limit as

7-+ —+ 7. the reduced amplitude for the transition from

to 7+ behaves like a 6 functional, This behavior was

to be expected and is common to all Feynman ampli-

tudes associated with nondegenerate actions quadratic
in the velocities. '"

Note that this property is not shared by Feynman

amplitudes associated with degenerate actions. In par-

ticular the electromagnetic amplitude for transiting

~ The integration over the full rotation group extends over the
intervals 0&71&221., 0&F2&~; 0&p3&27i.

"If one carries out the asymptotic expansion of (IV.16) to
higher orders in e')'~, he 6nds that —using the normalization of the
measure as given in (IV.37)—the next nonvanishing term has the
form —teJ'Xd'x with the same X(x) as in (V.23)—(V.26). Thus,
J'Xd'x is the in6nitesimal generator of the unitary transformation
which describes the dynamical evolution of the reduced amplitude
and should therefore be Hermitian in the measure (IV.37). The
Hermiticity of X(x) may be directly verified with (V.23)—(V.26).
t'Note that t(e/eg; i) is —not Hermitian in the measure (IV.37).g
One Ands that Hermiticity determines the coefficient of 3C1

uniquely and the coefficient given in (V.25) is indeed correct; the
coefBcient of K2 is obviously not affected by the Hermiticity
condition.

(Ir) Ttte Reduced Amplitude Connecting

nearby Surfaces

If we insert the asymptotic expansion (IV.25) in the

definition of O', Eq. (IV.16), we find

from v' to 7" does not reduce to a 6 functional as
v" ~ ~'; instead this amplitude reduces to a projection
operator onto gauge invariant state functionals, as may
be seen. from Eq. (II.27). Likewise the full gravitational
transition amplitude reduces to a projection operator
onto states satisfying the subsidiary conditions. The
concept of reduced amplitude is useful precisely because
it is associated with a nondegenerate action.

r) stt" Bi,a; g o(1/——e),
8 iA"8pa, i,

——o (1),
(IV.28)

which for A&=x& again reduce to (IV.10). (IV.28) is

equivalent to

BXaik Xkaik +0(1) &

alai =c)alai/c)& =r)stt r)&%~i
(IV.29)

(b) Equations of Motion,
%"e have to insert this approximation into the equa-

tions of motion (IV.11) and again solve them with
prescribed boundary values on 7., and ~;+&. This problem
is considerably more complicated than the case A.&=x&,

because the quantities B„A" show up" in the equations
of motion. These equations may be simplified when ex-
pressed in terms of the quantity b, & defined in (IV.4). In
these variables the approximation (IV.29) leads to the
following action functional

1
Z(a)de= b'"b'm(b, -i'bs„' —b;i, 'bi ')

4

X lb I'"Rd4x+o(1), (IV.30)

IdetAI' detb"
E=

IdetAI deta:,

~6 Note that the history A&(x) is kept fixed when we perform the
limit e-+0 in the reduced amplitude. Thus the quantities 8+"
appearing in the equations of motion for u;& are to be considered
as time-independent, the variation of 8+" along the path being
O(e).

The General History A.&(x)

(a) A pproximation for Histories Connecting

nearby Surfaces

What modifications do we have to expect if Al"(x)
Nx&? In this case the surfaces of the lattice in A space
will not have the shape A'= constant and the family of
curves that fix the locations of the lattice points will not
be given by A'= constant. The direction of these curves
is given by f)sA&. As e —+0 the derivatives of a, & with
respect to directions that are parallel to the surfaces of
the lattice will tend to some average of the derivatives
inside the surfaces ~ and 7+ of a;A, and a;A+ and remain
finite. On the other hand those along the direction
BsA" will be o(1/e). Thus the first approximation will be
given by
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=+(a+)N + 16''(e/tI')'Ideta+I +'i'Idetb+Ie '

X
I
deth

I

'~+'
I
detA

I

'~ 'X (1+o (e"')) . (IV.36)

The variations of this functional with respect to b;I.„A."(x)=x".One finds instead of (IV.27)
produce the required approximation to the equations of
motion. The appearance of B„A." in these equations arises (a+r
from the variations of

I
detaI in E.

Fortunately we are not so much interested in the
general solution of these approximate equations of T+

motion, but need only the value of the action at the
extremal histories. Furthermore, as we have seen in the
special case h.&=x&, in the context of the I'eynman sum Th' f t '

(IV'27)
over histories formalism, only the behavior of the action
as a functional of the boundary values near the sta-

Determination of the Measure
tionary point

is relevant.

85'(b+, b )/8b—;&+=0
The asymptotic expansion (IV.36) invites us to

normalize the reduced amplitude by requiring

o.= —$; /=1; N. '=g M16m'(e/6')' (IV.37)

5'= z(q;, qk)dr, (IV.32)

Bz d Bz BZ
85'= —— bq,dr+ bq; . (IV.33)

Bq dt Brj; 8q;

Since q; (r) satisfies the equations of motion, one obtains

~5'/~q" = (~&/~q') ( +)=p'(r+) (IV 34)

If q,+ is to be a stationary boundary point, cj5/cjq~+

vanishes and therefore the momentum p, (r+) must
vanish too. Since 2 is nondegenerate and quadratic in
the velocities this implies q;(r+) =0 and by virtue of the
homogeneity q, (r) =—0. This shows that

(IV.35)

is the only stationary point.

(d) Asymptotic Expansion

This result may be applied to the reduced action as
given by (IV.30). Only boundary values near stationary
points —defined by (IV.31)—contribute in the sum over
histories and there is only one stationary point b;&+

=b;l, . It is not dificult to investigate a neighborhood
of this point, which is all we need to apply the method
of stationary phase. Apart from the factor E the results
are identical to those we obtained for the special case

(c) A General Property of Nondegenerate Actions which

are Homogeneous Quadratic in the Velocities

It is easy to see that the action —considered as a
function of the boundary values —corresponding to a
Lagrangian which is nondegenerate and homogeneous
quadratic in the velocities, has only one stationary
point. Consider a variation about a solution of the
equations of motion q;(r) which connects q, at r to
q;+ at r+.

and we will denote S y, ~u by Sa.
We shall now try to justify this choice. A priori there

is no reason why we should have to normalize the re-
duced amplitude such that it approaches a delta func-
tional when ~"—+ 7', because the reduced amplitude has
no physical significance.

(a) General Properties of Feynman Integrals

The two assumptions on which this normalization is
based are general properties of Feynman integrals
which are very reasonable, but have so far not been
proved in sufhcient generality to be applied to our case:

(1) The sequence of refinements of the lattice defined

by Ã —+~, e —+0 leads to a sequence of Feynman
integrals that converge to a vrell-de6ned limit, for a
suKciently broad class of nondegenerate Lagrangians.

This assumption is the analog of the theorem which
asserts the existence of the Riemann integral and has
been proved, e.g. , for the amplitude of a nonrelativistic
particle in a repulsive potential. '~

The second assumption is the analog of the statement
that the value of the Riemann integral is independent of
the particular choice of the subdivision of the interval of
integration occuring in the Riemann sum.

(2) If two lattices and their sequences of refinements
are connected by a one-to-one well-behaved mapping
which reduces to the identity mapping in a neighbor-
hood of ~' and ~" then the associated limits of the
Feynman integrals are the same.

In other words a deformation of the lattice in the
interior does not affect the amplitude, although it of
course affects both the measure and the infinitesimal
amplitudes. In view of the close connection between
Feynman integrals and partial differential equations"

"D. G. Babbit, J. Math. Phys. 4, 36 (1963).
~8 J. M. Gelfand and A. M. Jaglom, Fortschr. Physik 5, 517

(1957).
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(more precisely the associated Schrodinger equations)
this property is also related to the fact, that one may
change the coordinates of a partial differential equation
by transforming the coeKcients appropriately; the
solutions of the transformed equation are the transforms
of the solutions of the original equation.

(b) Uniqueness Of the Measstre

We assume that a measure with these two properties
exists and want to show first that it must be given by
(IV.37). The argument is simple: The very definition of
the reduced amplitude implies the composition law

(a T
I
a T )z= (a"r"

I
ar)x+ e'a(ar

I
a'r'4 (IV 3g)

where r is anyone of the surfaces of the lattice. Let it be
the surface nearest to r". Then according to (1) as we

refine the lattice the various limits exist. If we insert the
asymptotic expansion (IV.36) we find in fact the con-
ditions (IV.37)."

Connection Between Original and
Reduced Amplitudes

Up to here we considered only the reduced amplitude.
The connection between the original and the reduced
amplitude is given by (IV.9). The reduced amplitude
has been defined earlier in this section; in order to give
a mell-defined meaning to the original amplitude we

have to specify how the integrations over A in (IV.9)
must be carried out. Consider two histories h."(x) and
X"(x) which reduce to 4"=X" near r' and near 7".The
reduced amplitudes associated with these histories diGer

only in the shape of the lattice in h. space. Therefore,
according to (2) we have

(a"r"
I
aV)g= (a"r"

I
a'r')g, (IV.39)

as was the case for the electromagnetic reduced ampli-

tude. This shows again manifestly 'that the integrations
over the gauge group in the interior of the lattice
diverge and we replace them by an average. In the
interior of the lattice we may simply drop K~SA in

(IV.9), by virtue of (IV.39). Only in the neighborhood

of v" are the A. integrations not trivial and we will in-

vestigate these in the next section.
In terms of the original variables of integration,

g„„(x),the measure SA takes the form

Composition Law in Terms Of Integration
Over Intrinsic Geometries

In particular consider the composition law. From
(IV.9) one finds

(g" "lg' ') = (g" "lg )&'g(g
I

g' '),
(IV.41)

x) g=g Mldetgl-'t' g dg „.

The exponentials carrying the dependence of the ampli-
tudes on g„o LEq. (III.S)j cancel and the average over
gpo on 7 has been carried out with the help of

s Lg] = I
detg

I g dg„o ——const.
I
detg

I

&+&. (IV.42)

(This formula may be obtained from the fact that gl gl
transforms according to

S$ngn'j=
I detail "+iSLg) (IV.43)

if one performs the transformation

g ~ &g& g'o ~ &s geo goo ~ goo. ) (IV.44)

The following interesting remark which is due to
Wheeler arises in this connection. As has been shown by
Baierlein, Sharp, and VVheeler, "the specification of the
intrinsic geometries of two hypersurfaces together with
the requirement that the four-geometry in between
satisfy Einstein's equations determines the proper-time
separation of the two hypersurfaces. Therefore, if one
integrates over all geometries of the surface ~ in (IV.41),
holding the geometry on v' fixed he also integrates over
all proper-time separations of the two hypersurfaces.
Therefore the composition law (IV.41) may be in-
terpreted as an analog of

(q t lqt)=Const. (q t Iqt)dqdt(qtlqt').

The question whether the composition law for the full
gravitational transition amplitude may be brought into
a form more closely analogous to the usual relation

(q"t"
I
q't') = (q"t"

I qt) dq (qt I
q't')

remains open.

nb=a -,'Idetgl —'g dg„o. (IV.40)
Invariance Under Coordinate Transformations

This shows that the average over X)A is not equivalent
to averaging over g„o, but includes a weighting factor

~9 Note that the consistency requirement determines only S pe.
The relation between X) ~u and the original measure S pg depends
on the particular way one averages over the gauge group. See the
discussion following Eq. (IV.40).

Finally, let us investigate the behavior of the original
amplitude under transformations of the coordinate
system. Consider a transformation of coordinates, which
reduces to the identity mapping near 7' and ~". This

30 R. F. Baierlein, D. H. Sharp, and J. A. Wheeler, Phys. Rev.
126, 1864 (1962).
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transformation is equivalent to a change of the lattice,
since w'e defined the amplitude in terms of the reduced
one, where this is obviously the case. By virtue of (2)
such a change does not affect the reduced amplitude;
therefore we have the result that the original amplitude
is invariant with respect to transformations which re-
duce to the identity mapping near v' and 7.".Trans-
formations which do not reduce to the identity mapping
near v-' and v-" are responsible for the subsidiary con-
ditions which we shall investigate in the next section.
Before we do this let us brieRy consider two special
cases of such transformations.

First let us investigate a stretching of the lattice in
the direction of x'p 7 being shifted to r"'. Furthermore
choose the stretching such that only the interior of the
lattice is affected, the neighborhood of v.' being left
unchanged while the neighborhood of r" is shifted
rigidly as a whole. By virtue of (2), the reduced ampli-
tude is invariant with respect to such a change of the
lattice and we immediately infer that

(g","'I g, ') = (g","
I
g', '). (IV.4S)

In other words the amplitude is independent of w" and
likewise, of course, of 7-'. This property was first empha-
sized by Misner.

As a second example, consider a transformation

x'= x' x*=f'(x") (IV.46)

It may be verified that the reduced amplitude is
invariant with respect to this transformation, if one
chooses

M = (A')'. (IV.47)

If one were to absorb M in S then the reduced ampli-
tude would transform like a density rather than be an
invariant. " Note that there are N+1 factors X, as
compared to Ã factors M in the definition of the reduced
amplitude. The necessity of the choice (IV.47) shows up
most clearly in the infinitesimal reduced amplitude

(a"r'+ e
I

a'~') =X,e'e'. (IV.48)

Clearly S' is invariant with respect to (IV.46) and so

must be X„but X, as given by (IV.37) is only in-

variant if the factors lV are absorbed in M according to
(IV.47).

We again conclude that the original amplitude is
invariant with respect to the transformations (IV.46).
This invariance is reRected in the composition law

(IV.41). The measure S'g is invariant by virtue of the
transformation properties of M.

V. SUBSIDIARY CONDITIONS IN
DIFFERENTIAL FORM

Proper Derivation of the Subsidiary Conditions

The way we derived the subsidiary conditions in
Sec. III was formal and not satisfactory. Since we now

have at our disposal a proper infinitesimal propagator,
let us brieQy show that we can derive these conditions
in the framework of the reduced amplitude in a more
satisfactory manner, in the same way as for the electro-
magnetic amplitude, by analyzing the amplitude for
transiting from the surface ~"—e to 7". We have seen
that Feynman's de6nition of the infinitesimal propagator
requires the value of the action for the path stationary
with respect to both the variations in a;~ and in AL".

Since the history A& appears only in the very last
in6nitesimal amplitude, by virtue of (IV.39), the con-
dition of stationarity with respect to A& is trivially
satisfied in the interior of the lattice. The average over
A& in the interior thus amounts simply to dropping
X~SA there.

We have to investigate only the variations of the last
infinitesimal amplitude with respect to A~. Moreover,
only the values of A& at v." appear in this propagator,
such that we may restrict ourselves to a variation 5A~

which is diferent from zero say only in the interval
(r" 2e, ~").—We have to express the last propagator in
the variables A&", g;&" on 7." and require it to be
stationary with respect to this change in A& for fixed g;&".

Z(a)d4A+8X, (A",g")=h 2 (g)d'x. (V.1)

In order to keep g;A,
"fixed, we have to vary a;~ as well

as A . The variation in g„„(x) is given by

Sg„„(x)= (a„u.-a„we+ a„u-a„Ae)a.&

+ a„X'a,A~(a,a;,u~+S*a;,). (V.2)

This may be written

8g„„(x)= V'„5X„+V'„Q,„+B„A"'B„A"5*a;g,
V.3

Q"=A-'„"bA~.

V'„denotes the covariant derivative with respect to g„„.
To satisfy the requirement Sg„„=0on r", we have to
choose 5*a;I, and the time derivatives of 5A& appro-
priately. We shall not need the explicit solution of this
algebraical restriction. Making use of (VI.3) one Ands in
view of bg„„=0 on 7"

Z(g)d4x=2 S "I
gI

'I'd&r„Q I'

+ S""IgI
~~28 A'8 A.~8*a d4x

(a) Change in the Classical Action

Since we have also to take into account the change in
X,-(A",g") I Eq. (IV.9)j, it is easiest to deal directly
with the change in the original action J'2(g)d4x
I Eq. (IV.7)j.

3'These formal considerations are very unsatisfactory: the
problem of how to separate the normalization constant from the
measure in the Feynman sum over histories formulation deserves
a more careful study.

S OI g I
i12m, &d3x. (V.4)



81170 H. LEUTWVYLER

The coefFicient of 8~a;I, vanishes, since a;~ satisfies the
field equations (IV.11).

(b) Change in the MeasNre

This is the change in the action. What we now have to
consider is the change in the measure produced by such
a variation. We have seen that the measure is deter-
mined. by the coefficient of 1/e in the asymptotic ex-
pansion of the reduced action in e. We therefore have to
look for the change in this leading term. As we remarked
earlier, the term X," in (IV.7) involves only the bound-
ary values g;A,

" and A&" and their partial derivatives
with respect to x', x', x'. Therefore the variation 5X,-
will be of order one and give no contribution to the
leading term o(1/e). Thus the relevant part of the
variation of the reduced action is given by (V.4).
Furthermore, only the term Q' contributes, since S,'
contains d, & linearly and is therefore o(e 'I'). Thus the
leading term in the change of the reduced action is
given by

1
~(a)d A= g g (tt IP& t't ttt~

X Igl'i'd'xQ, '+o(e U').

Inserting the definition of b, i, (V.4) and again neglecting
higher order terms, we find

g(a)d'A= —— b ."b'™(b,i'bi, '—b, 'bi„')
4

~@0

X
I
bl' 'K d'x+o(e "—') . (V 5)

Therefore the change in the measure will be found by
replacing E by E(1—(Q,%)). Since the factor ELV/e
appears in the third power in the measure, the change in
X)u is given by

zero the modification term will not have a well-defined
limit. However we will see shortly that the left-hand
side of the fourth subsidiary condition will blow up as
well and it is a very satisfactory feature of this approach
that these divergencies exactly cancel. The divergence
in the left-hand side is due to the fact that 50' is
quadratic in the velocities j;&. Already the matrix
element of the kinetic energy of a nonrelativistic free
particle, —,'mx' leads to a divergent term. In fact, the
procedure given by Feynman to define the matrix
element of the kinetic energy unambiguously as the
change in the transition amplitude produced by a
change in the mass of the particle leads to exactly the
same kind of cancellation of the divergent term in the
matrix element against, the change in the measure.
Thus, while the separation of the fourth subsidiary con-
dition into a right- and left-hand side has no well-
defined limit, the subsidiary condition as such does have
a well-defined limit.

Evaluation of the Matrix Elements Occurring
in the Subsidiary Conditions

With the correct matrix form of the subsidiary con-
ditions at hand the next step is to bring them into
differential form, as was done in the electromagnetic
case.

From unitarity or directly from the fact that we may
apply the same arguments if we choose the Gaussian
coordinate system to coincide with the lattice system at
7-" instead of v.' we conclude that the subsidiary condi-
tions are valid at 7' as well and we prefer to evaluate
them at v'. The only difference is the sign of the term
arising from the transformation properties of the
measure. Let us first look at

(g''r"IS (x)lgl'i'Ig' ')=0, x ', i 1, 2, 3=. (V.8)

Since B„A"=6„"at v' we may as well use the metric a„„in
S which then takes the form

na+bna= na g(1—(Q.%))' S=o-', '"a( D;ia—D;a i). (V.9)

= Gal 1—(3/el') Qod'x
I

. (V.6)

(c) Correct Subsidiary Conditions

Here D~ denotes the covariant derivative with respect
to the metric a;I,. Since xn' we have a;~ ——g; I,

' and all we
have to compute is the matrix element of 0,;~ for xer'.
As a 6rst step we evaluate the reduced matrix element

With the help of (V.4) and (V.6) we obtain the
following modified subsidiary conditions

(g"."
I S,ol glii2(x)

I
g'.') =0,

xer" (V.7)
(g"&"

I
So'

I g I

'"(x) I
g'r') = (3i/2h'e) (g r

I
g'r')

8 T Qgg S Q7 g) X67

(a) The Matrix E/ement of a;i, (x)

The matrix element of a;I, has the form

(V.10)

The term on the right-hand side of the fourth subsidiary
condition comes from the transformation properties of
the measure; since we disregarded changes in the
measure completely in our heuristic derivation in Sec.
III, such a modification is reasonably to be expected,
from the present mope detailed analysis, As e tends to

limS, (a"r' Ia '+e) e" '"'+' ""dna"+'a, (r').

AI" (x) is a given fixed history, which remains the same
when we take the limit e —+ 0. As a 6rst step we want to
show that because we are considering a mat', rix element
at r', where B„A"=8„",we may replace the exponential
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a;g(r') = (Aa;g/e)+ba, I„
ba;g ——(1/4e) a™(Aa; gAa g„—2Aa, ghat„)

—(a,A'/16&)a™a""(GagAa„
mat, A—a,)+ o (e'I')

Thus we have

0 T Qiy C 7

(V.13)

= limX, (a"r"
I
ar'+ e)

&~0

Xe~s'(«'+~l ~'~') ((Aa,.k/~)+pa. ~)~a~'+~ (V 14)

This integral may be transformed to the variables A~'
and R we introduced in Sec. IV with a;~ =a;I„.
a;I,+=a;~'. The integration over the rotation group is
again easy: S' is independent of R and according to
(IV.12) and (IV.19) a;q+ and a;I, contribute each a
factor E. RI,'. The integral over such a product of
R matrices may be determined from invariance under
the rotation group alone, such that we are again left
with an integral over the eigenvalues only. This integral
is carried out in Appendix 5 with the result

(a"r"
I a;~(x) I

a'r')
i IaI 'I'(a—;g'ag ' 2a, ('aI, ')—

X (8/ba) '(x) )(a"r"
I
a'r'),

by its value at A" (x)=x". The reason is the following:
The expansion for A"(x) reacls

A~(x, r) =x~+;a,g~(x;') ( r r—~)2+o(.3)

If we expand the exponential around the point Al'(x) =x~

the first term in this expansion will be linear in 800A" and
proportional to e. Since we have subsequently to average
over the histories h.&(x), this term will give no contribu-
tion by virtue of symmetry. Only the next order which
is proportional to e' gives nonvanishing contributions.
Fortunately we are not interested in this order. Even
for the evaluation of the fourth subsidiary condition
only the terms of order e contribute. Therefore we may
use the asymptotic expansion of the action for the
special case h.~(x) =x~.

From the way we derived the subsidiary conditions
it is clear how we have to evaluate the matrix element
of ci;;~. We have to compute the slope a;I, at the surface
7' for the extremal history connecting u;I,' on the
surface r' to a;& on r'+e Since . we only get con-
tributions if a;~—a, ~' ——o(c'~'), we may approximate
a 'g (x) (xer ) with the same asymptotic expansion in e.
This expansion may be obtained from the Taylor series

a;g(r'+e) =a;k(r')+ca;k(r')
+ (2 )~'a'~(r')+ " (V 11)

Using the equations of motion to express';& in terms
of a;g and the notation

Aa;~= a;x a,x' o(~'~'—); a;——s' a;x(r'——), (V.12)

one obtains

(b) Trarlsverse Sgbsidk ary Conditions

Inserted in (VI.S) one obtains

(g"r"
I
g'r')

hagi)'

b

,+
& sg, ,'

(g"."
I
g'. ') =o. (v.16)

lm bg)
'

Note that b/bg;I,
' is a contravariant tensor density and

transforms like g'"
I g I

'~' with respect to transformations
inside the surface 7. . D~ is the covariant derivative with

respect to giI, '=a;k' and the Christoffel symbol
lm

formed with the metric g;I,
' in the space 7'.

Equation (V.16) is the analog of (II.21) in the
electromagnetic case. It states that the amplitude
(g"r"

I
g'r') is invariant with respect to a,n infinitesimal

change of the coordinate system on the surface r'. This
simple result con6rms the formal considerations at the
end of Sec. III. Sy virtue of unitarity the same must be
true on v".

Note that in the course of the evaluation of the
integral in Appendix 5 we encountered divergencies of
the type 1/LV, i.e., terms that do not converge to a finite
limit when the space-like separation of the lattice, 6,
goes to zero. One such term arises from the correction
6ii~ and the others from the asymptotic expansion of
the measure and the exponential. These divergencies are
related to the fact that we are dealing with an infinite
number of degrees of freedom and are a common
occurrence in quantum field theory. It is again a very
satisfactory result, that they cancel leaving us with an
unambiguous invariance condition.

(e) The 3fatrix Etement of SODIgI'~'

To convert the subsidiary condition associated with
time translations

(g" "Iso'(*)
I
gl"'I g' ')
= —(3i/2eLV) (g"r"

I
g'r'), xer (V.17)

into differential form we need

So'(a) = ——,'E~3~+-', a"a'"(a,ja( —a;(aI„„), (V.18)

where R(3' denotes the curvature scalar formed with the
metric a;~ and its spatial derivatives B~ai~.

The evaluation of (V.17) is more troublesome than
the evaluate. ion of (V.S), because So is quadratic in a;~
and therefore the leading term in the asymptotic ex-
pansion is o(1/e). In order to compute the interesting

Since the A integrations are not affected, this leads to

(g" "Ig'. (x) I
g'r')

= —&Ig I (gIa gt~ —2ga g~~)
X (blbg...'(x))(g","Ig, ). (V.13)
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contributions which are o(1), we have to go up to and
including third-order terms in the asymptotic expansion
which is an expansion in, ge. Second order was suflicient
for (V.12) since S, is linear in a;i,.

To find the asymptotic expansion for 50' we can
proceed as follows. If we make use of the equations of
motion, S,"(a)=0, then the Bianchi identities read

& (S'lal"')+& (S 'lal"') =o (V.19)

1
= —l R"'

I
a

I
"'+— a"'a'"(a;8 i~—a;ia~~)

Se

xlal'I d.+o(. ) (v.2o)

We have already evaluated this integral in the ap-
proximation (IV.10). What remains to be done is to
take into account the corrections to the solution u;A,

arising from the terms R, adlai
——,'a;i,R&@ in (V.11), which

we neglected in the above approximation. Let

This shows that the change in So'Ial't' along the
extremal path which is given by e&0(SO'

I
a

I
't'), is o(e't'),

because So' is linear in a, i, and therefore o(e "'). Thus
we may write

T +0

S 'I al't'= — S 0I aI't'dr+o(e't')

Xi(x) = ——
I
g'I '"g'~'(x)

bg;g'(x)
(V.25)

( ) = —( / ')
I

'
I

"'
~ (V.26)

The terms in e ' and e 'l" canceled. " Note that the
operators K; are covariant with respect to transforma-
tions in the surface 7-', since the volume element of
the lattice 6' of course transforms according to 6'
= (Bx/cix)LV, such that

I
g'I 't'LP is an invariant. X(x) is

a scalar density of the type I
g'

I

't'. Therefore (V.22) and
(V.16) are compatible.

1
C (io) = expI ——

2
w'(x)d'x)

(e) Remarks on the Singular Terms

However BC& ami 3'.2 are divergent as 6 —+ 0. They
may be interpreted as arising from a particular ordering
of the factors in Xo, 1/LP represents P(0). At first sight
one might think they necessarily cause trouble and
should be removed by redefining the amplitude. How-
ever, one should bear in mind that Xo is also a singular
object. In order to decide whether renormalizations of
the amplitude are necessary one has to investigate the
solutions of X(x)4=0. Consider, for example, the well-
behaved functional

ax a = a~ i'+h'i, (V») =«p( —k Z v'(x')~'). (V.27)

where a;l,' is the approximate solution. Then we have
h, i, ——o(e') since h;i, ——o(1), h, i,= 0 on r' and r'+e. If we
substitute this expression for a;~ in the integral in
(V.20), consider only terms linear in h, &, and integrate
by parts, we obtain only surface terms, because this
integral is the Lagrangian for the unperturbed solution
a;& which is stationary with respect to a change of a;&'
in the interior. The surface term vanishes because h;~
vanishes at the boundaries r' and r'+e.

This shows that the correction to the integral is
quadratic in h;& and therefore negligible. We thus may
use the expression (IV.15) for this integral, of course
disregarding the integrations on the space variables
A') A') A.'.

x(x) (g''r"
I
g'r') =o,

X(x)=Xo(x)+Xi(x)+X,(x),

Xo(x) =4 I
g'

I
"'(g'~'g i-' —2g'i'g. -')

(V.22)

(V.23)

+Rl'&
I
g'I'"(x), (V.24)

bg, &'(x)bgt„'(x)

(d) Longitudinal Subsidiary Condition

The evaluation of the fourth subsidiary condition is
now straightforward and carried out in Appendix 6. The
result is the following:

This functional satisfies the singular-looking differential
equation

Lb'/by'(x))C —q'(x)C = —(1/lV)C. (V.28)

What is singular with this equation is only the way of
separating the differential operator into a right- and a
left-hand side. The equation as a whole has well-

behaved solutions.
The situation is different in the case of the subsidiary

conditions (V.16), because we know the solutions of
these conditions. The analog of 3CO is a well-behaved
operator there.

The central problem is of course to Qnd the solutions
of (VI.22). This problem will not be attacked here. It
may be expected that terms proportional to K& and X&
have indeed to be added to Xo in order that BC% =0 has
solutions. However the particular coeKcients appearing
in (V.25) and (V.26) should not be taken too seriously. "
In particular the coeKcient in X2 is very sensitive to
modifications of the definition of the infinitesimal ampli-
tude, since it contains the third-order terms in the ex-
pansion of the action and the measure.

32 The cancellation of these terms is due to the correction term in
the fourth subsidiary condition.

"Note however that the Hermiticity requirement is only con-
sistent with the particular coeKcient of X| appearing in (V.25).
Compare footnote 25.
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VI. CONNECTION TO THE HAMILTONIAN
QUANTIZATION PROCEDURE

In this section we want to establish the connection
between the sum over histories formulation of the
quantum theory of gravity and the canonical quantiza-
tion procedure, which has been investigated by several
authors. '4

There are many representations of the state vectors
and operators in diferent Hilbert spaces. We want to
show that the sum over histories formulation of the
quantum theory of gravity provides a particular repre-
sentation of this canonical picture. It is clear that it is
going to be a representation where the operator g„„(x)is
diagonal.

Classical Canonical Theory of Gravity

Let us brieQy summarize the relevant aspects of the
classical canonical theory of gravity as given by Dirac."
The basic elements of this theory are the canonical
variables g„„(x) and p""(x), by means of which a
Poisson bracket is defned, such that

Lg"(x) p"(y))=5„."b(x—y),
8„„~ = ,' (b„l'8„-+b„l'b„)

Since the Lagrangian associated with the gravitational
field is degenerate, the variables P&" and g„„are subject
to constraints. The Lagrangian 2* proposed by Dirac
has been chosen in such a way that the algebraic
constraints on p&" read

(a) State Vectors

The space of state vectors of this representation is
spanned by the functionals +Lg), which are generated
by

+Lg) = (g I go")&"g +oI go),

where %s is an arbitrary functional and VLg) is inde-
pendent of r by virtue of (IV.45). Note that only the
intrinsic geometries g; y are involved.

(b) Operators

The representation of operators is based upon

p,0 0 (VI.2) 0+Lg) = (gr I
O

I
gers) X)'ogs%s[gs), (VI.10)

These relations reQect the fact that it is not possible to
express cjsg„s in terms of pl".

On the other hand, the restrictions on the initial
values 80g„„imposed by 5&'= 0 lead to

~s=D p's 0 (VI.3)

30n= s I g I

"'(—g'~gr- 2g'Cs-)p—"p'"
+R&@IgI'~'=0, (VI.4)

where
I g I denotes the determinant of the intrinsic

geometry g;~ of the surface x' = constant and D; is the
covariant derivative with respect to this geometry.

Quantized Canonical Theory of Gravity

In the quantized version of the canonical theory the
canonically conjugate Herrnitian operators p""(x) and

g, .(y) satisfy

Lg"(x),p"(y))=@""b(x-y), (VI.5)

where L, ) now denotes the coinmutator. The con-
straints (VI.2), (VI.3), and (VI.4) are replaced by
restrictions on the state vectors q= g ~ (VI.13)

where the matrix element on the right-hand side denotes
a sum over histories expression, the histories being
weighted by the value of 0 at the classical path. "

Clearly this definition leads to a diagonal representa-
tion of the operator g„,. Furthermore p&'4= 0, since the
value of p&' at the classical path vanishes. (Note
g„a= 5„o at r.) This shows that (VI.6) is satisfied by our
representation. We have already computed the matrix
element of g, ~, Eq. (V.15). In order to find the repre-
sentation of p'", we recall that the classical momentum
is delned by

p'"= BZ/r)g, &
—

s I g—
I

'~ (g'"g'~ g"gk™)g& . (—VI 11)

Since g;s does not commute with g, &, p' is not uniquely
defined by (VI.10), but only up to a term proportional
to bs(0)

P'V = ( i(~/bg' )+ (i—rt/~')g*")+, (VI 12)

where q is real and independent of x. Let us hx q by the
requirement that p'" be Herrnitian in the measure
S'g. This leads to

p~'%= 0,
3C'4 =0

(VI.6)

(VI.7)
(c) Subsidiary Conditiols

BC',+=0. (VI.S)

'4 P. A. M. Dirac, Phys. Rev. 114, 924 (1959); P. G. Bergman,
Rev. Mod. Phys. 33, 510 (1961);R. Arnowitt, S. Deser, and C. W.
Misner, Phys. Rev. 116, 1322 (1959) and following papers; B. S.
DeWitt, J. Math. Phys. 2, 151 (1961);J. Anderson, Phys. Rev.
114, 1182 (1959)."P.A. M. Dirac, Proc. Roy. Soc. (London) A246, 333 (1958).

The commutation relations (VI.5) are satisfied and
all that remains to be verified are the constraints
(VI.7) and (VI.S). It is easy to see that the constraints
(V.16) are equivalent to a particular factor ordering of
(VI.7). In terms of the operator p'", (V.22) may be

36 See R. P. Feynman, Rev. Mod. Phys. 20, 267 (194g).
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written

g'o(P'"P'" I "—P'")gl-

Let us erst hold g;~ and u;I, fixed and compute the
Jacobian of the transformation g„0~80A& given by
(1.2) and (1.3). Put

II ~g„o——&r II ~(80A"). (1 4)
+R'sing['l'+ [g[ 'l' 0 =0. (VI.14)

2g6

This displays explicit]y the Hermiticity of X(x) in the
measure X)'g. The last term in (VI.14) might be in-
cluded in a different, Hermitian factor ordering of the
first term. This shows that our representation satisfies
the constraint (VI.8) with a particular ordering of the
factors. "Note that 3C(x) can only be Hermitian in the
measure S'g, if Ki has the numerical coefficient given
in (V.25).

VII. SUMMARY

The outstanding feature characterizing the gravi-
tational field is the gauge group of coordinate trans-
formations. The present approach to the quantization of
gravity is based on a separation of gauge variables and
dynamical variables by means of a transformation to
Gaussian coordinates. As a first step a reduced ampli-
tude is constructed; the classical action which charac-
terizes this amplitude is the usual action associated with
Einstein's equations, specialized to the particular case
of Gaussian variables. Since the gauge group has been
removed, this action is nondegenerate and leads to a
well-defined reduced amplitude. The second step is to
reintroduce the gauge group by summing over all
possible transformations to Gaussian coordinate sys-
tems. This summation is responsible for the subsidiary
conditions. The three transverse subsidiary conditions
imply that the physical state vectors associated with the
space-like hypersurface 7. are functionals of the intrinsic
geometry of v. only, independent of the coordinate
system chosen to describe this geometry. The longi-
tudinal subsidiary condition states that the Hamiltonian
annihilates the physical state vectors. These properties
are familiar from Dirac's formulation of the canonical
theory of gravity.
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APPENDIX j. : TRANSFORMATION OF THE MEASURE

We want to compute the Jacobian of the transforma-
tion of variables g„„ to a, & and 80A& which is given by

g;l, ——8;A'8i A"ai„+8;A08~0, (1.1)

8 Al80Amal +.8 Ao80A0 (1.2)

goo 80A 80A aim+ 80A 80A (1.3)
3~ The factor ordering problem in the quantum theory of

gravity in terms of canonical variables has been investigated by
J. Anderson, Phys. Rev. 114, 1182 (1959).

The four-by-four determinant J» has the form

J»—
8;A'a)„8;A'

280A 'al~ 280Aol.

=2 det~ 8„A"ai„~=2 detA. deta. (1.5)

To find the Jacobian of the transformation g, o —+ a, l,

defined by (1.1) put

g ling'o=A Q lpga'l .
i&k

A depends only on the matrix 8,A"= (A), ", since the
terms 8;A08oA' in (1.1) are irrelevant. What we want to
show' first is that J2 must be a function of detA. This
result may be obtained with the help of an argument
due to Bargmann. "Consider the transformation

g'= A'gA" (1.7)

We may write the Jacobian of the transformation
g;&' ~ a;& in two different ways as

J,(A'A) =J,(A')1, (A), (1.8)

where the left-hand side is the result of carrying out the
transformation of the differentials in one step, while the
right-hand side is obtained by considering the two suc-
cessive transformations g;~' —+ g;~, g; J, -+ a;~. This
shows that J2 is a one-dimensional representation of the
linear group in three dimensions and must therefore
have the form

So= ~detA( .
Considering the special transformation A= X1 and
counting powers of X one finds p= 4. Therefore we have

Q dg„„=2~detA( (detA~4deta
p&v

X g aa, ,g Z(80A~). (1.10)
i&k - p,

APPENDIX 2: THE EQUATIONS OF MOTION FOR THE
GAUSSIAN METRIC AND THE VALUE OF THE

EXTREMAL ACTION BETWEEN INFINI-
TESIMALLY NEARBY SURFACES

a;~= —A4~'u;~, detu= 1. (2.2)

We want to solve the equations

a;0 a;oa' al +-,a;l,al™al —a, la' a 0—
ra.„(alma )0+oa.„almaraa a 0 (2 1)

The dot denotes derivative with respect to 7- and we are
interested in a solution connecting the boundary values
a;y and a, q+ at r and r+, respectively. Let us introduce
the positive definite, unimodular matrix u by



QUANTUM THEORY OF GRAVITY

The equations of motion for A and uiA, are

A+ 'Au—'"u'"u;(u p~=0,

Au;y A8(—(u B~g+2A'K(p=0.

Equation (2.4) may be integrated once to give

where S is the matrix that transforms uiA, and ui~+
simultaneously to diagonal form.

Let us compute the action integral with the help of

(2.4) the solutions for A and u.

~;&u "A'=C (2.5)
Z(a)d'xdr

where C;~ are the constants of integration. Inserting
this result in (2.3) and using the notation

1
a

I

" a'Pa'~(a, )a)~ a, pa—)~)d'xdr

C 'Cl, '=CXC, (2.6)

one obtains

A+ —,'-, CXC(1/A') =0.
This may be integrated with the result

(2 7)

dg =dyA

r+ (2.9)
[D(I—r,)'——;,(CXC/D) j—

&d&.

Then Eq. (2.5) reads

A'= D(r rp)' ,—', (CX—C—/D), (2.8)

D and 70 denoting the two constants of integration. To
solve (2.5) let us perform a transformation of the
independent variable by

m

+ (a( /&2 ak(

iI Im

r)p

i)d'xdr. (2.18)
it mk )

Here . denotes the Christoffel symbol associated
ik

with the metric a;~ and its derivatives 8~a;y, . Note that
there are no terms of the type a,I,8~a„, in S'. Therefore,
in the approximation (V.10) we have

1
S'=— ~a))'('a'"a' (a;(ap~ a;),a) )d—'xdr+o(p). (2.19)

du(p/do= C( u(1. (2.10)
Inserting the variables A and uij„one writes

1
(

32.
5'= —

~

A'm "m'"u;,u,„——8')d'xd +0 ( ), (2.20)Since both u; &(r+) and (du, p/do. ) (r+) are symmetric and
u, ),(r+) is positive definite, we may perform a linear
transformation which transforms both simultaneously
to diagonal form.

u, p(r+) = f'&; p (du, )/do) (r+)= u(;)(&;p.

and making use of the equations of motion for A, one

(2 11)
obtains

Thus we obtain
C; —bi u(;). (2.12)

This linear transformation leaves the differential equa-
tion (2.5) invariant, if we transform C appropriately.
C is given by

8
S'= —— Add'x—

3 .+
8

(7+ r) D—d'—x. (—2.21)
3

detu= 1 implies

du, L(o)/do ——u(ou, ),(o),

u;g, (o)=e"(') 8;p.

3

P u(, )
——C, '=0.

(2.13)

(2.14)

(2.15)

Thus the only quanti. ty of interest is D which we have to
express in terms of the initial and final values ail, and

a;I,+. Suppose we know the constant CXC which is
related to the initial and final values of uil, . Given CXC
we can express the two constants of integration D and

rp in (2.8) in terms of the initial and final values of A.
After some algebraic manipulations one obtains

On the other hand,

CXC= Q u(;)'. (2.16)

D= &-P[A+P+A P —(4A 'A '+ pCXC")'('j.
p= r+ r , (2.22)——

'r = p1 (r++r )—(2pD) '(A '—A ') (2.23)

Therefore, the solution reads

u. ), (o) = Q S'S„'e"«&'

What remains to be determined is CXC=Zu(;~'. We
observed previously that expu(;) (o) are the eigenvalues

(2.1'/) of u, p(o.) in the basis where u;),+ and u;), are diagonal.
For r=r,' o =o we have in particular that expu(, )(o.—)
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(2= 1, 2, 3) are the eigenvalues of

det~g;1, —nN;1, +~ =0, n;=expu~, ~(0. ) (2=1, 2, 3).
(2.24)

This equation may be rewritten as

n' —n'I "+I
1,
—+nu'" —

Ngg+ —1=0. (2.25)

The three roots satisfy 0,&n2n3= 1 since detl= 1. Finally
we have to express the quantity CXC in terms of the
three roots of (2.25). As a first step we compute 0 from
the defining Eq. (2.9). The result is

$D (t ,) '——,'—,(CXC/D) ]—'dh

= —(1/y) lnJ, (2.26)

(4A 2A+2+p2) "2+y
(BCyC)1/2. J—

l(4A 2A 2 —~2)'&2 —~

Use has been made of the expressions (2.22) and (2.23)
for D and 7 p, and p replaces the constant C)(C. Thus
the connection to the eigenvalues n; is given by

inn, = Pn&,
—&/y] lnj; ZN&o2= (8/3)y2. (2.28)

not unique in this case. We obtain the same path u, 2(r)
for all possible choices of S which diagonalize u;I,+ and
I;~ simultaneously. Different choices of S amount to
different linear combinations of identical solutions.
Thus, we have the important result that the extremal
path is unique in the limit e —& 0.

a;1,
————p S,'S1, 'A ', det$=1,

E

(3.1)

S= TR; RR'=1, a+= TT'~ de—ta+
~

"2 (3.2)

Let us first get rid of the fixed matrix T defining

a—= TCT'; —C,2=+ R,'R A2'. (3.3)

Using Bargmann's argument as given in Appendix 1
again and noting that detT= 1 one obtains

APPENDIX 3: TRANSFORMATION TO EIGENVALUES
IN THE MEASURE

We are interested in the Jacobian of the transforma-
tion of the variables of integration a;~ in the reduced
amplitude to eigenvalues A ' characterized by

II dai1= II dC12 ~ (3.4)
This relation may be inverted to express J in terms of
the eigenvalues

i&k i&k

lnJ= t 8 P (inn, )']"'.
Suppose the matrices R are expressed in terms of

(2.29) Euler angles as
R"=R"(v v v ) (3 5)

~ (Clif C22)C22)C22)C31) C12)E=
8(A ',A ',A 2,yi, y2, y2)

(3 6)

where C, & is given in terms of A ' and p; by (3.3). Let
us use the notation A for the diagonal matrix with the
elements A '. Then

8
S'= —— LA~2+A '

3c
(3.7)

(3.8)

(3.9)

C= RAR', RR'= 1,
dC= RdCR'

dC= dA+ $R'dR, A].

—A+A (J"2+J "2)]d'x+0(e), (2.30)

where J is given by (2.29).
Let us briefly discuss the question whether the

extremal path is unique for given boundary values a;A+

and aiy, , i.e., whether the algebraical manipulations we
carried out to express the solution in terms of its
boundary values might involve equations with more
than one root. We already mentioned that the determi-
nation of D and ro in terms of A+ and A involved a
quadratic equation with two solutions. One of them.
however leads to a singular solution. A (r) and is thus
excluded. On the other hand the uniqueness of the path
n;1, (r) is guaranteed as long as the three eigenvalues are
distinct, because the matrix 5 is essentially unique if we
chose any ordering of these eigenvalues, say 0&m&&0.2
&0.3. What happens if two of them or all three

coincident

This in fact causes no trouble although the matrix S is

Using the same argument again, we have

II dCia= II dG1. (3.10)
i&k

Let us look more closely at the commutator terms in d C.

PR dR, A],,= (R dR), ,(A —A '). (3.»)
The diagonal terms vanish. Therefore, we may write

(3.12)dC»dC»dC» ——dA 'dA 'dA '.
For the off-diagonal elements we find

dC22 ———(R'dR)22(A '—A ') cycl. (3.13)

Since we know the right-hand side from the eigenvalue We want to compute
equation (2.25) we can express p in terms of known
quantities by inverting the relation between J and p,
(2.27), and finally insert the result into the expression
for D. In this way one finds for the value of the action
at the extremal path
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Thus we have

g dai p d A k(—71) 72)73)d71d72d7p y

i&k

d'A = (A ' —A ')(A '—A ')

(3.14)

since we are considering only rotations with determinant
+1. If we integrate over the full rotation group, we

count each matrix u, ~ four times and have therefore to
divide the result by four.

The integral over the rotation group has the value

X(A ' —A ')dA 'dA 'dA '. (3.15)

To 6nd the function k we may again use invariance 0

arguments. The matrix T as defined in (3.2) is clearly
not determined uniquely. If we replace T by

dpi d72
0 0

d+3 sill+2= 8' (3.22)

P= TB BB'=1

and at the same time put
I= (8~'kp/4) dA ' dA2

R'= B'R, (3.17)

then nothing will be changed. Since (3.17) amounts to a
rotation in the space of the Euler angles we conclude
that the measure k(7i&7p, 7p)d7id7pd7p has to be the
group invariant measure which is unique up to a factor.

k (7i 7p 73)d7id7&d7p kpd'R——; d'R= sin7pd7id7pd7p

(3.18)

The constant k0 m.ay be determined, e.g, , by means of
the following integral

dAp e ~~""'(A '—A ')

X(A '—A ')(A ' —A ') (3.23)

I= (p./v2)'kp. (3.24)

Comparison with (3.20) shows that kp=1 and the
transformation of the measure takes the foim

These integrations can again be carried out with the
result

I= exp[—g(a;p)'] Q da;p,
i&k

which has the value

(3.19) g da, p
——d'A d'R.

i&k

APPENDIX 4: THE METHOD OF
STATIONARY PHASE

(3.25)

I= (s/V2)'. (3.20)

On the other hand we can use the transformation (3.1).
For convenience let us choose a;~+= —8;l„since u;~+ is
here irrelevant. This amounts to T= j., S=R The
integral then takes the form

We want to apply the method of stationary phase to
the integral (IV.23). Before we do this let us briefly
recall the basis of this method in the form which is best
suited for our application. Consider an integral of the
fOHIl

I= exp[' —P (A ')']k d'Ad'R. (3.21)

&
~[a(~)].tf(x)dx (4 1)

One has to be somewhat careful with the limits of
integration. In order to establish a one-to-one corre-
spondence between a;~ and its eigenvalues A ' and R
matrices, let us first of all order the eigenvalues ac-
cording to —~ &A'&A'&A'& . With this choice of
eigenvalues there are still four different matrices R
which transform a given matrix a;y to the diagonal
form

A'

where f(x) is an infinitely differentiable test function
which vanishes faster than any polynomial when

~
x~ —+~. h(x) is assumed to be inffnitely differentiable

and to have one single minimum x0, such that for any
given&)0 there is a 8)0 such that ~dh/dx~ )8 for all x
with

I
x xpl )e. Put

f(*)= fi(x)+fp(x) (4.2)

both infinitely differentiable and fi(x) =0,
~

x—
xp~ )28,

f &(x)= 0,
~

x—xp
~

(8. Then for any p

p+'[ "(*)I'~fi(x)dx =0 (4.3)

Geometrically this means that the main axes of the
ellipsoid associated with a given symmetric 3&(3 matrix
may be chosen in four different ways; the direction of
axis number one is 6xed only up to a sign and similarly
for axis number two. Number three is not independent,

In other words only fi is relevant for the asymptotic
expansion of J, in powers of p, a modification of f(x)
outside the arbitrarily chosen interval 28 does not
change the asymptotic expansion. [To obtain the result
(4.3) take h as a new variable of integration to compute
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E
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lnQ2= —y zlnQl ———y —z, (4.15)

g= —,'A+253 3y zg= '+' ' ' s'-)+cubic term, (4.16)

7

M+'(a+) =1V. exp ~ — M
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3
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n dn2. (4.10)A ~()) (ui)n2)dA dni n2.X (o(A )ni)n2 ()) X.(9y' —s') (1+o(."")) (4»)
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4,= 22-(e/3, 2)2A+& 'y(A+, 1,1) .

Inserted in (4.8) we have the result

e(a+) =~V. g iV A„'~-+»+ 2 (./A')'

(4.19)

X4(A+, 1,1) (1.+o(e'i2) ). (4.20)

APPENDIX 5: THE MATRIX ELEMENT (a"s" (ir;2~a's')

The range of integration has been adjusted to the
restrictions 1/42&n2) 422) n&& 0. The integrations may be
carried out and one finds

order to get all terms that do not vanish in the 1imit
e -+ 0? The firstt erm in Q' is o(e'") and the remaining
ones 0(1) since (A '—A+') =o(e'"). Therefore, the
leading term in the expansion will be o(e '~2). Second-
order terms are ~-independent and third or higher
orders vanish in the limit e —& 0. Thus we need the ex-
pansions to second order. Consider first the amplitude

(a"r"
~

a , r'+ e—)

1+ 4P24(a;2 —a, e+) (u)
5a4k (u)-

There is a slight difference between the integral
(IV.16) we considered in Sec. IV and the present one
given by (V.14): The integrations now run over the
variables a;I, which are associated with the upper sur-
face r'+e of the infinitesimal amplitude instead of the
lower one as in Sec. lV. Let us again denote the variables
which are kept fixed by a;&+ and the variables of
integration by a;&, i.e., put

X(a"r"
i
a+, r'+e)+o(e) . (5.4)

To obtain the expansion for S' we have to solve the
equations of motion to suKcient accuracy. This problem
was discussed in Sec. V, where we obtained the result
that the action

1

(5.1)
5 = Bd x+ iai i a' a (a;eat a, iay )g—x,

(5.5)
Written in terms of the eigenvalue variables as defined
by (IV.12) to (IV.22), the integral (V.14) takes the g ~g~ina'2
form ik 1m

8 7 6 Ic 8+7

=A'. ( ar") ar'+e) expiS'

M
XP 5 S 'Q'g —]deta

f

'~'d'A O'R, (5.2)

where

l — Z

Qg' ———(1/e)(A '—A ')

may be computed with the solution of the equations of
motion in the approximation (IV.10). The corrections
to S' which arise when the equations of motion are
solved to higher order of accuracy are o(e') and there-
fore clearly irrelevant for our purpose, since we need 5'
only up to and including o(e'"). This approximation is
still sufhcient for the evaluation of the fourth subsidiary
condition which we shall attack in Appendix 6, where
we need the action up to and including o(e). To this
order the action is given by

1
Q2'= A~

—+2L—4(A '—A~')
16c

XP(A m A m)+g(A l A 4)2

+(g(A m A m))2 P(A m A m)2j

(5 3)
$3(a+) ~g+~'~2dex —22e

—'

X (A+'+A '—2A+A cosh42)d'x+o(e'I') . (5.6)

are the eigenvalues of a;2(r'). Note that A+ =
~
deta~

~

'".
A factor ~ has again been inserted such that we may now
integrate over the full rotation group. We are interested
in an asymptotic expansion of (5.2) in e. According to
the method of stationary phase the only contributions to
this integral arise from the domain

~
a;2 —a;2+ (

= o(e'").
The contributions from the rest of the range of inte-
gration are annihilated by destructive interference of
the rapidly oscillating exponential. Let us again expand
all quantities in a Taylor series around the stationary
point. How far do we have to go in this expansion in

To carry out the integration it is convenient to again
make use of the variables y and 2 introduced in Ap-
pendix 4. Furthermore we replace the variable 3 by x.
The transformation from A ' to the new set of variables
x, y, s is given by

A '=A++2 exp(-', x—y—2); A '=A+'I' exp( —', x—y+2);

A. '=A. +4" exp(-', x+2y) . (5.7)

The action 5' to lowest order is quadratic in x, y, s and
x=y= 2 =0 is the stationary point. Therefore, x, y, and s
are o(e'I'). In terms of these variables we have the
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following expansion for the action S'

S'=

8A+' A+.'*'+ (3y'+")=0(1),
36

S~——xs) ——o (e'"), (5.9)

d'xmas (x)+S (x)+S (x)+ B(x)j+o( "'), (5.8)

The matrix element M, ),
' is o(e '~') while M;),2 and M;),'

consist of e-independent terms only. The range of
integration includes the full rotation group, the inte-
gration over x runs from —~ to +~ while the limits
in y and s are the same as in Appendix 4.

Let us examine M;I,' 6rst. The matrix R;~ appears
only in S . Since S=TR the integration over the rota-
tion group involves an integral of the form

2A ' 7@4

S,= — —-', (3y'+s') x'
3E 3

Em R .lR md3R (5.15)

3
(33+"))=0(.),

256

where we have included third-order terms which we
shall need in Appendix 6. For the present purposes we
can drop both S3 and B.

Finally, we have to express the measure in terms of
the new variables of integration x, y, s and to expand the
nonlinear factors appearing in the measure. The result
reads, again correct to third order

M
g —)deta

~

'"d'A d'R
4
= (1+mz+m2) SxSySs g d'R(1+o(e'12) ), (5.10)

SxX)ySs=g 4Ms (9y' —s')dxdyds,

lm —R.rR e& Lm (5.16)

i.e., r;~' is for fixed upper indices an invariant tensor
under the rotation group in the lower ones. This implies

p .~&m —y&m$ .~

On the other hand, integrating over R~ and holding R2
6xed, the same statements apply to the indices l and m.
Therefore,

lm &gimp . (5.17)

To determine r let us sum over 1=m in (5.15). The
integral on the right-hand side reduces to

which is recognized as a special case of the integral
occurring in the group orthogonality relation. If we
keep / and nz 6xed, replace R by R&R2 and integrate
over R2 instead of R we obtain, in view of the invariance
of the measure d'R

m3 ——P 6x,
Lr

m2 ——Q (3y'+s')/4+-', m)2.

(5.11)

because RR'= 1. Thus,

d'R= 8;g8m',

Collecting these expansions and retaining only second-
order terms the matrix element of d, ;I, becomes

r= 8sr'/3.

Inserting this result in (5.12) we obtain

(5.18)

XQS'S 'Q '+XS 'S 'Q ') (3.33)
l l

d'I (a"r"
~

a+, r'+ e)
ba) +(u)

X((«;—«.+).Z S 'S~'Q, ')

where we used the notation

(q )= e' J's d'"&5&x X)y X)sP d'R
L

(5 14)

(a"r"
~
a;),

~

a'r') =M;),'+M;),'+M;),'+o(c'12), (5.12)

M, =(a",'
~
a+, ,'+.)(P S'S.&Q, ')

l

M;),'= (TT') ),(a"r'
~

a+3 r'+e)-', (P( Q)') (5.19)

where we have rewritten 8sr' as J'd'R such that the
product Qr, d'R again runs over all points of the
lattice. Expressed in terms of the variables x, y, and
s, Pq Q)' becomes

P[ Qy = e '34~'"(4x+ (8x'/3)+3y'+s') . (5.20)

This shows that 3f;~' contains also contributions which
are independent of c besides the e 'l' term, which is
linear in x. The integral over this term vanishes by
symmetry since both S~ and X)xSySs are even in x.
Therefore, the matrix element of a;~ does not lead to
terms that diverge as e —+ 0. For the same reason the
terms J' dS'y2=g sr2(y)LV and mq in M;),' do not
contribute unless the point x at which we are evaluating
a;& coincides with y. Therefore, we are left with a single
term from both these sums. In 3f;~' we need, besides

Q Q&' also the quantity Q Q&' which arises when the
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Zs,/15)a+ -"'(2(~ Q' )Mi= ~' +
m
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(5.27)roup are carrie out I11over the rotation g
Q, & become~

jntegratio o
ariables x, y, an3f Inserting the varia

Z — 4/3
"' —(E Qi")'+3 E (Qi ) ).m 2 (52g)M, = (dPs/15)A~ —s)s—

(5.21)ZsQs —(~+ /)(s
+ = —+ the sum of theuse of TT'A '~'= —u e

M-'t k th foents 3f;z,' andmatrix clem

26x' 3
ik ik s a

x, and s are now straight-
. Th lt'forward althoug som

simple

M sz+M;ss=0, Q O' X 8

I I'a —2a;)as ')Z 8 Cik Zm,M;I,'. Note that the terms in
1A' d d'

e
'

would not occur in gener
h

"".f h. ---., --.a different form o ince
1 this cancellation.

g
since t en w

o the. Th fo do

olve an
i tegalo u ep

The integrations over the ro a
integral of the type

ha&„'(x)

6: THE MATRIX ELEMENT
I'"la' )

ix 5s
' '

e detail in Appendixiven in som
subsidiary condition

''dt the o suy pp

s u to th' d order ins ea
e u

'
the uantity8(x) by

-'R&' ) I
a

I

'"+ (3z/2bse) .——,'8= (Sss+-, a ' 'e .
an

'
o ' I'" was obtained qs.p or Sp 8

15)j Making use o(V.20) and (V.1 . '
o

5.8 we find

8= e '(Sz+Ss+Ss); Ss=Si— z

e
'

ent of 8(x) becomesThe matrix elemen o

(5.22)R;~RI,~Rz'R "d3R.r IzZ

~ ' shows that for
tb

lied to r;z, s
and d, the quantity r;I,s

h fore of the forminvariant tenssor and t ere

r '"&;st')s +rs "&;abed —r abc ,Z, S

n in thero e of Ry all d R one fmds th t
8

g g g
tions of theth coefFicients A

direct pr

-'++ a (3X'+s') ).

(Q&")s may again beThe quantities P~ Q&

t e sa those encountered

z—Ia'I '~' Ms ——2z a' —'~s,

s the value (V.39) for thewhere use has
2 2

s been n1ade of the va ueA '
norma iza io

e limit ~ —& in . . ce
every

' t the amplitude is e-in eeverything except t e a
obtain

r ""=r„8s8"+r„8-8&"+r,r &8s.rA —rAx
8i(x)+ d'N8s;s(x, u

d' d' 8, „(,u, v

X a r a 7 6 0 6 )
)/2 (6 3)

r;ss ~'ss ——
I (4—28's)8;ski

(1 35") 6 x)= '((8+5+sr).
(8 t8s +8' ss)j.. 8 s . (5.25)

means ofmay be determined by
h 1 1We need only t e pcontractions. e

and b not summed)

We 6lldInserting this result in M;z,

II II g+ I

ha i„+(x)

; + + s, (5.26)X (ass+a&~, + +M +a;i+as„Ms),

XI 1 z S dss+z Ssdss+ze Bd s

d's
I I

(1+r)zi+zsz ) (6 4)S, ~
2E
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H„,(x,x)=x '((x;, —x;,+) (8+5).

X~ 1+i S,d'x )(1+m,)), (6.5)
(b(x))=0, (6.12)

to 1/e. This result would clearly not be true had we not
taken the correction term to the fourth subsidiary con-
dition into account. Next consider the matrix element
of b. This matrix element vanishes

83,), ),„(x,u, v) = c
—'((a, ),

——a,„+)„ by virtue of symmetry: S2 and ns& are odd in the
variable x. Therefore, 8~ is independent of e. Evaluating

X (a~~ —a~~+)v(S~),). (6.6) the matrix element of c we obtain

The leading terms in 8&, 82, 83 are respectively o(e '),
o(e '~'), o(1). Consider 8q erst and write it as (6.13)

8q(x) =(e 'a(—x)+e ')'b(x)+c(x)),

with u, b, and c e-independent

0 X =
y X

b(x)= "' S,(x)( S,d'x+xX)+ .S,(x).

(6.7)

(6.8)

(6.9)

To compute 82(x,u) we may use the result (5.17), (5.18)
for the integrations over the rotation group. Using
(6.11) and the same symmetry arguments as above one
concludes that only the contributions from x=u sur-
vive. The result reads

1
8„,(x,u) = —b(x—u)—i

a'j-'i'a, ,'(x) (6.14)
+3

c(x)=c ' Si(x) S3d's+i e Bd's

1 2

S2d's +i S2d'zmg+m2
2

(a(x))=0. (6.11)

In other words, 0~ does not contain a term proportional

The integrations over the rotation group are trivial in
0~ since the integrand is independent of R Let us first
look at the matrix element of a. Note that S~ contains
the correction term 3i/6' which accounts for the
transformation properties of the measure in the fourth
subsidiary condition. The integrations over x, y, and s
may be carried out with the result

and is again e-independent, because the leading term
in 02 which is proportional to e l", vanishes by sym-
metry. Note that in our notation 5 '=8(0).

Finally, 83(x,u, v) may be determined using the ex-
pression (5.25) for the integral over four R matrices.
The integrations over the variab es x, y, s are again
straightforward and lead to

83x)x ixxx(x)u)v)

=b(x—u)b(x —v)-', ~a'~

X (a, ) a)~ —a, ) a~~' —a,~'a):~') (x) . (6.15)

If we collect these results, go to the limit &~0 and
insert the reduced matrix element of 8(x) in the sub-
sidiary condition (V.17) we are lead to the expressions
(V.22) to (V.26), since the A integrations are again not
affected.


