
P kI YS ICAL REVI EW VOLUME 134, NUMBER 58 8 JUNE i964
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We consider the eth-order spacing distribution, I'"(s), in the statistical theory of energy levels of complex
systems. Each I'" is written as a sum of multiple integrals over correlation functions. This procedure is used
to establish the identity of the spacing distributions for all members of a class of Hamiltonian unitary
ensembles. A power-series expansion of P"(s), valid for all a, is developed.

I. INTRODUCTION

STATISTICAL theory has been developed' '
which has been applied to the problem, of level

spacing in heavy nuclei in a region of the excitation
spectrum where the level density is approximately con-
stant over, say, a hundred levels. A suitably chosen
ensemble of T-dimensional Hamiltonian matrices is
introduced, and one studies the distribution of the eigen-
values of ensemble members.

Ke are interested in developing approximation pro-
cedures for the calculation of energy level spacing dis-
tributions for a class of Hamiltonian matrix ensembles.
To date, nearest-neighbor spacing distributions, P'(s)
have been calculated, in the limit of large Hamiltonian
matrix dimension AT, for orthogonal, unitary, and
symplectic ensembles' '; the next-nearest-neighbor spac-
ing distribution P'(s) has been calculated only for the
orthogonal ensemble. ' ' One can start the calculations
by imposing restrictions on the matrix elements of
members of the Hamiltonian ensemble. For matrix dis-
tribution functions f(xt, ,x~) which depend only on
the eigenvalues xl to x~, one obtains for the joint dis-
tribution function for the eigenvalues'

P (. . .* )=f(*. . . )IIl '— l', (1)

where P = 1, 2, 4 for the orthogonal, unitary, and sym-
plectic ensembles, respectively. 'The product factor arises
from the Jacobian of the transformation from matrix
to eigenvalue space and represents the volume of the
former space associated with a given set of eigenvalues;
it is responsible for the "repulsion eGect."

Alternatively, one can immediately assume Eq. (1)
as a form of the joint probability distribution of eigen-
values. ' A particular f(xt, ,xs) does not uniquely
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determine the distribution of elements in the Hamil-
tonian matrix ensembles.

Members of the class of Hamiltonian ensembles in
which f(xt, ,x„) is a product, g; Lg(x,)fs, have been
extensively studied. ' ' "'For example, the choices

[g(x)$s=exp( —x') —~ &x& ~,
= (1—x)&(1+x)" &, v) —1; I*I &1,
=x e a) —1; 0&x( ,
=1 x= e" 0&|II&2+

lead to the so-called Gaussian, Jacobi, Laguerre, and
circular ensembles, respectively. ' The circular' and
Gaussian' ' ensembles have been shown to have identi-
cal nearest-neighbor spacing distributions for P = 1, 2, 4.
Although the unitary ensembles, P= 2 are of less physi-
cal interest than the orthogonal ensembles, they have
been studied more extensively because the caluclations
are easier. One hopes that certain results established for
P= 2 will lead to generalizations valid also for P= 1.

In Sec. II, we discuss the eth-order spacing distribu-
tion, P"(s), which is the probability that between two
levels separated by a distance s there are found exactly
e levels. These distributions are, apart from their
mathematical interest, of importance because of the
availability of empirical data with which to investigate
the range of validity of the theoretical models. It is
shown that, in the Rat region of the level density, and in
the limit S—+~, the eth-order spacing distribution for
all unitary ensembles associated with the classical
orthogonal polynomials is identical with that of the
circular ensemble.

In Sec. III, power series expansions of P"(s) are
developed, valid for all e&(X. Auxiliary mathematical
results are derived in the Appendix.

II. EQUIVALENCE OF A CLASS OF
UNITARY ENSEMBLES

The nth-order spacing distribution corresponding to
the interval x to x+s is given by

XPsl(x, x+s, xs, , xtv)drs, tv (2).
' The nomenclature in this Geld leaves something to be desired.

The Gaussian ensemble is named for the weight function Lg(x) g',
"circular ensemble" describes the periodic property of the allowed
range of variables; most of the remaining names (Jacobi, Laguerre,
etc.) come from the orthogonal polynomials associated with the
weight function and the allowed range.
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Here P&(xi,x,, . . . ,x&) is the joint distribution function;
dr, , „ is the pa. rtial volume element (dx,dx,+t dx„);
f, is an integral, with respect to any one of the x&, over
the entire range external to the interval x to x+s. The
symmetry of the joint distribution function with re-
spect to all permutations of the x~ allows us, here and
below, to write the multiple integrations as symbolic
powers, without specifying the variable associated with
each integral. The symbol t' will be used to designate
integration over the entire range. (This range may differ
from one ensemble to another. ) The definition implies
that

(3)

Wigner" established relations between the various
spacing distributions and integrals over the correlation
functions. We introduce

( + )yc( )sV—b—2

Q"(x, *+s)=
k!(1V—k —2)!E m

XPir(x, x+s, x„,x~)drg, ~, (4)

which differ from Wigner's functions, "I~, only in nor-
malization. Wigner developed the relationships

ir-g n.'l
Q'(x, x+s) = P IP"(x, x+s) .

=I k)

Further calculations may be simplihed if one follows
a procedure developed by Mehta' for the Gaussian
orthogonal ensemble. One may replace each row of the
determinant in Eq. (8) by a linear combination of rows,
obtaining the same set of linearly independent poly-
nomials in every column. In particular, for a given g (x,)
and an allowed range a&~x, ~&b, one generates in this
manner a set of polynomials P„(x,) orthogonal with
weight

I g(x,)]' in this range. ' ' One may now absorb
the weight function g(x,) in every element of the ith
column (every i); the ri, i element is then y„(x,)—=g(x,)P„(x;).The functions q „(x,) are now orthogonal
in a~&@;~&b with constant w'eight. A constant outside
the determinant allows the restriction that the q are
normalized in the range a to b.

Equation (8) may now be replaced by

Pir(x.. .xN) =C DetLq „(x;)$';
(i, m=1, 2, , X). (9)

The functions Qy' ' may be related to the j-level cor-
relation function E,'.

Z;(x„.,x) =(V!L(Ã—j)!&-'
N—j

X
I

Pir (xi, ,x~)dr, +i,~. (10)

Equation (4) may be written as

That Eq. (5) follows from Eqs. (2) and (4) may be seen
by. observing that, where the integrand is symmetric, p—(s s~r) [(J g)ij—

)the binomial theorem may be applied to Eq. (3):

&&X,(x, x+s, x„,x;)drg, y (11)

One shows that
N—2 (rl)

P"(x x+s) = Z (—)"'"I IQ-(x, *+s)
m=n Ee&

(7)

is a solution of the set of equations (5) by substituting
(7) into (5).

The above results are applicable to any joint proba-
bility distribution which is symmetric in all the
variables. In what follows, we restrict our attention
to a particular class of unitary ensembles.

The factor g,&;(x;—x;)' in Eq. (1) is equal to the
square of the Vandemonde determinant. ' Equation (1)
may then be written as

Pir (x„,x~)
1 1 1 2

(8)

g N—1 . ~ . g N—I

' E.P. Wigner, in Statistical Properties of Spectra: Ii/uctuutiols,
edited by C. E. Porter (Academic Press Inc., New York, to be
published), article 34.

E(xi,x ) = Q y, (xi)(p, (x„). (13)

From Eqs. (7), (11), and (12), it is readily seen that
two ensembles with the same kernel will have the same
set of spacing distributions.

Instead of starting either with a Hamiltonian en-
semble or with Eq. (1), we may define a class of en-
sembles by Eq. (9), with the 1V functions &p„(x) chosen
from any set which is orthonormal in some interval.
LThis class includes as special cases the ensem, bles de-
fined by Eq. (8).$ One can show that the derivation of
Eqs. (12) and (13) from Eq. (9) holds for all ensembles
of this class.

In what follows, we restrict ourselves to large F and

The integrations in Eq. (10) have been carried out
for the circular unitary ensemble by Dyson, ' and for
the Gaussian unitary case by Mehta and Dyson. ' They
obtain

R;(xi, ,x;) =Det[E(xi,x„)$;
(l, m=1, 2, , j), (12)

where E(xi,x ) is the kernel function defined by
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to the fiat region of the level density curve. The kernel
has been derived for the circular unitary ensemble by
Dyson' and for the Gaussian unitary ensemble by
Wigner. "Their results are of the form

X(xi,x„)= -"LsinB(xi—x )]/(x, —x„). (14)

Here 8 is a constant determined by the scale of the
independent variables. Using the Christoffel-Darboux
formula for the kernels and the appropriate asymptotic
expansions of the resulting expressions, " we have ob-
tained Eq. (14) for the ensembles generated by the
Jacobi polynomials Lp„(x)=P„ it& "&(x), any ls, v] and
by the Laguerre polynomials [P,(x) =L„ i"(x), any n].

For the Jacobi ensembles, the result is valid if xi and
x are restricted to a neighborhood of the origin. In
this neighborhood, the density has zero slope to order
Ns/N (where Ns is the number of levels in this region),
and the error in the kernel is at most of this order, so
that for a given accuracy Xo is proportional to X.

The level density for the Laguerre ensembles has
been derived by cronk" and independently by Kahn,
Porter, and Tang. "They found that the density has no
point of zero slope in the finite region of x. For our pur-
poses, we can de6ne a "Bat"region as the neighborhood
of any x=xs (provided that xs is much larger than the
mean spacing between the first two levels) if we restrict
ourselves to a range of x over which the change in
density may be neglected. Equation (14) is valid in this
neighborhood if x~ and x are measured from a new
origin at xs. The constant 8 (and hence also the density
at the new origin) is proportional to xs 'I'. For a fixed
accuracy of the results, the size of. the "Qat" region is
proportional to xo, so that the number of levels increases
as x,+&~2.

One concludes that for a unitary ensemble generated
by any classical polynomial there exists a suKciently
large "flat" region in which Eq. (14) is valid. Hence, for
these cases, each spacing distribution with e(&X is the
same as that of the circular unitary ensemble.

III. POWER-SERIES EXPANSION

The development of a power-series expansion of I'"
may be simplified by the introduction of a set of
functions

X&N(xi, xs, .
, »)dri, rr. (15)

Dyson' introduced the notion of differentiating cer-
tain probability distributions to obtain the spacing dis-
tributions. (This technique has been used by other
authors to obtain relations among various probability

"G. Szego, Orthogonal Polynomials (American Mathematics
Society Colloquium PubHcations, New York, 1959),Vol. 23, Eqs.
(4.5.2), (8.21.10), (8.22.6), and (8.22.8).

'~ S. Bronk (to be published).
's P. B. Kahn, C. E. Porter, and Y. C. Tang (to be published).

dsG7 (s)/ds& =Qi—s (s) (17)

A series expansion of I' (s) may be obtained from ex-
pansions of the G'(s) through the use of Eqs. (7) and (17).
Combining Eqs. (10), (12), and (15), we have

( ry/2) j
G'(s)=(j ) 'I

I D«L&(«x )]dri. s (1g)

Ke assume the legitimacy of the series expansion

X(xi,x„)=p„,, b(p, q)(xi)v(x )&. (19)

In the Appendix, the corresponding power-series ex-
pansion and subsequent multiple integration of G&' are
carried out. The result may be expressed as

G (s)=2 P (s/2)'+ P DetLb(pi, q„)]
r=o part

XDet/e(pi, q )]. (20)

Here the second summation is over partitions of the
integer r into two sets of numbers, pi to p, and qi to q;.
Each such partition of r uniquely determines two
determinants: the 1, m element of the first is the coef-
ficient b(pi, q ) in Eq. (19), while the corresponding
element of the second is

e(pi, q-) = pi+qm

(pi+q +1) ' pi+q even.
(21)

From Eq. (21), it follows that DetLe(p&, q )] will
vanish if either two of the pi or two of the q are equal.
Then, for a given j, the leading term in Eq. (20) will,
in general, be the one corresponding to the partition of
r into two identical sets, 0, 1, 2, , j—1.The minimum
value of the exponent r+j is therefore j'. Hence, the
leading term, of the spacing distribution I'" is of degree
(I+2)'—2, in agreement with the result of Kahn and

' P. B. Kahn, Symposium on Statistical Properties of Complex
Atomic and Nuclear Spectra, Stony Brook, 1963 (unpublished).

distribution functions. ' ") Following this method, the
derivative of 6&' with respect to s is obtained through the
use of (d/dx)(J' s)'=r(f )' '(d/dx) f which is valid
for integrands that are symmetric in all variables and
independent of x. One 6nds

dG&(x, x+s) AN) p
*+' '-'p

ds Ej)k .
yI'~(x+s, x.. . x~)dr, ,ir. (16)

Taking another derivative would involve diGerentiation
under the integral sign. To avoid this diS.culty, we
restrict our attention to regions of x and s in which G&'

(and hence also dG&'/ds) is independent of x. We may
then shift x by —s, differentiate, and shift back again.
The result is
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Porter. "The coefBcient of this term is derived in the
Appendix.

It follows from Eq. (18) that G'(s) has parity (—)'.
The choice B=qr in the kernel given by Eq. (14) is

such that the average nearest-neighbor spacing is one.
With this kernel, the coefficients in Eq. (19) are

b(p, q) = ( )*—' i "~w eq(p, q)/p!q t.

Equation (21) then becomes

G'(s) = (2/~)'2 (~s/2)"" 2 {D«Le(p,q)7)'
part

(22)

XIII(—)**"' "'p*!q'!} ' (23)

The series expansion of G'(s) is more easily obtained
from the known result

This expression is simpler than Eq. (23) for computa-
tion; however, the method used in the derivation is
not tractable for higher Q"(s).

We expanded the infinite product expression' ' for
P'(s) as a power series, to order s"', and compared the
coefficients with those of P'=Q' —Q'. The validity of
the latter expression to this order is guaranteed, since
the leading term in Q'(s) is of order s".At the maximum
of P' (s—0.9), Q' contributes about 5% and Q' less
than 0.02%. From Eq. (A6) one finds that Q' rapidly
becomes important beyond s= 1.5.

The power series converge slowly in the region where
P"(s) is significantly different from zero; the method is
unsuitable for a study of the behavior at very large s.
However, the method has the advantage of adaptability
for machine computation for many m.

APPENDIX

A determinant will be expressed here as an anti-
symmetrization of the product of diagonal elements.
Thus Eq. (19) leads to

DetLE(xt, x )]=II p b(p;, q~)(x, ) 'Ai &'&(x,)". (A1)

The implicit antisymmetrization on the left side of this
equation involves permutations over the variables;
on the right we use, instead, the operator A~'&', which
antisymmetrizes with respect to the j exponents pi

'q P. B. Kahn and C. E. Porter, Nucl. Phys. 48, 385 (1963).

Q'(s) =R, (x, x+s) = L1—(sinqrs)'/s'qr']. (24)

Instead of computing G'(s) from Eq. (23)&
one may find

Q'(s) by an alternate method:

(2qrs)» —i —(2P+ 1)q

' s =a=' —4 P — . (25)
(2p+1)! 2p —1 ~'=i j

to p;. The latter operator can be commuted with &e
factor (xq)«as well as with the multiple integration
involved in the calculation of G'. Substituting Eq. (A1)
in Eq. (18) and carrying out the integrations, one finds

2 sq n'+qua+i

G'(s) =—. II 2 b(p', q')A~"'I —
I e(p', q')j! '.;,„' (2)

2' (s) j+T

Lll b(p', q~)]'! ~ ~; q" q";(2)

X [A &" II e(p; q;)] (A2)

where e(pi q„) isgivenin Eq. (21) and r=p; j(p;+q).
We consider partitions of a given value of r into two
sets of numbers pi to p;, qi to q;, without regard to
order within each set. The sum over these indices in
Eq. (A2) may be separated as follows: (1) For each
partition of a given r, the sum over ordered values
within the sets is expressed by the product of S@"'and
S&(&', the symmetrization operators with respect to
the members of the sets. (2) The sum is then taken over
partitions of a given value of r. Finally, (3) the sum over
r is taken, giving the sum over powers of s. Equation
(A2) is now replaced by

21 (s) ~+1

G'(s) = —. Zl —
I 2 So"'j! ~ k2& pari

x(S"'LIIb(p„q;)A" & II.(p;,q;)]). (A3)

Using the known relationship (Ai &&'fi)(Ai &&'f&) Si&'»

X(fiAp&&'fq) the expression in braces in Eq. (A3)
becomes

(A "'IIb(p;, q'.))~A "'II (p', q'))

=D tLb(p', q~)] D tL (P',q')] (A4)

Since the product of determinants is completely sym-
metric with respect to the indices q& to q;, the operation
with So&&'& in Eq. (A3) results in a factor of j!.Com-
bining these steps, we obtain Eq. (20).

From Eq. (21), one may show that DetLe(p&, q )]
has the following properties: (1) If two of the pi (two
of the q ) are equal, the determinant will vanish. (2)
If, in any partition, the sets p; and q; have unequal
numbers of even integers, the determinant will vanish.
(3) In a partition in which the number of even integers
is the same in both sets, the determinant may be factored
into a product of two determinants, one containing
elements with even indices, the other those with odd
indices.

These three points lead to considerable reduction in
the labor involved in manual computation of the coef-
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ficients in Eq. (23). In addition, they a,re used to find a,

general expression for the coeKcient of the leading
term of G'(s). We calculate the determinant

DetLe(p, ,qs)] for the case in which each set consists of
the numbers 0, 1, 2, (j—1). If the rows and
columns are arranged so that all the odd indices appear
first, the determinant is in clearly factorable form, with
zeros in all positions of the two off-diagonal (even-odd,
odd-even) blocks. The dimensions of the factors will

be equal or will differ by one, depending on whether

j is even or odd. The P,q& element of either factor is

(p~+qs+1) '. Either diagonal block is designated as
D(srt), where nz is the largest value of p; or q~. Evalua-
tion of D(m) is straightforward and may be found

(A6)

in the treatise by Muir and Metzler":

(2t+n)!
D(2st+n) = II

(4t+2n+1)!!
X (4t+2n+1); n=0 or 1. (A5)

Whether j is odd or even, one may write DetLe(p;, q&)j
as D(j)D(j—1). Evaluating this product from Eq.
(A5) and substituting the result in Eq. (23) yields, for
the leading term of G&'(s)

kt
i-II —

i II
l ~& i 2 J .=t (2h+1)!!(2h—1)!!

"T. Muir and W. H. Metzler, A Treotsse oN the Theory of
Determinants (Dover Publications, Inc., New York, 1960), p. 429.
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Gravitational Field: Equivalence of Feynman Quantization
and Canonical Quantization
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The transition amplitude for the gravitational Geld as given by the Feynman sum over histories expression
is analyzed in analogy to the electromagnetic transition amplitude. The analysis is based on an explicit
representation of the Feynman sum by means of a lattice. The measure is found by consistency requirements
and differs from those proposed by other workers. Particular attention is paid to the subsidiary conditions
associated with the gauge group. It is shown, that the present approach is equivalent to the quantization
by means of canonical variables as proposed by Dirac.

I. INTRODUCTION

HIS paper deals with the problem of assigning a
well-defined meaning to

histories

if 5 is the action for the free gravitational field. The
present approach may actually be extended to the more
general case of gravity interacting with matter. For
simplicity we shall deal with the gravitational field
only.

The prescription given by Feynman' to compute (I.1)
is not completely straightforward, because the action
for the gravitational field is degenerate. The presence of
an invariance group generates various diKculties which
are well known for the case of the electromagnetic field
and its Abelian gauge group. The quantization of the
electromagnetic field in the framework of the Feynman
sum over histories is analyzed in some detail in Sec. II

*Permanent address: Institut fiir Theoretische Physik Uni-
versitKt Bern, Switzerland.

t Supported by Janggen-Pohn-Stiftung and Schweizerischer
iVationalfonds.

' R. P. Feynman, Rev. Mod. Phys. 20, 267 (1948).

and constitutes the basis of the present approach to the
quantization of the free gravitational field. In particu-
lar, we examine the subsidiary condition associated with
the gauge group, which in the case of the electromagnetic
transition amplitude states that this amplitude is in-
variant with respect to a gauge transformation of the
potential at the initial and the final surface. Section III
deals with the generalization of this discussion to the
gravitational case in a purely formal and heuristic
manner. A more precise framework for the evaluation of
the gravitational amplitude is set up in Sec. IV and the
derivation of the subsidiary conditions in this frame-
work is given in Sec. V where we also proceed to convert
them into differential form. Finally, it is shown in Sec.
VI that the results obtained are equivalent to the results
of the Hamiltonian quantization procedure as proposed
by Dirac. ' One could and should trace out in a similar
way the connection between the sum over histories
formulation and the canonical formalism given by
Arnowitt, Deser, and Misner. ' However, to treat this
connection would lengthen the present account unduly.

' P. A. M. Dirac, Proc. Roy. Soc. (London) A246, 333 (1958);
Phys. Rev. 114, 924 (1959); R. Arnowitt, S. Deser, and C. W;
Misner, Phys. Rev. 113, 745 (1959); 116, 1322 (1959); 117, 1595
(1960); 118, 1100 (1960).


