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The So A.—A zero-energy scattering length is calculated by solving the Schrodinger equation for the cou-
pled A —A and Z —Z channels, using pionic exchange potentials (with hard core of radius xp) derived for the
case of odd h.—Z parity. Using the value of x0 and the coupling constants fez and gpss which 6t the low-
energy h.-N scattering data, the A.—A interaction is found to be so strongly attractive as to bind in the S0
A.—A. state. Since the A. —A. interaction deduced phenomenologically from the analysis of h. —A hypernuclei
is not strong enough to bind, we conclude that the assumption of odd A.—Z parity leads to contradictory
results in the calculation of the low-energy A-N and A —h. scattering.

1. INTRODUCTION

ECENTLY Dalitz and Rajasekaran' have used
variational procedures to calculate the binding
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~

~

energy Bqq in the experimentally observed' system
gee" as a function of the A —A. potential strength.
With the experimentally observed value of B~~, the
result given by these authors for the volume integral
v AA of the 'Ss A —A potential is 322&26 MeV Fs (assum-
ing an intrinsic range of 1.482 F for the A —h. potentiaP).

The A —A force is expected to arise principally from
the exchange of two pions. In addition, if one assumes
a neutral vector boson coupled universally to all the
baryons, there may be a repulsive core of radius
g,=0.35 f4

' dominating the inner region (lI=average
pion mass=138. 1 MeV/c2). The closed Z —Z channel,
coupled to the A —A channel by pionic exchange, may
also contribute significantly. For even A —5 parity, for
which there is good experimental evidence, ' de Swart'
has given a discussion of the S-wave h.—A interaction.
For odd h. —2 parity, the expressions for the A.—A

potential VAA (without the Z —Z channel) have been
given by Deloff', however, if there is a hard core in the
A —A. force, and in addition also effects coming from the
closed Z —Z channel, it is not evident what the net
A —A. interaction will be. The purpose of the present
work is to calculate the zero-energy A.—A scattering
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length e~g for odd A —Z parity, including the e6ect of
the closed Z —Z channel and a hard core in the poten-
tials. Here, the inhuence of the closed —S channel
will be neglected. For even Z —A parity, a calculation~
has shown its inItIuence to be rather small; for odd
parity, the coupling to the —Ã channel is again
through E and X* exchange, and the effect is again
expected to be small.

P' 3g 4(XJf (4l+ IIX(4)) (2)
P' — ~3g 2 X(2l+2~3f 2g 2 (III' (4) XP'(4) ) (3)

JIz
— 2f 2 lr (2)+2fz (4l (xV (4)+2 IIP' (4))

+g 4(X+(4)+3IIX(4)) 4f 2g 2XP(4l (4)

U, U, X, and Y refer to the contributions of the
various graphs to the potential. U' & is the contribu-
tion to U~q of those fourth-order crossed graphs which
have one A particle in the intermediate state. Fourth-
order uncrossed graphs with one h. particle in the inter-
mediate state do not contribute to a transition from an
I=O 2—2 state to an I=0 2—2 state. This is a conse-
quence of the requirement of isotopic spin conservation,
as can be seen by the following argument. The isotopic
spin factors are the same for all uncrossed graphs which
di6er only by time ordering. So if the isospin factor is
zero for one time ordering, it is zero for all time order=

ings. But for those graphs whose time ordering is such
that the intermediate state consists of one Z particle
and one A particle, the isotopic spin factor must be

' J. N. Pappademos, Phys. Rev. 134, B1132 (1964), following
article.

K. A. Brueckner and K. M. Watson, Phys. Rev. 92, 1023
(1953).

2. THE POTENTIALS

Starting with the charge-independent Hamiltonian
density

H 4
——gAz(42r)'"LAtX+XtA] 22

+ (f»/~) (4w)'"L&t&&~'& vI~3) (1)

and deriving the potentials with the Brueckner-
Watson' procedure, we obtain the following results:
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zero, since isotopic spin is not conserved in the inter-
mediate state for such graphs.

U&", xV('&, and V"' represent the contributions to
V of the second-order graphs, and the fourth-order
crossed and uncrossed graphs with two Z particles in
intermediate states. xX&4& and IIX('~ are the contri-
butions of the fourth-order crossed and uncrossed
graphs to Vqq. X('~ is the contribution of the second-
order graph to V~~, while III'&4~ and ~I'&'& are the
contributions of the fourth-order uncrossed and crossed
graphs to V~~. They are given by the expressions

XI'&41=et rrs~I'. '4& (x)+Sts~F'r &4'(x),

"I't'& = rrt rr2" J" "&(x)+Str"Fr "&(x) (6)

where x is measured in Yukawas (1 yukawa=1 p,
'

= 1.4289 F).
Although the channel mass difference 6= 153.8

MeV/c' is large, it turns out that the mass difference
corrections' to the range and strength of the second-
order transition potential vanish identically for the case
of two equal mass particles in each channel.

The Pauli principle limits the 5-wave A —A inter-
action to the 'So state. Hence, none of the tensor force
terms in the above potentials will appear in the poten-
tial matrix of our problem. Orbital angular momentum
as well as spin are good quantum numbers, and the
'So A.—A state is connected only to the 'So Z —Z state.

The momentum space integrals and radial depend-
ences of all of the above potentials are listed in Appen-
dices A and 8, with the exception of U"', V", and
11V&4) which are given in Ref. 10.

3. RESULTS

In units of A=|,"=1, the Schrodinger equation takes
the form

—(1/~~)&~"+V~~&~+&z~lz=»~,
—(1/ilIz)Nz"+ I ~z&a+ (&zz+~)&z=&~z, (7)

where 6=2(Mz —3IIq), and Nq and Nz are the radial
wave functions in the AA and ZZ channels. The numer-

ical values used were (in MeV/c') 3IIa=1115.36 and
3f~

——1192.3. The latter figure is an average over the
members of the charge multiplet. Solving this equation
numerically, the zero-energy scattering length a&z was
obtained for various trial values of coupling constants.
Some features of the numerical solution are discussed
in Appendix C. The core radius used was 0.35 p, '. For
this core, the values of gqz and fzz which lead to a fit
to the observed A —Ã scattering length were found by
de Swart and Iddings'~ to be in the neighborhood of
gqz=0. 763, fzz= —0.150. Trial values of gqz and fzz
close to the above values were chosen; the results are

' The reason for not including the mass difference corrections in
the fourth-order potentials is discussed by de Swart and Iddings
in Ref. 10."J.J.de Swart and C. K. Iddings, Phys. Rev. 128, 2810 (1962).

TABLE I. 'S0 zero-energy scattering length egg in Yukawas
(1 yukawa=1. 4289 F). x0=0.55 p '.

ggz fzz = —0.20 —0.15 —0.10 —0.05 0.00

0.80
0.76
0.72

1.173 1.216
1.461 1.512
1.864 1.939

1.238
1.538
1.979

1.248 1.251
1.550 1.554
1.998 2.003

TmLE II. Variation of 'S0 h.—h. zero-energy scattering length
egg with ghz fed= —0 15. xo =0 55 p 1

gAZ

0.763
0.650
0.625
0.600
0.575
0.550
0.450
0.350
0.250
0.150

1.487
5.026

29.4—5.38—2.010—1.026
0.0108
0.248
0.325
0.347

"Both the crossed and uncrossed diagram contributions to Vpg
are attractive."This can be understood by recalling that the energy correction
caused by second-order transitions to virtual states lying higher
in energy is always negative.

given in Table I. Since g~~ enters to the fourth power in
the diagonal potential Vag, while fzz does not even
enter into V~g at all, one would expect the dependence
on g+z to be quite strong, with a much weaker de-
pendence on fzz, this is found to be the case. For
0.8(gqz(0. 72, and —0.2(fzz(0, the zero-energy
scattering length varies between the limits 1.17 p ' and
2.00 p, '. A positive scattering length can correspond to
either a repulsive interaction, or an attraction strong
enough to give rise to one or more bound states. One
would not expect positive values of a~q in this range to
correspond to a repulsive A —A force, since the diagonal
potential Uqq consists of a hard core of radius Xo——0.35
p ' plus an attractive tail." It follows that if the force
were repulsive, ay~ would be positive but less than
0.35 p, '. The effect of the closed Z —Z channel is to
enhance the attraction. "

Thus the values of a~~ found for the above ranges of
gqz and fzz suggest that this potential corresponds to
the existence of one or more bound states. In order to
ascertain how many bound states there are, and also to
corroborate the conclusion that the A.—A. force is
indicated to be attractive rather than repulsive, the
value of a&+ was calculated for values of gzz varying
from 0.763 down to 0.15. The value of fzz was held
constant at —0.15, and @0=0.35 p '. The results are
shown in Table II. For very small gag, where the attrac-
tive tail is practically negligible, aqq approaches the
hard-sphere value 0.35 p, '. As gag is increased, cor-
responding to more and more attraction, aqq at first
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TmLE III. Variation of zero-energy p'S A.—A scattering length

ups with hard-core radius, for gag 0.763, f~v=—

Xp) p

0.35
0.36
0.40
0.44
0.48
0.52
0.56
0.60
0.64
0.68

1.49
1.57
1.98
2.56
3.64
6.73

2296.—5.28—2.18—1,12

decreases to zero, then goes to very large negative
es chan in finally to positive values as the attrac-

tion ecomt' b comes sufhcient for binding. o more sign
c anges och ccur before a~~ reaches the va ue . p

f ~in( „=0763) and we conclude that values o gqz injat gq~= . a
this neighborhood give rise to only ore bound state.

The 'Sp zero-energy A —A scattering length has been
estimated by Dalitz and Rajasekaranh (using the data
from the +&Be" event observed by Danysz et a .') to
be ahhq= —1.76+0.33 F (= —1.23 y ')." This cor-
responds to an attractive force, though not strong
enough to give binding.

Thus, the available experimental information on the
low-energy — in eA —A

' t raction is in contradiction with the
results of a calculation which is based on the assumption
of odd Z —A parity and which uses the same corn ina-
tion of hard-core radhus, fez and gqzd which fit the low-

energy A —Ã scattering data. If one did not require the
h A —S and A —A interactions to be equal in

radius, then a simultaneous fit to the A —A an
data could be obtained with the same values of gag and

~g. Dalitz'4 has advanced an argument favoring a
somewhat larger core (=0.48 F) in the A —A. system
than in t eh 1$ A —S system. However, a calculation

= —0.150,0 Gpg 0f for various core radii an
=0.763), the results of which are presented ind in Tablegal=

III, shows that the hard-core radius in the A —A

system mus e int b increased to the neighborhood of
xo ——0.68)h ' (0.94F) in order to fht the value aqo
= —1.23 p '. We conclude that unless the hard core in
the A —A system is very much larger than the hard core
int eh 'S A —E system in fact unreasonably arge, the7

dS-f dd arity leads to contradictory resu s
in calculation of the low-energy 'Sp A —iV ail p

interactions. This result is in agreement with the experi-
mental evidence4 on the relative A —Z parity.
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APPENDIX A: LIST OF MOMENTUM
SPACE INTEGRALS

co +op +ohoh
dakdak' e"k+k' "

)

M M M M

(A1)

IIX (4) d,ud, t
'

e (k+')'
MM M M

(A2)

y(2)—
27r2

eik. x

d3k-
M2

(A3)

IIP(4)
~ .I ~~ .g~ ei(k+k ) .x

dakdak'
M2M' M M'

(A4)

Xp(4)— dokdok'hrb ko. k'

y et, (k+k') x
oh'+ oh"+ohoh'

(A5)
M M M M

dokdok'eo. kao k'

oo +oh +phoo
)(' ei (k+k') ~ x

M3M'3 M M

(A6)

xV(4) andThe momentum space integrals or
V(') may be found in Ref. 10.

APPENDIX B' RADIAL FUNCTIONS
DESCRIBING THE POTENTIALS

X"'= (—2/x)e —*, (81)
«Y-"'= (1/3~)t (3/x')Eh(2x)+(2/*)Eo(2x)), (82)
xY~&4& (1/3)r) L(3/x') Eh(2x)+ (2/x) Eo(2x)j, (83)
"Y "'= (1/3)r)L(e /x') {2xE'p(x)—E,(x))

—(1/x') {2xEo(2x)—Eh(2x) )], (84)
rr Yr (4& = (1/3)r) Pe *E'o(x) (2/x+3/xo+3/xo)

+ (2e */xo)Eh(x) —(5/x')E'h(2x)
—(2/x+3/x')Eo(2x)], (85)

«X&4' = —u (2/)rx) Ep (2x), 86)

(
"X"'= —

) (2/)rx) Le-*Eo(x)—Eo(2x)],
U"'= —)h(1/ )$(3/x')E (2x)+(2/x'JE, (2x)], (88)
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in which the functions E„(x) are given by

I'(n+-', )(2)' coskx
dk.

($2+ I)n+112

The radial functions for V"', x V "&, and I V&'& are to be
found in Ref. 10.

"J.J. de Swart and C. Dullemond, Ann. Phys. (N. Y.) 16, 263
(1961).

'6 We have found that good results were obtained with only 8
significant figure accuracy in other cases, e.g., the case in which
the closed channel is the —S channel and even A.—Z parity
potentials used.

APPENDIX C: NUMERICAL SOLUTION OF THE
SCHRODINGER EQUATION

The procedure followed in integrating the wave
equation has been discussed previously. "In the present
problem, where there is only one orbital angular momen-
tum channel, the two independent solutions of the wave
equation are combined into a 2X2 wave function
matrix f. At the outer edge of the hard core the ele-
ments of P are set equal to zero, while the slopes of the
11 and 22 elements are arbitrarily set equal to unity.
Values of P are computed successively, by use of the
Noumanoff approximation to the differential equation,
at intervals of 0.01 p,

' out to x= 1.0 p, ', then at inter-
vals of 0.02 p,

' out to x= 5.0 p, '. At this point the linear
combination of the two independent solutions for lt is
determined to match an outer wave function consisting
of a sine wave in the open channel and a damped
exponential in the closed channel. In this case it was
found that the cumulative errors in the numerical
solution for P were so large as to cause the matching
conditions to yield completely erratic results; the

difhculty was cleared up by carrying out the calculation
at 16 significant figure accuracy instead of the 8 sig-
ni6cant 6gure accuracy customarily used in IBM-7094
calculations.

In order to understand qualitatively the reason for
this difhculty,

"a model two-channel problem was set
up in which all of the potentials consisted of a hard
repulsive core of common radius, followed by attractive
rectangular wells of depths UL, , Vg, and V~g for the
A —A, Z —Z and transition potentials, respectively. The
radius x~ was used for all of the wells. For the '5p A, —A

Vr, s'& Vc(Vs —A) (C4)

is met. In case Vq &~, we And that n is real if the posi-
tive sign in (C3) is chosen, imaginary if the minus sign
is used. Thus, the wave function within the well is a
linear combination of oscillatory and exponential parts.
In the actual Ah. —ZZ problem with odd-parity poten-
tials, two characteristic features stand out: (I) The
transition potential Vzz tends to be very strong as well
as long ranged by comparison with Vga and Vzz, (2)
the channel mass difference 6 is large, about 134
MeV/c'. In making the comparison with our model
problem, we should take 6 and Vl, z large by comparison
with VB and Vz, . If, in Eq. (C3), we neglect Vs and Vz,
we see that the characteristic length ) of the exponential
part of the wave function is given by

Mzh (MzA) '
+

i

-- i+MgMy, V'L, BE2)
-1/2 —I/2

(CS)

From this we see that the wave function in the actual
problem will have a very rapid exponential increase
with r. The corresponding exponential increase in the
rounding-off errors makes it extremely dificult to
accurately match this solution to the exponentially
decreasing solution which we want in the exterior
region.

state, the Schrodinger equation for the region within
the well reads (for zero energy)

up" +M)t Vru))+MgUJsuz-—-0,
uz"+MzVrsuz+[(Us —6)Mzfuz ——0, (Ci)

where Nq and N~ are the wave functions in the A.—A. and
Z —Z channels, M ~ and M ~ are the A and Z masses, and
6 is twice the A —Z mass difference. On assuming solu-
tions of the form

uz=A cos(ux+e),
uz= 8 cos(rsvp+ e) .

We find that the eigenvalues of n are given by

rP =- -', f M))Vr+ (Vs —A)M z+ [(M))Vr,—(Vs —A)M z)'

+4M' zVr, s']'Is) . (C3)

In case Vq&h, we see that solutions with n real exist,
provided the condition


