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may be integrated" and yield
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The integration of (14) using the Hulthen function
gives
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The limit Z3=0 is studied in the Zachariasen model using dispersion theory techniques. The connection
between bound states and elementary particles is demonstrated in this limit and it is shown how Castillejo-
Dalitz-Dyson ambiguities are removed.

I. INTRODUCTION

'HERE has recently been a great deal of interest
in studying Geld theories in the limit of vanishing

renormalization constants. ' ' Various authors have
speculated that in this limit an "elementary particle"
can be regarded as a bound state. Vaughn, Aaron, and
Amado4 have discussed the equivalence of the Lee
model and potential theory in this limit. Rockmore,
and Dowker and Paton' considered this problem
in the context of the unsubtracted bootstrap model.
A convenient model for studying this limit is that
proposed by Zachariasen, in which the wave function
renormalization can be determined explicitly and
is 6nite. A special case of this theory in which there is
no contact interaction has been studied by Acharya'
and Dowker. ' Dowker' has also discussed a more
general case restricting himself to two dimensions and
using perturbation theory.

t Supported by the U. S. Atomic Energy Commission.
' A. Salam, Nuovo Cimento 25, 224 (1960); A. Salam, Phys.

Rev. 130, 128/ (1963).
' S. %'einberg, Phys. Rev. 130, 776 (1963).
' R. Amado, Phys. Rev. 132, 485 (1963).
4 M. T. Vaughn, R. Aaron, and R. D. Amado, Phys. Rev. 124,

1258 (1961).
' R. M. Rockmore, Phys. Rev. 132, 8/8 (1963); J. S. Dowker

and J. E. Paton, Nuovo Cimento 30, 450 (1963).
' R. Acharya, Nuovo Cimento 24, 870 (1962).
~ J. S. Dowker, Nuovo Cimento 25, 1135 (1962).
s J. S. Dowker, Nuovo Cimento 29, 551 (1963).

Since the limit Z3=0 is a highly singular one, it is
advantageous to have explicit solutions for the quan-
tities of interest and for this reason we shall confine
our attention to the Zachariasen model. ' The com-
parative simplicity of this theory allows us to see
clearly the nature of the difhculties. Our work differs
from that of Refs. 6, 7, and 8 in that we consider a
wider class of solutions and obtain all our results in
terms of 6nite physical quantities using dispersion
theory techniques.

Our results may also be obtained from renormalized
perturbation theory although we feel that results stated
in terms of unrenormalized coupling constants, masses,
etc., tend to be physically misleading.

In Sec. II we present a new dispersion theoretic
method for solving the Zachariasen model based on the
properties of the vertex function, rather than the de-
nominator function. In Sec. II we exhibit and discuss
several apparently different scattering solutions. We
also consider the Z3=0 limit of these solutions, and
show their equivalence to a bound-state theory. Finally,
in an Appendix we discuss a solution which clearly
indicates the singular nature of the Z3=0 limit.

II. PROPERTIES OF THE VERTEX
AND CALCULATION OF Z3

The Zachariasen model deals with the interaction of
a scalar boson 8 (with a distinct antiparticle 8) and

e F. Zachariasen, Phys. Rev. 121, 1851 (1961).
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possibly another scalar boson A. We will follow the
notation of Ref. 9.

The BB scattering amplitude T(s) satisfies the fol-
lowing dispersion relation

A similar argument shows

p(s) I
T(s) I' 1

Im—=— +T(s) Im
r*(s) r(s)

where

T(s) =
g' 1 "

, I
T(s')

I

'
p(s') ds',

S—P, 7l 4M 2 S —S—Z6

ImF(s)

1 ps' —4M'q'I'
p(")=

16~( s'

M and p are the physical masses of the 8 and A par-
ticles, respectively (p(2M). If the physical A particle
does not exist, then the pole term in (1) is not present.

When the A particle is present, the BM. form factor
F(s), the BBA vertex I'(s), and the A particle pro-
pagator 6(s)" are given by

where the last line follows from Eqs. (5) and (8).Hence,
we may write a dispersion relation for T/r to give

T(s) g +a-
r (s) s—p'

(S—p') ImF (s')ds'
(10)

4M' (S —p ) (S —S—M)

where a is a subtraction constant. Comparing this with
the dispersion relation for F

I Eq. (3)j we find

T/I'= F/(s —p')+n,

F(s) =g—

6(s) =
s—p

T*(s')F(s')
p (s') ds', (3)
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p(s') ds', (4)
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where the constant 0. is given by

d (s p,') T(s)—
n= — F(s)—

ds I'(s)

and finally
T=rSr+ nr.

~(s)r(s) = F(s)
s—p

p
Im —= Im(s —p')i4 (s)=-

r
p(s) IF(s) I'

s—p
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Some trivial manipulation gives

We now proceed to the calculation of various quantities
of physical interest by a method that avoids many of
the difficulties due to Castillejo-Dalitz-Dyson (CDD)
ambiguities. We shall confine our attention to the case
where the physical A particle exists and the form factor
has certain asymptotic properties, which we shall
specify later.

Our method is based on a consideration of the
analytic properties of the vertex function I'(s) given by
Eq. (5). From this equation, we see that I'(s) is regular
in the cut s plane, and we assume F has no poles or
zeros. The discontinuity of I'(s) across the cut may be
found rather indirectly as follows:

(13)Im(1/r) =np(s) .

Imr= —np(s) Ir(s) I,
Hence

(14)

and we can write the two dispersion relations

( —') " p(')I (')I'
I'(s) = g

— ds',
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(15)

1 1 n(s —p,')=-+
I'(s) g 4r 4

p (s')ds'

M' (S' P') (S —S)—(16)

We assumed that T/r satisfied a once subtracted dis-
persion relation. It is easy to see that. the only effect of
further subtractions is to replace n by a polynomial in

(s—p') in Eq. (12). For our present purposes the actual
value of n is unimportant. We may remark, however,
that the arbitrariness in e corresponds to the CDD
ambiguity in the usual E/D method of solving the
model.

Substituting this value for T in Eq. (8) and using
Eq. (5) gives

F I'(s) ImF (s) —F(s) Imr (s)
Im —=

r

1 p(s) T*(s) p(s)F"'(s)
IID—=

F s—pr*(s)

Comparing these two and using Eq. (3) gives

(7)
Now the wave function renormalization constant of
particle A is given by'

" p(s')
I
r (s') I' ,Z, = 1—— ds'. (17)

4r 4M' (s p )

From Eq. (15) we see that the integral in this expression
is equal to

' I. Castillejo, R. H. Dalitz, and F. S. Dyson, Phys. Rev. 101
4S3 (1956)."M. Gell-Mann and F. Zachariasen, Phys. Rev. 124, 953 (1961)."S.D. Drell and F. Zachariasen, Phys. Rev. 119,463 (1960l.
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from Fq (16)when the last equality follows from q. . ence (1) are given by
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but is given by

1 1 " p(s')ds'

g 1t' 4M' (S —
t4 )

(30)

ds

V'= g'"/(t4'" —sp) .

1 R 1
p(s')

(s' —t '")' )( ( '"—»)'
(39)

Another solution for T(s) is given by"

(3) rp4 theory

where

Dp") (s) =1+

Tp&'&(s) = 2/Dp&') (s), (31)

p(s') ds', (32)
7I 4M 2 (S —Sj) (S S—ZP)

$—
$)I,

0= 1+— p(s')
7I 4M-'S (S —t4 )

(33)

Dining g' by

—=—(Tp(" (s)?'
g ds

some algebra gives

1 " ds'
p(s'). .. (34)

4M' (s 14)—

where Tp&" (s),)= X defines the real constant $.. Without
any real loss of generality we take s),=0. Dp "&(s) has no
zeros if —~&) &0, one zero for 0&s&4M' if X&—

&

(i.e., a bound state), and a zero for s&0 if X)0 (i.e. ,
a ghost).

Let us erst consider P &——,'. H (31) is a solution of
(1) and if the zero of Dp&" (s) occurs at t4', then we have

)ds'

Hence, the p4 theory with a CDD pole can be cast into
the same form as the combined theory. It is rot, how-
ever, always possible to choose the parameters so that
the two are numerically identical. If ——,'&'A&0 and
X"&0, which insures that no ghosts appear, and R and
sp are chosen so that tl'"=t4' then it follows from (38)
and (39) that

ds1 1
p(s')

g'" s' 4M* (s' —)4')'

Dp (4) ()4P))0. (41)
Xp'

Hence, g'" may be made equal to g' only if g' is suf5-
ciently small. This precludes taking the Z3=0 limit
Las is obvious from (41)j since g' has its maximum
value for Z3=0.

We can of course take the limit s3 —&~ but this is
not the same as setting Z3= 0, since in order to satisfy
(38) we must also let R —&~ in such a way that R/SP
remains 6nite. ln this limit, Eq. (41) is satisfied with
the equality sign holding and we do not get an expres-
sion for g' in terms of p'.

It is possible to obtain a well defined Z3=0 limit of
the p4 theory with a ghost but this is of little physical
interest and we shall not pursue it further.

s—y2 ds IV. CONCLUSIONS
To(') =1 p(s') . (35)

7l' 4M' (S —
t4 ) (S —S—44)

Hence, the q4 theory with a bound state is identical to
the trilinear and combined theories with Z3= 0.

If X& ——,', we can introduce the A particle as a CDD
pole by replacing Dp&" (s) by Do'(s) given by

R s
D&P) (s) —Dp(P) (s)+

$—$3 Sg
(36)

X / g"'
T&'&(s)= =~ X"+

D "&(s) «s —)4'"

s—14'"
]1+ , (.„p(s')] ~"+

s

dsX, (37)
(s p )(s —s 44)

where p,",g", and X" are defined by

2 Qo

0= 1+ p(s') ds'+
7l 4M' S (S t4 ) (t4 Sp) Sp

(38)

where R)0. Gell-Mann and Zachariasen have shown
that in this case"

We have discussed several solutions of the Zachariasen
model and their .relationships to each other. In par-
ticular we have been able to discuss these relationships
in the limit Z3=0. We feel that it is important that
this was achieved by using dispersion relations through-
out so that no reliance was placed. on perturbation
theory.

All of the basic solutions for the scattering amplitude
T(s) were subject to modification by the usual CDD
terms. We have fixed the residue and positions of these
poles by requiring that the modi6ed theory can be
completely equivalent to the combined theory without
a CDD pole. This requirement gave the residue of the
pole to be proportional to the wave function renor-
malization constant of the A particle.

The limit Z3= 0 determines the coupling constant g'
in terms of t4'. lt is worth pointing out that Eq. (18)
with Z3=0 is the condition that an unsubtracted dis-
persion relation hold for Dp&'&(s). Furthermore, in this
limit the CDD ambiguity vanishes and there is only
one solution of the dispersion relation, namely that
given by (29). This solution may be interpreted either
as a bound-state theory of the p4 type or as the Z3=0
limit of the trilinear or combined theories.

Finally, we may point out that all of the results
given here agree with renormalized perturbation theory.
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There are difhculties in the interpretation of perturba-
tion theory, however, since for consistency it is neces-
sary to assume the bare coupling constants gp and Xp

are always zero.
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APPENDIX

In this Appendix we consider the case of a CDD pole
in the pure trilinear theory with a residue that does not
satisfy Eq. (28). The scattering amplitude may be
written in the form

(s—p')A(s) =1

X + (s—p')
LD'(s) g'Z,

(AS)

/compare Eq. (45) of Ref. 9j.
Hence h(s) will have pole at s3——p' —g'/X", unless

With this form of D', we find 1/I'(s) =0(s) as s-+~,
and the method we used in Sec. II to 6nd Z3 fails,
though a Inodihcation of it still works. We may Gnd Z3
by noting that the solutions given by Zachariasen for
the combined theory hold in this case as well, with his
D(s) replaced by D'(s). In particular

with

D (s) =1+(s—w')

S—p
D'(s), (A1)

01

+ (Sa—~') = o
D'(s, ) g'Z,

Z = —V'C/g'.
ds'

Then

I(s) =
p(s')

+A (s—p') .

It is convenient to introduce the abbreviation

(A2)

)We may remark in passing that the same method could
have been used for the combined theory, and would
have given Eq. (18) again. $

Hence for this solution Z3 is arbitrary apart from the
restriction imposed by Eq. (A4), and at first sight the
condition Z3=0 gives no restriction on g'. How'ever,
the form of the propagator given in Eq. (AS) is valid
only if C does not vanish. If C=O, we must go back to
the expression for T given by (A1) and (A2), and after
a little manipulation we 6nd

D (s) =P (s p')+g'$P(s)+ (1/g') —I(p')$
+( "/g')'C(s —u') (A3)

2'(s) =g'/E(s p')Do—"'(s)j (A7)

0(—X"C/g'( 1—g'I(y, ') . (A4)

For (A1) to be a solution of the dispersion relation
for T, we require that D'(s) should have no zeros on
the physical sheet. The condition for this is

and hence Z3= 1—g'I(p') as before.
It is not known whether the solution with A/0 has

any simple interpretation in terms of perturbation
theory. This example does indicate, however, the highly
singular nature of the limit Z3 —& 0.


